BULL. AUSTRAL. MATH. SOC. VOL. 35 (1987) 349-362

EXTREME POSITIVE LINEAR MAPS BETWEEN JORDAN BANACH ALGEBRAS

CHO-HO CHU AND NIGEL P.H. JEFFERIES

Let A and B be unital JB-algebras. We study the extremal structure of the convex set S(A,B) of all identity preserving positive linear maps from A to B. We show that every unital Jordan homomorphism from A to B is an extreme point of S(A,B). An extreme point of S(A,B) need not be a homomorphism and we show that, given A, every extreme point of S(A,B) is a homomorphism for any B if, and only if, dim $A \leq 2$. We also determine when S(A,B) is a simplex.

1. Introduction

Let A and B be unital JB-algebras. In this paper, we study the extreme points of the convex set S(A,B) of all identity preserving positive linear maps from A to B.

Motivated by the results in C^* -algebras [2, 4, 10], we begin by showing that every unital Jordan homomorphism from A to B is an extreme point of S(A,B). We then focus our attention on the natural question of the converse. We study conditions under which the extreme points of S(A,B) are Jordan homomorphisms. If A and B are associative, it is known that the extreme points of S(A,B) are exactly the unital

Received 19 May 1986.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/87 \$A2.00 + 0.00.

homomorphisms from A to B. In the nonassociative case, however, our results indicate that only in very special situations can one expect that every extreme point of S(A,B) is a homomorphism. For instance, given A, every extreme point of S(A,B) is a homomorphism for any B if, and only if, dim $A \leq 2$. Also, if B is the self-adjoint part of a finitedimensional nonabelian C^* -algebra, then every extreme point of S(A,B)is a homomorphism if, and only if, dim $A \leq 2$.

When B is the real field \mathbb{R} , the set $S(A,\mathbb{R})$ is the state space of A and in this case, every extreme point of $S(A,\mathbb{R})$ is a homomorphism if any only if $S(A,\mathbb{R})$ is a (Choquet) simplex. It is natural to ask whether this is still true for any B. The answer is negative. In fact, we will show that S(A,B) is a simplex if and only if either $A = \mathbb{R}$ or A is associative with $B = \mathbb{R}$.

2. JB-algebras and extreme maps

We will use $[\delta]$ as our main reference for *JB*-algebras. In the sequel, by a *JB*-<u>algebra</u> we mean a real Jordan algebra A, with identity 1, which is also a Banach space where the Jordan product and the norm are related as follows

 $||a \circ b|| \le ||a|| \cdot ||b||$ $||a||^{2} = ||a^{2}|| \le ||a^{2} + b^{2}||$

for $a, b \in A$. We note that A is partially ordered by the cone $A_{+} = \{a^{2} : a \in A\}$ and that A is an order-unit normed Banach space with order-unit 1. Moreover, the second dual A^{**} of A is a *JBW*-algebra and A embeds into A^{**} as a subalgebra. The self-adjoint part of a unital C^{*} -algebra is a *JB*-algebra with the usual Jordan product and the self-adjoint part of a von Neumann algebra is a *JBW*-algebra.

Let A and B be *JB*-algebras and let L(A,B) be the real Banach space of bounded linear maps from A to B. A linear map $\phi : A \rightarrow B$ is <u>positive</u> if $\phi(A_{\perp}) \subset B_{\perp}$. Let S(A,B) be the set of all positive linear

