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EXTREME POSITIVE LINEAR MAPS

BETWEEN JORDAN BANACH ALGEBRAS

CHO-HO CHU AND NIGEL P.H. JEFFERIES

Let A and B be unital JB-algebras. We study the extremal

structure of the convex set S(A3B) of all identity preserving

positive linear maps from A to B . We show that every unital

Jordan homomorphism from A to B is an extreme point of S(AjB) .

An extreme point of S(AaB) need not be a homomorphism and we show

that, given A , every extreme point of S(A,B) is a homomorphism

for any B if, and only if, dim A £ 2 . We also determine when

S(AtB) is a simplex.

1. Introduction

Let A and B be unital JB-algebras. In this paper, we study the

extreme points of the convex set S(A3B) of all identity preserving

positive linear maps from A to B .

Motivated by the results in C*-algebras [2,4, 101, we begin by

showing that every unital Jordan homomorphism from A to B is an

extreme point of S(A,B) . We then focus our attention on the natural

question of the converse. We study conditions under which the extreme

points of S(A,B) are Jordan homomorphisms. If A and B are associative,

it is known that the extreme points of S(A,B) are exactly the unital
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3 5 0 Cho-Ho Chu and Nigel P.H. J e f f e r i e s

homomorphisms from A to B . In the nonassociative case, however, our

results indicate that only in very special situations can one expect that

every extreme point of S(A,B) is a homotnorphism. For instance, given

A , every extreme point of S(A,B) is a homomorphism for any B if, and

only if, dim A <, 2 . Also, if B is the self-adjoint part of a finite-

dimensional nonabelian C*-algebra, then every extreme point of S(A,B)

i s a homomorphism if, and only if, dim A £ 2 .

When B is the real field JR, the set S(A,1R) is the state

space of A and in this case, every extreme point of S(A3JR) is a

homomorphism if any only if S(AS]R) i s a (Choquet) simplex. I t is

natural to ask whether this is s t i l l true for any B . The answer is

negative. In fact, we will show that S(A,B) is a simplex if and only if

either A = IR or A is associative with B = JR .

2. JB-algebras and extreme maps

We will use [S] as our main reference for JB-algebras. In the

sequel, by a JB-algebra we mean a real Jordan algebra A , with identity

1, which i s also a Banach space where the Jordan product and the norm

are related as follows

\ \ a o b \ \ < l l a l l - M f c l l

\ \ a \ \ 2 = \ \ a S \ \ < \ \ a + b 2 \ \

for a, b e A . We note that A is partially ordered by the cone
o

A = (a ; a e A) and that A is an order-unit normed Banach space with

order-unit 1. Moreover, the second dual A** of A is a JW-algebra

and A embeds into A** as a subalgebra. The self-adjoint part of a

unital C*-algebra is a JB-algebra with the usual Jordan product and

the self-adjoint part of a von Neumann algebra is a JBf/-algebra.

Let A and B be t/B-algebras and let L(A,B) be the real Banach

space of bounded linear maps from A to B . A linear map <j> : A -*• B is

positive if $(A ) c B . Let S(A}B) be the set of al l positive linear
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maps <f> : A -*• B such that §(1) = 1 . Then S(A3B) i s a convex subset

of L(A}B) . An extreme point of S(A,B) will be called an extreme map.
We note that S(A,B) always contains extreme points. Indeed
S(A,1R) = {f e A* : f(l) = 1 = | \ f \ | } is the state space of A and i t can
be embedded as a convex subset of S(A,B) via the map
f e S(A,IR) h- <(, e S(A,B) where $Ja) = f(a)lB for a e A . Moreover,

since the states of B separate points of B , by composing with the
states of B , i t is easy to see that if f is a pure state of A , then
<j>~ is an extreme point of S(A,B) . If A and 5 are the self-adjoint

parts of C*algebras A_ and B_ respectively, we le t LjAjB) be the
space of bounded (complex) linear maps from A_ to B_ and le t
SfAjB) = {<(>£ LiAjB) : <j> > 0 , (j)^ = 2} where each map $ in
S_(AjB) sat isfies (JiCa*̂  = $(.a)* for a e A_ . I t follows that the
restriction map <j> e SfAjBj •*• i)> L e S(A,B) is a real affine isomorphism

and in particular, the two sets SfAjB) and S(A}B) have the same

extremal structure.

The following lemma has been proved in [72].

LEMMA 1. Let A be a JB-algebra. Then an element p in A is
an extreme point of the positive unit ball (a e A : 0 s a s 1} if and
only if p is a projection, that iss p2 = p.

