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BOUNDS FOR THE DISTANCE TO
FINITE-DIMENSIONAL SUBSPACES

S.S. DRAGOMIR

We establish upper bounds for the distance to finite-dimensional subspaces in inner
product spaces and improve some generalisations of Bessel's inequality obtained by
Boas, Bellman and Bombieri. Refinements of the Hadamard inequality for Gram
determinants are also given.

1. INTRODUCTION

Let (H; (•,•)) be an inner product space over the real or complex number field
K, {2/1, • • •, 2/n} a subset of H and G[yx, ...,yn) the gram matrix of {yu ..., yn} where
(i, j ) -ent ry is (yt, yj). The determinant of G(yx,..., yn) is called the Gram determinant
of {2/1, • • •, 2/n} and is denoted by T(yu . . . ,?/„). Thus,

( 2 / 1 , 2 / 1 ) ( 2 / 1 , 2 / 2 ) ••• ( 2 / 1 , 1 / n )

( 2 / 2 , 2 / 1 ) ( 2 / 2 , 2 / 2 ) • • • ( 2 / 2 , 2 / n )

( 2 / n , 2 / l ) ( 2 / n , 2 / 2 ) • • • ( 2 / n , 2 / n )

Following [4, p. 129-133], we state here some general results for the Gram determi-
nant that will be used in the sequel.

(1) Let {x!,...,xn} C H. Then T{xx,...,xn) / 0 if and only if {xit...,xn} is

linearly independent;

(2) Let M = span{ii , . . . ,a ; n} be n-dimensional in H, that is, {xi,...,xn} is
linearly independent. Then for each x 6 H, the distance d(x, M) from x to the linear
subspace H has the representations

(1.1)

and

(1.2)
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338 S.S. Dragomir [2]

where G — G(xi,...,xn), G~l is the inverse matrix of G and

0T=({x,xl), ( x ,x 2 ) , . . . , ( x ,x n ) ) ,

denotes the transpose of the column vector /?.

Moreover, one has the simpler representation

(1.3, M
if x G Mx,

where Mx denotes the orthogonal complement of M.

(3) Let {xi, . . . , ! „} bea set of nonzero vectors in H. Then

The equality holds on the left (respectively right) side of (1.4) if and only if {x i , . . . , xn} is
linearly dependent (respectively orthogonal). The first inequality in (1.4) is known in the
literature as Gram's inequality while the second one is known as Hadamard's inequality.

(4) If {xi,...,xn} is an orthonormal set in H, that is, (x,-,Xj) — Sij, i,j
€ { 1 , . . . , n}, where 5j, is Kronecker's delta, then

(1.5) d2(x,M) = | | x | | 2 -

• The following inequalities which involve Gram determinants may be stated as well
[9, p. 597]:

r(x2, . . . ,xn)
= r - —T^---
1 (

(1.6)

and

(1.8) r x / 2 (x! + yu x2,..., xn) ^ r 1 / 2 (x 1 ,x 2 , ...,xn) + Tl'2{yi, x 2 , . . . , xn).

The main aim of this paper is to point out some upper bounds for the distance
d(x,M) in terms of the linearly independent vectors { x i , . . . , i n } that span M and
x ^ M1, where ML is the orthogonal complement of M in the inner product space

(HA;-))-
As a by-product of this endeavour, some refinements of the generalisations for

Bessel's inequality due to several authors including: Boas, Bellman and Bombieri are
obtained. Refinements for the well known Hadamard's inequality for Gram determinants
are also derived.
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2. U P P E R BOUNDS FOR d(x, M)

The following result may be stated.

THEOREM 1 . Let {x i , . . . , xn} be a linearly independent system of vectors in H

and M :— span{xi,. . . ,xn}. Ifx ^ ML, then

I I T I I 2 V I I T I I 2 - V " I / T T - M 2

(2.1) ri2(x,M)< I|X|1 ^ i = l l p i l • • „,

or, equivalently,

PROOF: If we use the Cauchy-Bunyakovsky-Schwarz type inequality

that can be easily deduced from the obvious identity

(2.4)

we can state that

t=i t=i t=i

Note that the equality case holds in (2.5) if and only if, by (2.4),

(2.6) (X, Xi)Xj = (X, Xi)Xi

for each i, j G { 1 , . . . , n}.

Utilising the expression (1.3) of the distance d(x,M), we have

(2.7) d\x,M) = ||x||2 - E H ^ ^ ! h l N | 2
\ 112 \~"*n II 112

Since {xi , . . . ,xn} are linearly independent, hence (2.6) cannot be achieved and then we
have strict inequality in (2.5).