350

maps $\phi : A \rightarrow B$ such that $\phi(1) = 1$. Then S(A,B) is a convex subset of L(A,B). An extreme point of S(A,B) will be called an extreme map. We note that S(A,B) always contains extreme points. Indeed $S(A, \mathbb{R}) = \{f \in A^* : f(1) = 1 = ||f||\}$ is the state space of A and it can be embedded as a convex subset of S(A,B) via the map $f \in S(A, IR) \Rightarrow \phi_f \in S(A, B)$ where $\phi_f(a) = f(a) \mathbf{1}_B$ for $a \in A$. Moreover, since the states of B separate points of B, by composing with the states of B , it is easy to see that if f is a pure state of A , then $\phi_{\mathcal{F}}$ is an extreme point of S(A,B). If A and B are the self-adjoint parts of C*algebras A and B respectively, we let $L(\underline{A},\underline{B})$ be the space of bounded (complex) linear maps from A to B and let $S(A,B) = \{\phi \in L(A,B) : \phi \ge 0, \phi(1) = 1\}$ where each map ϕ in S(A,B) satisfies $\phi(a^*) = \phi(a)^*$ for $a \in A$. It follows that the restriction map $\phi \in \underline{S(A, B)} \mapsto \phi |_A \in S(A, B)$ is a real affine isomorphism and in particular, the two sets S(A,B) and S(A,B) have the same extremal structure.

The following lemma has been proved in [12].

LEMMA 1. Let A be a JB-algebra. Then an element p in A is an extreme point of the positive unit ball $\{a \in A : 0 \le a \le 1\}$ if and only if p is a projection, that is, $p^2 = p$.

A linear map $\phi : A \rightarrow B$ is called a (Jordan) homomorphism if $\phi(a^2) = \phi(a)^2$ for all a in A. Plainly, every unital Jordan homomorphism is a positive linear map. In fact, it is even an extreme map.

THEOREM 2. If $\phi: A \rightarrow B$ is a unital Jordan homomorphism, then ϕ is an extreme point of S(A,B).

Proof. As the second dual map $\phi^{**} : A^{**} \to B^{**}$ is weakly continuous, it is a Jordan homomorphism by density of A in A^{**} . Suppose that $\phi = \frac{1}{2}(\rho + \psi)$ with ρ , $\psi \in S(A,B)$, then $\phi^{**} = \frac{1}{2}(\rho^{**} + \psi^{**})$. Let ebe a projection in A^{**} . Then $\phi^{**}(e)$ is a projection in B^{**} and hence an extreme point of the positive unit ball in B^{**} , by Lemma 1. Now $\phi^{**}(e) = \frac{1}{2}\rho^{**}(e) + \frac{1}{2}\psi^{**}(e)$ and $0 \le \rho^{**}(e)$, $\psi^{**}(e) \le 1$ imply that $\phi^{**}(e) = \rho^{**}(e) = \psi^{**}(e)$. Let α be any element in A^{**} and let $\varepsilon > 0$. By [8; 4.2.3], there exist projections e_1, \ldots, e_n in A^{**} and real numbers $\lambda_1, \ldots, \lambda_n$ such that

$$||a - \sum_{j=1}^{n} \lambda_j e_j|| < \varepsilon .$$

So we have

$$\begin{split} ||\phi^{**}(a) - \rho^{**}(a)|| &= ||(\phi^{**} - \rho^{**})(a - \Sigma \lambda_j e_j) + (\phi^{**} - \rho^{**})(\Sigma \lambda_j e_j)|| \\ &= ||(\phi^{**} - \rho^{**})(a - \Sigma \lambda_j e_j)|| \\ &\leq \varepsilon ||\phi^{**} - \rho^{**}|| . \end{split}$$

This shows that $\phi^{**}(a) = \rho^{**}(a)$ for every a in A^{**} . Hence $\phi = \rho$ and ϕ is an extreme point of S(A,B).

In general, not every extreme map is a homomorphism as the following lemma shows.

LEMMA 3. Let A be a JB-algebra. The following conditions are equivalent:

(i) A is associative;
(ii) A is isometric isomorphic to the self-adjoint part of an abelian C*-algebra;
(iii) the dual cone A*₊ of A₊ is a lattice;
(iv) the state space S(A, R) is a (Choquet) simplex;
(v) every extreme point of S(A, R) is a Jordan homomorphism.
Proof. (i) ⇒ (ii) see [8; 3. 2. 2.].
(iii) ⇒ (iv). S(A, R) is a base of the lattice cone A*₊ and hence is a simplex (see [3; p.138]).
(iv) ⇒ (v). Let f be an extreme point of S(A, R). Then {f} is a split face of S(A, R) (see [3]) and so the kernel f⁻¹(0) is a Jordan ideal in A (see [7; Theorem 2.3], [5; Corollary 3.4]). So f is a Jordan homomorphism.

