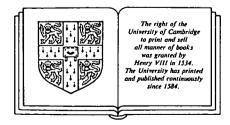
Parasitology

Symposia of the British Society for Parasitology Volume 27 The evolutionary biology of parasitism

EDITED BY A. E. KEYMER and A. F. READ CO-ORDINATING EDITOR L. H. CHAPPELL

CAMBRIDGE UNIVERSITY PRESS

Subscriptions may be sent to any bookseller or subscription agent or direct to the publisher: Cambridge University Press, The Edinburgh Building, Shaftesbury Road, Cambridge CB2 2RU. Subscriptions in the USA and Canada should be sent to Cambridge University Press, Journals Department, 40 West 20th Street, New York, NY 10011. All orders must be accompanied by payment. The subscription price of volumes 100 and 101, 1990 is \pounds 139 UK, \pounds 149 elsewhere (US \$320 in the USA and Canada), payable in advance, for six parts and any supplements; separate parts cost \pounds 22 or US \$47 each (plus postage). Second class postage paid at New York, NY and at additional mailing offices. POSTMASTER: send address changes in USA and Canada to *Parasitology*, Cambridge University Press, 110 Midland Avenue, Port Chester, New York, NY 10573.


Parasitology

Symposia of the British Society for Parasitology Volume 27

The evolutionary biology of parasitism

EDITED BY A. E. KEYMER AND A. F. READ

CO-ORDINATING EDITOR L. H. CHAPPELL

CAMBRIDGE UNIVERSITY PRESS

CAMBRIDGE

NEW YORK PORT CHESTER MELBOURNE SYDNEY

Contents

Appendix

References

Preface	S 1
List of contributions	S 3
Acknowledgements	S4

The evolutionary biology of molecular	
parasites	S5
Introduction	S5
The error threshold	S6
Recombination	S 8
Host jumping	S9
Molecular games	S10
Viruses of viruses	S10
Transposons and complementation	S10
Host countermeasures against transposons	S11
Defective interfering viruses	S11
Coviruses	S13
The retroid game	S14
Conclusion	S15

S15

S16

B-chromosomes: germ-line parasites	
which induce changes in host	
recombination	S19
Introduction	S19
<i>B</i> -chromosomes	S19
The pathological effects of B-chromosomes	S20
The increase of B-chromosomes within	
hosts	S20
The spread of <i>B</i> -chromosomes between	
hosts	S21
The genetics of the $A-B$ interaction	S21
The theory of inducible recombination	S22
Increased recombination as a host response	
to B-infection	S23
Conclusion	S24
References	S25

The evolution of acquired immunity to	
parasites	S27
Summary	S27
Introduction	S27
Evolutionary pressures on the immune	
system	S27
Resistance to infection is the sole purpose	
of the immune system	S27
Polymorphism accounts for much of the	
complexity of the immune system	S28
The number of loci within the MHC	
reflects this polymorphism	S28
Why do MHC genes occur together with a	
gene complex ?	S28

The differentiation of Class I from Class	
II	S28
Immune response genes outside the MHC	S29
Parasites can manipulate immunological	
molecules	S29
Evolutionary pressures on parasites	S30
Immune suppression (Is) genes	S30
Phosphatidylinositol anchorage	S32
References	S33
Virulence of lizard malaria: the	
evolutionary ecology of an ancient	
parasite-host association	S35
Summary	S35
Introduction	S35
Lizard malaria as a model for tests of the	
theory of parasite virulence	S37
Study systems	S38
Consequences of malarial infection for lizards	S39
Haematology	S39
Oxygen consumption	S41
Stamina and running speed	S42
Social behaviour and ability of males to	
obtain mates	S43
Sexual selection	S44
Reproductive output	S45
Survival and growth	S46
Body temperature	S46
Discussion	S49
References	S50
The evolution of inducible defence	S53
Summary	S53
Introduction	S53
Inducible structural resistance in	~
invertebrates	S54
The host response to parasites as an	
inducible defence and the phylogeny of	~
immune responses	S54
The selective advantages of inducible defences	S59
Cost of defence	S59
Camouflage against consumer counter-	~
adaptation	S60
References	S60
Parasites, desiderata lists and the	
paradox of the organism	S63
Introduction	S63
The organism is not an 'optimon'	S63
The paradox of the organism	S64
Meiotic drive	S64
The extended phenotype	S64
Adaptation or boring byproduct	S65

Contents

Extended genetics	S68
Blurring the boundaries	S70
Overlapping and non-overlapping desiderata	
lists	S70
References	S72
Genetic exchange and evolutionary	
relationships in protozoan and	
helminth parasites	S75
Summary	S75
Introduction	S75
Evolutionary relationships	S76
Genetic exchange systems in parasites	S78
Evolution of genetic exchange	S83
References	S85
Parasite-host coevolution	S89
Introduction	S89
Evolution of virulence	S89
Chaos and dynamics and genetics of	
host-parasite associations	S91
Invasion or emergence of new viral and other	•
parasites	S92
The molecular history of HIV	S94
Doubling times for HIV seroprevalence	S94
Spatial heterogeneity and the spread of	
infection	S95
Long and variable infectious period and the	
spread of infection	S96
Conclusions	S98
Appendix A	S98
Appendix B	S99
References	S100

Selection and evolution of virulence in	
bacteria: an ecumenical excursion	
and modest suggestion	S103
Summary	S103
Introduction	S103
The traditional view: ("conventional	
wisdom'')	S103
Ecological and epidemiological studies of	
parasite-host coevolution (the	
enlightenment)	S104
Limitations of the enlightened theory	S105
Evidence in support of the enlightened	
theory	S105
The mechanisms of pathogenicity in bacteria	S106
Virulence determinants	S106
(i) Entry	S107
(ii) Adhesion	S107
(iii) Toxins	S107
(iv) Avoidance of host defences	S108
(v) Invasion and replication in somatic	
cells	S108
Inheritance of virulence determinants	S109
Inferences from studies of the population	
genetics of bacteria	S109
Selection for virulence determinants	S110
Evidence for direct and coincidental	
selection for virulence	S110
Adhesion	S110
Toxin production	S110
Avoidance of host defences	S111
Invasion of somatic cells	S111
Our 'modest' suggestion	S111
Experimental tests of hypotheses for	
selection and virulence	S111
Coda	S112
References	S113