Finally, on using (2.5) and (2.7) we get the desired result (2.1). D

REMARK 1. It is known that (see (1.4)) if not all {x\,... ,xn} are orthogonal to each
other, then the following result which is well known in the literature as Hadamard's
inequality holds:

(2.8)
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Utilising the inequality (2.2), we may write successively:

E llr 112«=i llx>ll

\\x3\\
2T(xl,x2),

. ,Xn-l,Xn) <•

Z-«t=l
112

Multiplying the above inequalities, we deduce

(2.9)
2

INI'IMI'.

HX"H 2^i=l IFi II 2^i=l K^n.

valid for a system of n ^ 2 linearly independent vectors which are not orthogonal on each
other.

In [7], the author has obtained the following inequality.

LEMMA 1 . Let z\,..., zn e H and a\,..., an € K. Then one has the inequalities:

(2.10)

1/P

where a > 1, —h — = 1;

i = l «=1

1/7 \/6

where 7 > 1, — + -r = 1;
7 6

wiere any term ic tiie first branch can be combined with each term from the second

branch giving 9 possible combinations.
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Out of these, we select the following ones that are of relevance for further consider-

ation:

H ( )n r / " \ 2 n 1
II II2 \~* I I2 4- 1/ \ l I ^~* I I \ ^ ^ I I2

I

\ ~ ^ \ \1 ( I I I I 2 / \ I /

and
2 n -i 1/2

E0*!2) - E N 4

Note that the last inequality in (2.11) follows by the fact that

while the last inequality in (2.12) is obvious.

Utilising the above inequalities (2.11) and (2.12) which provide alternatives to the
Cauchy-Bunyakovsky-Schwarz inequality (2.3), we can state the following results.

THEOREM 2 . Let {x i , . . . , xn} , M and x be as in Theorem 1. Then

||x||2[max

or, equivalently,

(2.14) r ( x ! , . . . , x n , x )

||i|| + (EuW<Bl<^.^>l)
x r ( x 1 , . . . , x n ) .

PROOF: Utilising the inequality (2.12) for a* = (x, Xj) and Zj = x., i e { 1 , . . . , n } ,

we can write:

II n if2 n r , v l /2

(2.i5) Efo^H ^EI^^Mx^JN^ + t E K1"^2)
I' «=1 I' t=l *• ^'^" \
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for any x € H.

Now, since, by the representation formula (1.3)

,,16) *(,,«)- M I 2 - f g | ^ -

for x £ M x , hence, by (2.15) and (2.16) we deduce the desired result (2.13). D

REMARK 2. In 1941, Boas [2] and in 1944, Bellman [1], independent of each other,
proved the following generalisation of Bessel's inequality:

(2.17) ^2\(y,yi)\2<\\y\\2UBg\\yi\?+( £ |<J*,

provided y and y. (i € { l , . . . , n } ) are arbitrary vectors in the inner product space
(H; (-, •)). If {yi}ie{i,...,n} are orthonormal, then (2.17) reduces to Bessel's inequality.

In this respect, one may see (2.13) as a refinement of the Boas-Bellman result (2.17).

REMARK 3. On making use of a similar argument to that utilised in Remark 1, one can
obtain the following refinement of the Hadamard inequality:

o 181 r c r T ) < HJ-I I I 2 T T M I T J I 2 2Jt=i Kx<:>x»)l

(2.18) r(x1,..,xn) < ||Sl|| I ^ I I ^ I I

Further on, if we choose a; = (a:,i»), z{ = xt, i € { 1 , . . . ,n} in (2.11), then we may
state the inequality

(2.19) ^ ( x . x ^ x j ^ ^ K x ^ O l Y m a x ||x,||2 + (n - 1) max K ^ . i ^

Utilising (2.19) and (2.16) we may also state the following result.

THEOREM 3 . Let {xi,...,xn}, M and x be as in Theorem 1. Then

||x||2[max llx.ll2 + (n - 1) max |(xjt*,•>!] - E ? = 1 |<*,x,->
(2.20) d2(x, M) < ! * £ = / ^ ; f

or, equivalently,

(2.21) r(xu...,xn,x)

||x||2[max llx.ll2 + (n - 1) max \(x{, x;)|] - £»= 1 Kx.x,)
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REMARK 4. The above result (2.20) provides a refinement for the following generalisa-
tion of Bessel's inequality:

(2.22)

obtained by the author in [7].

One can also provide the corresponding refinement of Hadamard's inequality (1.4)
on using (2.21), that is,

(2.23) r{xu...,xn)

IN l
l<i$*-l 1$»/J<*-1

3. OTHER U P P E R BOUNDS FOR d(x, M)

In [8, p. 140] the author obtained the following inequality that is similar to the
Cauchy-Bunyakovsky-Schwarz result.