 $(v) \Rightarrow (i)$. This follows from the fact that the extreme points of $S(A, \mathbb{R})$ separate points in A and that for each extreme point f in $S(A, \mathbb{R})$, we have $f((a \circ b) \circ c) = f(a) f(b) f(c) = f(a \circ (b \circ c))$ for a, b, $c \in A$.

Now we study conditions under which the extreme maps are Jordan homomorphisms. As in [8], we define the <u>centre</u> Z_A of a *JB*-algebra *A* to be the set of all elements in *A* which operator commute with every other element in *A* where two elements *a* and *b* are said to <u>operator</u> <u>commute</u> if ao(cob) = (aoc)ob for all *c* in *A*. We note that Z_A is an associative *JB*-subalgebra of *A*. The following theorem is a straightforward extension of a result of Størmer in [10; Theorem 3.1]. We sketch a proof for the sake of completeness.

THEOREM 4. Let ϕ be an extreme point of S(A,B). If $a \in Z_A$ and $\phi(a) \in Z_B$, then $\phi(a \circ b) = \phi(a) \circ \phi(b)$ for all $b \in A$.

Proof. We may assume $||a|| < \frac{1}{2}$, then $||\phi(a)|| < \frac{1}{2}$. By spectral theory, $\frac{1}{2}1 - a$ and $\frac{1}{2}1 - \phi(a)$ are positive and invertible in Z_A and Z_B respectively, with $\frac{1}{2}1 - \phi(a) \ge \lambda 1$ for some $\lambda > 0$. Define $\psi : A \rightarrow B$ by

$$\psi(b) = \phi(b \ o(\frac{1}{2}1 - a)) \ o \ (\frac{1}{2}1 - \phi(a))^{-1}$$

for $b \in A$. Then $\psi \in S(A,B)$ and $\lambda \psi \leq \phi$. As ϕ is extreme, we have $\psi = \phi$ which gives

$$\phi(b) = \psi(b) = \phi(b \ o(\frac{1}{2}1 - a)) \ o(\frac{1}{2}1 - \phi(a))^{-1}$$

1

and hence $\phi(a \circ b) = \phi(a) \circ \phi(b)$.

Since *B* is associative if and only if $B = Z_B^{}$, the following result follows immediately from Theorem 2 and Theorem 4.

COROLLARY 5. If B is associative and if ϕ is an extreme point of S(A,B), then the restriction $\phi|Z_A$ is an extreme point of $S(Z_A,B)$.

We note that the above result need not be true if B is not associative. We refer to [10; 4.14] for an example. Theorem 2 and Theorem 4 also imply the following corollary (see [1, 6, 9, 10]). COROLLARY 6. Let A and B be associative JB-algebras. Then the extreme points of S(A,B) are exactly the unital Jordan homomorphisms from A to B.