A linear map $ : A •*• B i s called a (Jordan) homomorphism if
2 2

(j>Ca ) = §(a) for al l a in A . Plainly, every unital Jordan
homomorphism is a positive linear map. In fact, i t is even an extreme map.

THEOREM 2. If § : A •*• B is a unital Jordan homomorphism3 then §

is an extreme point of S(A3B) .

Proof. As the second dual map $** : A** •* B** i s weakly continuous,

i t is a Jordan homomorphism by density of A in A** . Suppose that

<j> = %fp + ty) with p , <J) e S(A,B), then <j>** = ¥p** + ty**) . Let e

be a projection in A** . Then fy**(e) i s a projection in B** and hence
an extreme point of the positive unit ball in B** , by Lemma 1. Now
<f>**f<3J = %p**(e) + J?\)**(e) and 0 < p**(e) , ty**(e) < 1 imply t h a t
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<t>**(e) = p**(e) = ty**(e) . Let a be any element in A** and l e t e > 0

By 18; 4. 2. 3] , there exist projections e., ... , e in A** and real

numbers X - , . . . , X such that

So we have

\ \ $ * * ( a ) - p * * ( a ) \ \ = \\(<S>** - p * * ) ( a - I X - e . ) + ($** - p * * ) ( l \ . e . ) \ \
3 3 3 3

= H O * * - p**)(a - I X.e J | |

< e | 1 $ * * - p * * | | .

This shows that <\>**(a) = p**(a) for every a in 4** . Hence <f> = p

and ij> i s an extreme point of S(A3B) .

In general, not every extreme map i s a homomorphism as the following

lemma shows.

LEMMA 3. Let A be a JB-algebra. The following conditions are

equivalent:

(i) A is associative;

(ii) A is isometric isomorphic to the self-adjoint part of an dbelian

C*-algebraj

(Hi) the dual cone A* of A is a lattice;

(iv) the state space S(A,IR) is a (Choquet) simplex;

(v) every extreme point of S(A,1R) is a Jordan homomorphism.

Proof. (i) =» ( i i ) see [ « ; 3. 2. 2 . ] .

( i i i ) => (iv) . S(AjlR) i s a base of the l a t t i ce cone A*, and hence i s a

simplex (see [3; p.138]) .

(iv) => (v) . Let / be an extreme point of S(A,IR) . Then {/} i s a

s p l i t face of S(A}1R) (see [3]) and so the kernel f (0) i s a Jordan

ideal in A (see [7; Theorem 2 .3] , [5; Corollary 3.4]). So / i s a

Jordan homomorphism.
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(v) =» (i) . This follows from the fact that the extreme points of S(A,m)

separate points in A and that for each extreme point / in S(A3IR) , we

have f((a o b) o c) = fia) fib) f(a) = f(a o(b o a)) for a, b, a e A .

Now we study conditions under which the extreme maps are Jordan

homomorphisms. As in [S], we define the centre Z. of a JB-algebra A

to be the set of a l l elements in A which operator commute with every

other element in A where two elements a and b are said to operator

commute if a o (a o b) = (ao a) ob for a l l a in A . We note that Z. is

an associative JB-subalgebra of A . The following theorem i s a

straightforward extension of a result of St^rmer in [JO; Theorem 3.1]. We

sketch a proof for the sake of completeness.

THEOREM 4. Let <j> be an extreme point of S(AjB) . If a e ZA

and $(a) e Zg } then fyiaob) = $(a) o $(b) for all b e A .

Proof. We may assume \\a\\ < % , then |\§(a) I I < k • By spectral

theory, %2 - a and hi - <t>(a) are positive and invertible in Z, and

Z_ respectively, with hi -$(a) ^ \1 for some X > 0 . Define

i|) ; A -*• B b y

$(b) = <K& oihl - a)) o (hi - ^(a))'1

for b e A . Then iji e S(A3B) and Xi|/ < <j> . As <j> i s extreme, we have

IJJ = <j> which gives

4>(b oihl - a)) oihl -

and hence $(a o b) =

Since B is associative if and only if B = Z_ , the following

result follows immediately from Theorem 2 and Theorem 4.

COROLLARY 5. If B is associative and if <j> is an extreme point

of S(A3B) } then the restriction <}>|Z. is an extreme point of S(Z.,B)

We note that the above result need not be true if B is not

associative. We refer to 110; 4.14] for an example. Theorem 2 and

Theorem 4 also imply the following corollary (see [7, 6, 9, J0]).
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COROLLARY 6. Let A and B be associative JB-algebras. Then
the extreme points of S(A,B) are exactly the unital Jordan homomorphisms
from A to B .