LEMMA 2 . Let zi,. ..,zn e H and tt1,...,aneK. Then one has the inequalities:

t = l

9\ 1/9

where p > 1, - + - = 1;
P Q

We can state and prove now another upper bound for the distance d(x, M) as follows.

THEOREM 4 . Let{xi,..., xn}, M and x be as in Theorem 1. Then

\\x\\ ,lna/cl2-(j=i l\x«'xj/IJ 2-<i=i \\x>x'l\

(3.2) tP(x,M)£ maxfV" ](x x )\]

or, equivalently,

ii ii 2 rv^ n i / rf \ II \"~*n i / \ 12

(3.3) r ( n , . . . , j : B , i ) ^ ^ ^ r
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PROOF: Utilising the first branch in (3.1) we may state that
n 112

(3-4)

for any x € H.

Now, since, by the representation formula (1.3) we have

(f(x {) | | | | \ r T |
l-J-o; a(x,M) — \\x\\ y \\P,Xi)\ ,

II 2-ii=l\3')a'i/:ci|| i = 1

for x g Mx, hence, by (3.4) and (3.5) we deduce the desired result (3.2). D

R E M A R K 5. In 1971, Bombieri [3] proved the following generalisation of Bessel's in-
equality, however not stated in the general form for inner products. The general version
can be found for instance in [9, p. 394]. It reads as follows: if y, yu..., yn are vectors in
the inner product space (H; (•, •)), then

(3-6)

Obviously, when {j / i , . . . ,yn} are orthonormal, the inequality (3.6) produces Bessel's in-
equality.

In this respect, we may regard our result (3.2) as a refinement of the Bombieri
inequality (3.6).

R E M A R K 6. On making use of a similar argument to that in Remark 1, we obtain the
following refinement for the Hadamard inequality:

(3.7) r(xl l . . . ,znK||z1| |2n IM2 rUi' .r

Another different Cauchy-Bunyakovsky-Schwarz type inequality is incorporated in
the following lemma [6].

LEMMA 3 . Let zu ..., zn e H and a t , . . . , an € K. Tien

| \ 2 /P

0.8) E (E
forp> 1, l/p+l/q = 1.

If in (3.8) we choose p = q = 2, then we get

(
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Based on (3.9), we can state the following result that provides yet another upper
bound for the distance d(x, M).

THEOREM 5 . Let {xu ..., xn}, M and x be as in Theorem 1. Then

(3.10)

or, equivaleatly,

(3.11) r ( i ! , . . T{xu...,xn).

Similar comments apply related to Hadamard's inequality. We omit the details.

4. SOME CONDITIONAL BOUNDS

In the recent paper [5], the author has established the following reverse of the Bessel
inequality.

Let (H; (•, •)) be an inner product space over the real or complex number field K,
{ejjg/ a finite family of orthonormal vectors in H, ipi, fa e K, i £ I and x € H. If

• 6/

(4.1)

or, equivalently,

(4.2) x -

then

(4.3)

The constant 1/4 is best possible in the sense that it cannot be replaced by a smaller
quantity.

THEOREM 6 . Let {x\,.. .xn} be a linearly independent system of vectors in H

and M :— span{xi,.. .xn}. Ifji, T{ € K, i e { 1 , . . . ,n} and x e HXM1- is such that

(4.4)

then we have the bound

(4.5)
t = i
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or, equivalently,

(4.6) r(xu...,xn,x)^^

PROOF: It is easy to see that in an inner product space for any x,z, Z € H one has

ill "

therefore, the condition (4.4) is actually equivalent to

t = l

Now, obviously,

(4.8) d\x, M) = mf ||x - yf ^ ||x - £ y |

and thus, by (4.7) and (4.8) we deduce (4.5).

The last inequality is obvious by the representation (1.2). D

REMARK 7. Utilising various Cauchy-Bunyakovsky-Schwarz type inequalities we may
obtain more convenient (although coarser) bounds for cP(x, M). For instance, if we use
the inequality (2.11) we can state the inequality:

giving the bound:

(4.9) d2(x,M)^-

provided (4.4) holds true.

Obviously, if {x\,..., xn} is an orthonormal family in H, then from (4.9) we deduce

the reverse of Bessel's inequality incorporated in (4.3).

If we use the inequality (2.12), then we can state the inequality

i=\ " t=l

giving the bound

1 " f / \ 1/2~\

(4.10) ^ . M X ^ I ^ - ^ n ^ W + l E Ifc.*>>l ) '
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provided (4.4) holds true.

In this case, when one assumes that { x i , . . . , xn} is an orthonormal family of vectors,

then (4.10) reduces to (4.3) as well.

Finally, on utilising the first branch of the inequality (3.1), we can state that

(4.11) <f(x, M) ^ 1 ^ \Ti ~ 7*1

provided (4.4) holds true.

This inequality is also a generalisation of (4.3).
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