Let l_n^{∞} be the *n*-dimensional abelian *C**-algebra of (complex) finite sequences with the minimal projections $e_1 = (1, 0, \dots, 0)$, $e_{0} = (0, 1, 0, \dots, 0), \dots, e_{n} = (0, \dots, 0, 1).$ We will denote by l_{n} the self-adjoint part of l_n^{∞} . Let M_n be the C*-algebra of $n \times n$ complex matrices and let H_n be its self-adjoint part consisting of (complex) hermitian matrices. Let B(H) be the full operator algebra on a (complex) Hilbert space H . For any projections p_1, \ldots, p_n in B(H), we say that they are weakly independent if their ranges $p_1(H)$, ..., $p_n(H)$ are weakly independent subspaces of H as defined in [2; p.165], this is equivalent to saying that for any $t_1, \ldots, t_n \in B(H)$, $\sum_{j=1}^{n} p_j t_j p_j = 0 \text{ implies } p_j t_j p_j = 0 \text{ for } j = 1, \dots, n \text{ (see [11; p.102])}.$ We note that if p is a minimal projection in B(H), then for any $t \in B(H)$, $ptp = \lambda p$ for some complex number λ . Therefore, if p_1, \ldots, p_n are minimal projections, then they are weakly independent if and only if they are linearly independent. It has been shown in [2, 4, 11]that a map ϕ in $\underline{S}(l_n^{\infty}, M_m)$ is an extreme point if and only if the range projections ran $\phi(e_1)$, ..., ran $\phi(e_n)$ are weakly independent in M_m .

PROPOSITION 7. Let B be a JB-algebra. Then the extreme points of $S(l_2, B)$ are precisely the unital Jordan homomorphisms from l_2 to B.

Proof. Let ϕ be an extreme point of $S(l_2, B)$. To show that ϕ is a homomorphism, it suffices to show that $\phi(e_1)$ and $\phi(e_2)$ are projections in *B* since $1 = \phi(1) = \phi(e_1) + \phi(e_2)$. Equivalently, we show that $\phi(e_1)$ and $\phi(e_2)$ are extreme points of the positive unit ball of *B*. Suppose $\phi(e_1) = \frac{1}{2}b + \frac{1}{2}c$ with $0 \le b$, $c \le 1$ in *B*. Define two linear maps ψ , ρ : $l_2 \rightarrow B$ by $\psi(e_1) = b$, $\psi(e_2) = 1-b$; $\rho(e_1) = c$ and

https://doi.org/10.1017/S0004972700013332 Published online by Cambridge University Press

 $\rho(e_2) = 1 - c$. Then clearly ψ , $\rho \in S(\ell_2, B)$ and $\phi = \frac{1}{2}(\psi + \rho)$. By extremality of ϕ , we have $\phi = \psi = \rho$ which gives $b = \psi(e_1) = \rho(e_1) = c$. This proves that $\phi(e_1)$ is an extreme point in the positive unit ball of B, so $\phi(e_1)$ is a projection. Likewise $\phi(e_2)$ is also a projection.

The above result is false for l_n with $n \ge 3$.

Example 1. Define a unital positive (complex) linear map $\phi \ : \ \ell_3^{\infty} \not \to M_2 \quad \text{by}$

$$\phi(e_1) = \begin{bmatrix} \frac{4}{9} & -\frac{2}{9} \\ & & \\ -\frac{2}{9} & \frac{1}{9} \end{bmatrix}, \quad \phi(e_2) = \begin{bmatrix} \frac{1}{9} & -\frac{2}{9} \\ & & \\ -\frac{2}{9} & \frac{4}{9} \end{bmatrix},$$
$$\phi(e_3) = \begin{bmatrix} \frac{4}{9} & \frac{4}{9} \\ & & \\ \frac{4}{9} & \frac{4}{9} \end{bmatrix}.$$

As $\phi(e_1)$, $\phi(e_2)$, $\phi(e_3)$ are linearly independent and also each $\phi(e_j)$ is a scalar multiple of a minimal projection in M_2 , it follows that the range projections ran $\phi(e_1)$, ran $\phi(e_2)$, ran $\phi(e_3)$ are linearly independent minimal projections which are therefore weakly independent. So ϕ is an extreme point of $\underline{S}(\ell_3^{\infty}, M_2)$ by the previous remark. But clearly ϕ is not a Jordan homomorphism.