CO

Let I be the w-dimensional abelian C*-algebra of (complex)

finite sequences with the minimal projections e~ = (1} 0y ... , 0)}

e = (0, 1} 03 ... , 0), ... , en= (0, ... t 0, 1). We will denote by %n
CO

the self-adjoint part of I . Let M be the C*-algebra of n x n

complex matrices and l e t H be i t s self-adjoint part consisting of

(complex) hermitian matrices. Let B(H) be the full operator algebra on

a Ccomplex) Hilbert space H . For any projections p~, ... } p in
B(H) , we say that they are weakly independent if their ranges
p~(H), ... j p (H) are weakly independent subspaces of E as defined in

[Z; p.165], this is equivalent to saying that for any t~} ... } t e B(H) ,

.£7 p.t.p. = 0 implies p .t .p . = 0 for j = 1, ... , n (see [ 7 J; p.102]).
3 •* 3 3 3 3 3 3

We note that if p is a minimal projection in B(E) , then for any

t e B(H) , ptp = \p for some complex number \ . Therefore, if

p7j ... j p are minimal projections, then they are weakly independent if

and only if they are linearly independent. It has been shown in [2, 4, H ]

CO

that a map <j> in S(% , M ) i s an extreme point if and only if the range

projections ran fytej), ... , ran <j>(e ) are weakly independent in M .

PROPOSITION 7. Let B be a JB-algebra. Then the extreme points of
Sdg, B) are precisely the unital Jordan homomorphisms from £„ to B .

Proof. Let f be an extreme point of S(l2}B) . To show that <j> i s

a homomorphism, i t suffices to show that fyCe-) and ^(e^) are projections

in B since 1 = $(1) = ^(e-) + $(e~) . Equivalently, we show that

§(e.) and ^(e^) are extreme points of the positive unit ball of B .
Suppose $(eJ = hb + he with 0 < b, c < 1 in B . Define two linear

maps jj>t p : i2 + B by ^(e^ = b, v(e2) = 1-b; pfe^ = c and
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p ( e j = 1 - 0 . Then clearly \l>} p e SCi^B) and <j> = h(ty + p) . By

extremality of <J> , we have <j> = \\> = p which gives b = ty(e~) = p(s-<) =

This proves that is an extreme point in the positive unit ball of

B , so §(e~) is a projection. Likewise is also a projection.

The above result is false for i. with n > 3 .

Example 1. Define a unital positive (complex) linear map

3 °° •»• M2 b y

£
9

2_
9

9

2_
9

2_
9

£
9

£
9

£
9

As §(e-)y $(.eo)3 §(&?) are linearly independent and also each
l o o

<\>(e .) i s a scalar multiple of a minimal projection in Mo , i t follows
3 "

that the range projections ran &(e-) , ran §(eo) , ran §(eJ are linearly
1 o C

independent minimal projections which are therefore weakly independent.
00

So <fi is an extreme point of S(H~ , Mo) by the previous remark. But
— O a

clearly <j> is not a Jordan homomorphism.

We now consider S(l ,B) for n > 3 . We note that a map

$ e Sf£ ,B) is a Jordan homomorphism if and only if <j>(e •) is a

Yl Q
projection in B for j=l, ... , n . If <(> is an extreme point of

S(i. ,B) , the following result shows when i/(e .) is 'almost' a
n 3

projection.
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PROPOSITION 8. Let $ be an extreme point of S(%nyB). Then
2

<$>(e .) e $(Z ) if and only if $(e .) is a scalar multiple of a projectionj n 3
in B.

2
Proof. I t suffices to prove the necessity. Suppose (fife •) e <f>f£ ) ,

3 W
2 n

t h e n <f>fe J = ,1 \* <\>(e-,) where X-. e JR . Without l o s s of g e n e r a l i t y

we may assume j = 1 . Define \\i : I •*• B by

where a = (a~, . . . , a ) e I . Then ip(l) = 0 and we have - \i<\> < <|> < \i<\>

where y = max { | | X - <\> (eJ \ | , | X, | , . . . , | X I } . Choose t > 0 such

t h a t t\\ < 1 . Le t (f>- = <f> - iij

<f>0 e S(SL ,B) and a l s o <f> = %<))7

and iji_ = <j> + tip . Then we have <)>- ,

£<(>„ . As ij> i s an extreme map, we have
2

(eJ \^(eJ=((>- which gives fX. - §(eJ))o ^(eJ = 0 , that i s ,

So is a scalar multiple of a projection.