We now consider $S(l_n, B)$ for $n \ge 3$. We note that a map $\phi \in S(l_n, B)$ is a Jordan homomorphism if and only if $\phi(e_j)$ is a projection in B for $j=1, \ldots, n$. If ϕ is an extreme point of $S(l_n, B)$, the following result shows when $\phi(e_j)$ is 'almost' a projection. PROPOSITION 8. Let ϕ be an extreme point of $S(l_n, B)$. Then $\phi(e_j)^2 \in \phi(l_n)$ if and only if $\phi(e_j)$ is a scalar multiple of a projection in B.

Proof. It suffices to prove the necessity. Suppose $\phi(e_j)^2 \in \phi(l_n)$, then $\phi(e_j)^2 = \sum_{k=1}^n \lambda_k \phi(e_k)$ where $\lambda_k \in \mathbb{R}$. Without loss of generality we may assume j = 1. Define $\psi : l_n \to B$ by

$$\psi(a) = a_1(\lambda_1 \ 1_B - \phi(e_1)) \ o \ \phi(e_1) + \sum_{k=2}^n a_k \lambda_k \ \phi(e_k)$$

where $a = (a_1, \ldots, a_n) \in l_n$. Then $\psi(1) = 0$ and we have $-\psi\phi \leq \psi \leq \psi\phi$ where $\psi = \max \{ ||\lambda_1 - \phi(e_1)||, |\lambda_2|, \ldots, |\lambda_n| \}$. Choose t > 0 such that $t\psi \leq 1$. Let $\phi_1 = \phi - t\psi$ and $\phi_2 = \phi + t\psi$. Then we have ϕ_1 , $\phi_2 \in S(l_n, B)$ and also $\phi = \frac{1}{2}\phi_1 + \frac{1}{2}\phi_2$. As ϕ is an extreme map, we have $\phi = \phi_1$ which gives $(\lambda_1 - \phi(e_1)) \circ \phi(e_1) = 0$, that is, $\phi(e_1)^2 = \lambda_1 \phi(e_1)$. So $\phi(e_1)$ is a scalar multiple of a projection.

From the above result we see that if ϕ is an extreme map in $S(l_n, B)$ and if each $\phi(e_j)^2$ is in $\phi(l_n)$ with $||\phi(e_j)|| = 1$ (or 0), then ϕ is a homomorphism. One might conjecture that if an extreme map $\phi : l_n \rightarrow B$ is such that $\phi(l_n)$ is a Jordan algebra, then ϕ is a homomorphism. This is false as the following example shows.

Example 2. Define a positive linear map $\phi : l_d \rightarrow H_2$ by

$$\begin{split} \phi(e_1) &= \frac{1}{5+4\sqrt{2}} \begin{bmatrix} 4 & -2 \\ \\ \\ -2 & 1 \end{bmatrix}, \quad \phi(e_2) &= \frac{1}{5+4\sqrt{2}} \begin{bmatrix} 1 & -2 \\ \\ \\ \\ -2 & 4 \end{bmatrix}, \\ \phi(e_3) &= \frac{2}{5+4\sqrt{2}} \begin{bmatrix} \sqrt{2} & 1+i \\ \\ \\ \\ 1-i & \sqrt{2} \end{bmatrix}, \quad \phi(e_4) &= \frac{2}{5+4\sqrt{2}} \begin{bmatrix} \sqrt{2} & 1-i \\ \\ \\ \\ \\ 1-i & \sqrt{2} \end{bmatrix}. \end{split}$$

Then each $\phi(e_j)$ is a scalar multiple of a minimal projection and as in Example 1, ϕ is an extreme point of $S(l_4, H_2)$. Moreover $\phi(l_4) = H_2$ is a Jordan algebra but ϕ is not a Jordan homomorphism.

Actually, if A is a 'nontrivial' JB-algebra, then there is always an extreme map $\phi : A \to H_2$ which is not a homomorphism. We have the following result.

THEOREM 9. Let A be a JB-algebra. The following conditions are equivalent:

(i) For any JB-algebra B, every extreme point of S(A,B) is a Jordan homomorphism;

(ii) Every extreme point of $S(A, H_2)$ is a Jordan homomorphism;

(iii) dim $A \leq 2$, that is, $A = \mathbb{R}$ or l_2 .