From the above r e s u l t we see t h a t i f <j> i s an extreme map i n

S(SL.B) and i f each (fife J 2 i s i n <t>(l ) w i th | | < j > f e j | | = 1 (or 0) ,
Ti 3 0

then <J> i s a homomorphism. One might conjecture that i f an extreme map

(j> ; H -*• B is such that (jifJl ) i s a Jordan algebra, then ifi is a

homomorphism. This i s false as the following example shows.

Example 2 . Def ine a p o s i t i v e l i n e a r map $:!..•*• #„ by

1
1+472

2

' 4

-2

72

1 i

-2 '

1 _

1+i '

/ 2

_ 1
1

. -2

" /2

-2

4 _

https://doi.org/10.1017/S0004972700013332 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700013332


Jordan Banach algebras 357

Then each §(e .) is a scalar multiple of a minimal projection and as in
3

Example 1, <J> is an extreme point of S(l., Hj • Moreover <$>(lJ = H^

is a Jordan algebra but <j> is not a Jordan homomorphism.

Actually, if A is a 'nontrivial' JB-algebra, then there is

always an extreme map <j> : A •*• H„ which is not a homomorphism. We have

the following result.

THEOREM 9. Let A be a JB-algebra. The following conditions are

equivalent:

(i) For any JB-algebra B , every extreme point of S(A,B) is a

Jordan homomorphism;

(ii) Every extreme point of S(Aa Ko) is a Jordan homomorphism;

(iii) dim A <, 2, that is, A = JR or tLg •

Proof. (ii) =» (iii). Let / be a pure state of A . Then, as

remarked before, the map <f>« ; a •*• fCa)
1 '1
0 l\

is an extreme map in

S(A, Hg) and is therefore a Jordan homomorphism. It follows that / is

a homomorphism on A . Thus, by Lemma 3, A is associative and we may

assume that A is the self-adjoint part of the C*-algebra C(X) of

continuous functions on a compact Hausdorff space X . If dim A 2: 3 ,

then X contains three distinct points x3 y, z say. Define a (complex)

a r m a p <j> ; C(X) •*•

if (a) = a(x)

4
9

2
~9

M2 by

2 "
~9

1
9

+ a(y)

1
9

2
~9

2~
~9

4
9

+ a(z)

' 4
9

4
9

4
9

4
9

for a e C(X) . Then $ is an extreme point of S(C(X), Mo) by weak

independence as in Example 1 and by Arveson's theorem in [2; 1. 4. 10].

Now the restriction of $ to the self-adjoint part A of C(X) is an

extreme point of S(A3H0) and it is not a homomorphism. So dim A £ 2 .
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(iii) =* (i) . If dim A S 2 , then A is associative and so A = JR

or £_. If A = JR , then S(A,B) is a singleton {$} and * is a

homomorphism. If A = L , then Proposition 7 concludes the proof.

Remark. We see in the above proof that if every extreme point of

S(AjB) is a homomorphism, then A is associative. Therefore, if B is

associative, then every extreme point of S(A}B) is a homomorphism if and

only if A is associative.

To prove our next theorem, we will use the following lemma of which

the proof is routine and is omitted.

LEMMA 10. Let A, B and C be JB-algebras. Suppose $ is an

extreme map in S(A3B) and \j> an extreme map in S(A3C). Let

<S> : A •*• B e C be defined by iCa) = $(a) ® ty(a) for a e A . Then $ is

an extreme map in S(ASB © C).

We recall that a type J factor is isomorphic to the full operator

algebra B(H) on some Hilbert space H . Let B(H) be the self-adjoint
sa

part of B(H) . We will consider JB-algebras with a direct suramand of
B(E) . We note that an atomic von Neumann algebra is a direct sum ofsa
type J factors and a finite-dimensional C*-algebra is a finite direct

sum of matrix algebras. Moreover, if a von Neumann algebra has a pure

normal state, then i t contains a direct summand of a type I factor

(see [S; 7. 5. 13]) .

THEOREM 11 . Let A and B be JB-algebras. Suppose B contains

a direct summand of B(H) tfith dim H £ 2 . Then every extreme point of
sa

S(A3B) is a Jordan homomorphism if and only if dim A < 2 .

Proof. The sufficiency follows from Theorem 9. We prove the

necessity. So suppose every extreme point in S(A}B) is a homomorphism.

By the Remark following Theorem 9 , 4 is associative and we may assume it

is the self-adjoint part of some C(X) . We need to show dim A < 2 . If

dim A S 3 , then X contains three distinct points x, y and 3 say.

We deduce a contradiction. By assumption, B contains a direct summand of

B(E) with dim H > 2. So we have B = B(H) e C for some JB-algebra
SO, SCL
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C . We f i r s t show tha t there i s an extreme point <J> in S(A,B(H) ) which

sa

is not a homomorphism. If dim H = 2 , such an extreme map exists by

Theorem 9. Suppose dim H 5 3 . Define the following positive operators

in B(H) -.

r r

where J is the identity operator on a subspace of H . Then

T1 + T2 + T3 is the identity in B(H) and using Example 1, it can be

verified that the range projections ran T-,, ran To, ran 2", are weakly

independent in B(H) . Therefore the linear map $ ; C(X) •*• B(H) defined

by

<k(a) = a(x)T1 + a(y)T2 (a e C(X))

is an extreme point of SJC(X), B(H)) by Arveson's theorem and its proof in

[2; 1. 4. 10]. Evidently $ is not a Jordan homomorphism. Hence the

restriction of * to the self-adjoint part A of C(X) gives an extreme

map <j> in S(A,B(H) ) which is not a homomorphism. Now let p be anyso.
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extreme point of S(A3C) . Then by Lemma 10, the map ty(.) = <$>(.) © p(.)

i s an extreme poin t of S(A3B(H) © C) = S(A.B) and also i|i i s not a
set

homomorphism. This i s a contradiction. So dim A <, 2 . The proof is

complete.

Remark. We do not know if the above theorem is true for every

non-associative c/B-algebra B .

3. Sitnplexes

We recall that a (non-empty) convex set S in a vector space E is

a simplex if for x e E and a > 0 , the intersection S C\(x + aS) is

either empty or of the form y + 65 for some y e E and (3 > 0 . I t is

well-known that if S i s a base of a cone K , then S is a linearly

compact simplex if and only if K is a lattice (see [3; p.138]).

Trivially S(JR}B) i s a simplex for any JB-algebra B since i t

reduces to a singleton. On the other hand. Lemma 3 shows that S(A}JR) is

a simplex if and only xf A is an associative JB-algebra.

THEOREM 12. Let A and B be JB-algebras. The following

conditions are equivalent:

(i) S(A3B) is a simplex;

(ii) Either A = JB or A is associative with B = JR.

Proof. We only need to prove (i) =* (ii) . We first show that A is

associative. Let K = Un XS(A}B) be the cone generated by S(ASB) . Then
A— V

K i s a l a t t i c e . We show t h a t the dual cone A* of A i s a l a t t i c e .

Let / , g e A* . Define <(>~ <{> : A •*• B by i)~(a) = f(a)l~ and

(j> (a) = g(a)l~ for a e A . Then <j>~ $ e K . So the supremum

<f> = <t>f v <f> e x i s t s in K . Let h be a s t a t e of B . We show tha t h o <J>

i s the l a t t i c e supremum of f and g . Indeed, for a e. A, , we have

(h o $)(a) = h(($f v <j> )(a)) > hC^Ja))^ h(4> (a)) where h($f(a)) = f(a)

and h($ (a)) = g(a) . So h o $ > f, g . Let k e A* be such that
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k > /j g . Let $•. : A -»• B be the map faf') ~ k(-)lB • Then we have

<)>, > <ji™, ((> which implies <j>, > iji-, v ij> . This in turn implies
K J g K- J g

k £ h o <j> . So the supremum / v g exists in A* . Hence A* is a

lattice and A is associative by Lemma 3.

We may now assume that A is the algebra of real continuous functions

on some compact Hausdorff space X . Suppose B ̂  ]R . Then there exists

b e B such that 0 < b < 1 and b is not a scalar multiple of the

identity 1. We show that A = 1R . Suppose, for contradiction, that

A ft ]R , then there are two distinct points x and y in X . The unit

masses e and e are pure states of A and can be identified as

x y
extreme points of S(A,B) as before. Define §3 ty e S(A3B) by

l(.) = ex(-)b + e C-)(l - b)

¥-) = e (-)b + zj-)(l - b) .
y *c

The we have %<(> + %T)J = %e + %e
x y

Since S(A,B) is a linearly compact simplex, {e } and {e } are split
x y

f a c e s o f S(AyB) ( s e e [ 3 ; 8 . 1 ] ) and s o t h e convex h u l l CO {e , e } i s

a ( s p l i t ) f a c e o f S(A,B) . Now %<j>+%ij> = % e + % e e CO {z , e } b u t
x y x y

<j> / co {e .e } since b e $(A) / -2?^n • T n i s contradicts the fact that
£t y D

co {e_,e } is a face. Hence A = Hi . The proof is complete.xr y

Remark. The above arguments clearly extend to order-unit normed

Banach spaces.

Thus, for example. Sit** V-n) i s n ° t a simplex while every extreme

point of Sd^i B-o^ '"•s a J o r d a n homomo rphi sm.
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