Proof. (ii) \Rightarrow (iii). Let f be a pure state of A. Then, as

remarked before, the map $\phi_f : a \to f(a) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ is an extreme map in

 $S(A, H_2)$ and is therefore a Jordan homomorphism. It follows that f is a homomorphism on A. Thus, by Lemma 3, A is associative and we may assume that A is the self-adjoint part of the C^* -algebra C(X) of continuous functions on a compact Hausdorff space X. If dim $A \ge 3$, then X contains three distinct points x, y, z say. Define a (complex) linear map $\phi : C(X) \to M_2$ by

$$\phi(a) = a(x) \begin{bmatrix} \frac{4}{9} & -\frac{2}{9} \\ & & \\ -\frac{2}{9} & \frac{1}{9} \end{bmatrix} + a(y) \begin{bmatrix} \frac{1}{9} & -\frac{2}{9} \\ & & \\ -\frac{2}{9} & \frac{4}{9} \end{bmatrix} + a(z) \begin{bmatrix} \frac{4}{9} & \frac{4}{9} \\ & & \\ \frac{4}{9} & \frac{4}{9} \end{bmatrix}$$

for $a \in C(X)$. Then ϕ is an extreme point of $\underline{S}(C(X), M_2)$ by weak independence as in Example 1 and by Arveson's theorem in [2; 1. 4. 10]. Now the restriction of ϕ to the self-adjoint part A of C(X) is an extreme point of $S(A, H_2)$ and it is not a homomorphism. So dim $A \leq 2$. (iii) \Rightarrow (i). If dim $A \leq 2$, then A is associative and so $A = \mathbb{R}$ or ℓ_2 . If $A = \mathbb{R}$, then S(A,B) is a singleton $\{\phi\}$ and ϕ is a homomorphism. If $A = \ell_2$, then Proposition 7 concludes the proof.

Remark. We see in the above proof that if every extreme point of S(A,B) is a homomorphism, then A is associative. Therefore, if B is associative, then every extreme point of S(A,B) is a homomorphism if and only if A is associative.

To prove our next theorem, we will use the following lemma of which the proof is routine and is omitted.

LEMMA 10. Let A, B and C be JB-algebras. Suppose ϕ is an extreme map in S(A,B) and ψ an extreme map in S(A,C). Let $\Phi : A \Rightarrow B \oplus C$ be defined by $\Phi(a) = \phi(a) \oplus \psi(a)$ for $a \in A$. Then Φ is an extreme map in S(A,B \oplus C).

We recall that a type I factor is isomorphic to the full operator algebra B(H) on some Hilbert space H. Let $B(H)_{sa}$ be the self-adjoint part of B(H). We will consider JB-algebras with a direct summand of $B(H)_{sa}$. We note that an atomic von Neumann algebra is a direct sum of type I factors and a finite-dimensional C^* -algebra is a finite direct sum of matrix algebras. Moreover, if a von Neumann algebra has a pure normal state, then it contains a direct summand of a type I factor (see [δ ; 7.5.13]).

THEOREM 11. Let A and B be JB-algebras. Suppose B contains a direct summand of $B(H)_{sa}$ with dim $H \ge 2$. Then every extreme point of S(A,B) is a Jordan homomorphism if and only if dim $A \le 2$.

Proof. The sufficiency follows from Theorem 9. We prove the necessity. So suppose every extreme point in S(A,B) is a homomorphism. By the Remark following Theorem 9, A is associative and we may assume it is the self-adjoint part of some C(X). We need to show dim $A \le 2$. If dim $A \ge 3$, then X contains three distinct points x, y and z say. We deduce a contradiction. By assumption, B contains a direct summand of $B(H)_{BA}$ with dim $H \ge 2$. So we have $B = B(H)_{BA} \oplus C$ for some JB-algebra

358

C. We first show that there is an extreme point ϕ in $S(A,B(H)_{Sa})$ which is not a homomorphism. If dim H = 2, such an extreme map exists by Theorem 9. Suppose dim $H \ge 3$. Define the following positive operators in B(H):

where I is the identity operator on a subspace of H. Then $T_1 + T_2 + T_3$ is the identity in B(H) and using Example 1, it can be verified that the range projections ran T_1 , ran T_2 , ran T_3 are weakly independent in B(H). Therefore the linear map $\Phi : C(X) \rightarrow B(H)$ defined by

$$\Phi(a) = a(x)T_{1} + a(y)T_{2} + a(z)T_{3} \quad (a \in C(X))$$

is an extreme point of $\underline{S}(C(X), B(H))$ by Arveson's theorem and its proof in [2; 1. 4. 10]. Evidently ϕ is not a Jordan homomorphism. Hence the restriction of ϕ to the self-adjoint part A of C(X) gives an extreme map ϕ in $S(A, B(H)_{BC})$ which is not a homomorphism. Now let ρ be any

Cho-Ho Chu and Nigel P.H. Jefferies

extreme point of S(A,C). Then by Lemma 10, the map $\psi(.) = \phi(.) \oplus \rho(.)$ is an extreme point of $S(A,B(H)_{SA} \oplus C) = S(A,B)$ and also ψ is not a homomorphism. This is a contradiction. So dim $A \leq 2$. The proof is complete.

Remark. We do not know if the above theorem is true for every non-associative \mathcal{B} -algebra B.

3. Simplexes

We recall that a (non-empty) convex set S in a vector space E is a <u>simplex</u> if for $x \in E$ and $\alpha > 0$, the intersection $S \cap (x + \alpha S)$ is either empty or of the form $y + \beta S$ for some $y \in E$ and $\beta \ge 0$. It is well-known that if S is a base of a cone K, then S is a linearly compact simplex if and only if K is a lattice (see [3; p.138]).

Trivially S(IR,B) is a simplex for any JB-algebra B since it reduces to a singleton. On the other hand, Lemma 3 shows that S(A,IR) is a simplex if and only if A is an associative JB-algebra.

THEOREM 12. Let A and B be JB-algebras. The following conditions are equivalent:

- (i) S(A,B) is a simplex;
- (ii) Either A = IR or A is associative with B = IR.

Proof. We only need to prove (i) \Rightarrow (ii). We first show that A is associative. Let $K = \bigcup_{\lambda \geq 0} \lambda S(A, B)$ be the cone generated by S(A, B). Then K is a lattice. We show that the dual cone A^*_+ of A_+ is a lattice. Let $f, g \in A^*_+$. Define $\phi_{f^0} \phi_g : A + B$ by $\phi_f(a) = f(a) \mathbf{1}_B$ and $\phi_g(a) = g(a) \mathbf{1}_B$ for $a \in A$. Then $\phi_{f^0} \phi_g \in K$. So the supremum $\phi = \phi_f \lor \phi_g$ exists in K. Let h be a state of B. We show that $h \circ \phi$ is the lattice supremum of f and g. Indeed, for $a \in A_+$, we have $(h \circ \phi)(a) = h((\phi_f \lor \phi_g)(a)) \ge h(\phi_f(a)), h(\phi_g(a))$ where $h(\phi_f(a)) = f(a)$ and $h(\phi_g(a)) = g(a)$. So $h \circ \phi \ge f, g$. Let $k \in A^*_+$ be such that

https://doi.org/10.1017/S0004972700013332 Published online by Cambridge University Press

360

 $k \ge f, g$. Let $\phi_k : A \to B$ be the map $\phi_k(\cdot) = k(\cdot) \mathbb{1}_B$. Then we have $\phi_k \ge \phi_f, \phi_g$ which implies $\phi_k \ge \phi_f \lor \phi_g$. This in turn implies $k \ge h \ o \ \phi$. So the supremum $f \lor g$ exists in A^*_{+} . Hence A^*_{+} is a lattice and A is associative by Lemma 3.

We may now assume that A is the algebra of real continuous functions on some compact Hausdorff space X. Suppose $B \neq \mathbb{R}$. Then there exists $b \in B$ such that $0 \leq b \leq 1$ and b is not a scalar multiple of the identity 1. We show that $A = \mathbb{R}$. Suppose, for contradiction, that $A \neq \mathbb{R}$, then there are two distinct points x and y in X. The unit masses ε_x and ε_y are pure states of A and can be identified as extreme points of S(A,B) as before. Define $\phi, \psi \in S(A,B)$ by

$$\phi(\cdot) = \varepsilon_x(\cdot)b + \varepsilon_y(\cdot)(1-b)$$

$$\psi(\cdot) = \varepsilon_y(\cdot)b + \varepsilon_x(\cdot)(1-b) .$$

The we have $\frac{1}{2}\phi + \frac{1}{2}\psi = \frac{1}{2}\varepsilon_x + \frac{1}{2}\varepsilon_y$.

Since S(A,B) is a linearly compact simplex, $\{\varepsilon_x\}$ and $\{\varepsilon_y\}$ are split faces of S(A,B) (see [3; 8.1]) and so the convex hull $co \{\varepsilon_x, \varepsilon_y\}$ is a (split) face of S(A,B). Now $\frac{1}{2}\phi + \frac{1}{2}\psi = \frac{1}{2}\varepsilon_x + \frac{1}{2}\varepsilon_y \in co \{\varepsilon_x, \varepsilon_y\}$ but $\phi \not\in co \{\varepsilon_x, \varepsilon_y\}$ since $b \in \phi(A) \neq \mathbb{R}_B^1$. This contradicts the fact that $co \{\varepsilon_x, \varepsilon_y\}$ is a face. Hence $A = \mathbb{R}$. The proof is complete.

Remark. The above arguments clearly extend to order-unit normed Banach spaces.

Thus, for example, $S(l_2, l_2)$ is not a simplex while every extreme point of $S(l_2, l_2)$ is a Jordan homomorphism.

References

- [1] R.F. Arens and J.L. Kelly, "Characterizations of the space of continuous functions over a compact Hausdorff space", Trans. Amer. Math. Soc. 62 (1947) 499-508.
- [2] W.B. Arveson, "Subalgebras of C*-algebras", Acta Math. 123 (1969) 141-224.
- [3] L. Asimow and A.J. Ellis, Convexity theory and its applications in functional analysis, (Academic Press, 1980).
- [4] M.D. Choi, Positive linear maps on C*-algebras, (Thesis, University of Toronto, 1972).
- [5] C.M. Edwards, "Ideal theory in JB-algebras", J. London Math. Soc. 16 (1977) 507-513.
- [6] A.J. Ellis, "Extreme positive operators", Quart. J. Math. 15 (1964) 342-344.
- [7] H. Hanche-Olsen, "Split faces and ideal structure of operator algebras", Math. Scand. 48 (1981) 137-144.
- [8] H. Hanche-Olsen and E. Størmer, Jordan operator algebras, (Pitman, 1984).
- [9] A. Ionescu Tulcea and C. Ionescu Tulcea, "On the lifting property", J. Math. Anal. Appl. 3 (1961) 537-546.
- [10] E. Størmer, "Positive linear maps of operator algebras", Acta Math. 110 (1963) 233-278.
- [11] E. Størmer, Positive linear maps of C*-algebras, Lecture Notes in Physics Vol. 29 (Springer-Verlag, 1974).
- [12] J.D.M. Wright and M.A. Youngson, "On isometrics of Jordan algebras", J. London Math. Soc. 17 (1978) 339-344.

Department of Mathematical Sciences University of London Goldsmiths' College London SEl4 United Kingdom.