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1. Introduction

Since Howie [7] introduced them, relative diagrams have been used by many authors
to discuss equations over groups. It seems that most reasonably general results about
tessellations of the two-sphere can be translated into results about group theory. Work
following this scheme can be found in [3,4,6,8].

We consider the dual notion of relative diagrams, relative pictures. In short, relative
pictures are directed graphs embedded in S2 whose corners are labelled. We require that
each vertex has a neighbourhood that looks like one of two star graphs, which we call
patterns. First, we will develop some machinery to help us analyse these graphs. Next, we
use this machinery to get a handle on what types of regions must occur in these graphs.
We then apply these tessellation results to prove the following group theoretic results.

Theorem 1.1. Let
N

i=\

be an equation over the group G so that

(1) if e has a subword of the form ta^1 or t~1ait, then ai has infinite order;

(2) if e has two distinct subwords tait~l andtajt'1, then no positive word in {ai,a~x}
represents the identity of G; and
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(3) ife has two distinct subwords t~1a,it and t~1cijt, then no positive word in {ai, a"1}
represents the identity of G.

Then e is solvable over G.

Theorem 1.2. Let G be a group and let e be an equation of the form:

P r
e = Yl\tkU,i)t''lkU,2)tk{j^)t-

1k(jA).. .tk{jt2nj-i)t~'1kU:2nj) (
j=i L v=i

where

(1) rij ^ 0 and nij ^ 1 for 1 ^ j ' ^ p;

(2) fc(j,i) has infinite order for all i and j ;

(3) if j 7̂  / , then the identity of G cannot be represented as a positive word in

{kUA)>ku\i)} or as a P°sitive word ^ {fe(j,2nj),fc(~vi2n;;,)}-

Then e is solvable over G.

2. Patterns and graphs

Let F be a connected directed graph embedded in the two-sphere S2. A region of F is
a component of S2 — F. A region R of P will be called consistent if the edges in the
boundary of R are consistently directed. (This is slightly different from the definition
found in [3].) Let e be an edge of F. A germ of e is an equivalence class of 'small'
subintervals of e, each of which share the same vertex of e. So each edge has exactly two
germs.

Let v be a vertex of F. A corner of v is a component of D — F, where D is some
suitably small neighbourhood of v. If deg(u) = d, then v has d corners, each of which
is between two adjacent germs of v. If the two germs adjacent to the corner k of v are
directed away from v, then k will be called a source corner; if they are directed toward
v, then k will be called a sink corner. Otherwise, k will be a neutral corner.

A pattern P is a finite directed tree embedded in S2 with a specific vertex v, called
the centre, that is adjacent to every other vertex. (P is a directed star graph.) We will
refer to corners of v as corners of P. We will call an edge of P significant if it is adjacent
to a neutral corner.

If P is a pattern, we obtain the inverse pattern P by reversing the orientation on each
edge of P and reflecting in S2. Let E and E be the sets of edges of P and P, respectively.
For each edge a of E, the corresponding edge of P will be called a. Similarly, if A; is a
corner of P, then the corresponding corner of P will be called k.

Let P be a pattern. A finite, connected directed graph F embedded in S2 is called
a P-graph if each vertex v of F looks like the centre of P (in which case we call v a
positive vertex) or of P (whence v is a negative vertex). More precisely, for each v of
F, there is an orientation- and direction-preserving isomorphism of embedded graphs,
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Figure 1. A pattern P and a P-graph.

(f>v, from a neighbourhood of v onto a neighbourhood of the centre of P or of P. The
map <f>v defines a correspondence between the germs of F at v and the edges of P or P,
and a correspondence between the corners of v and the corners of P or P. We use these
correspondences to label the germs of edges of F with the edges of P and P, and the
corners of F with the corners of P and P.

Let R be a consistent region of the P-graph F. We will say that R is a type 1 region
if there is some corner k of P so that every corner of R at a positive vertex is labelled
k and every corner of R at a negative vertex is labelled k. Similarly, we will say that R
is a type 2 region if there is some corner k of P and some corner I of P so that every
corner of R at a positive vertex is labelled k and every corner of R at a negative vertex
is labelled I.

We say that the pattern P is type 1 if every P-graph has at least two type 1 regions;
we say that P is type 2 if every P-graph has at least two type 2 regions. In [3], we defined
the class of type K patterns. The main result of that paper is that every type K pattern
is type 1. In Figure 1, we give an example of a pattern P and a P-graph, F. (Here, we
labelled some of the corners of P to depict the correspondence between corners of F and
corners of P and P.) Evidently, F has no type 1 regions. So, we cannot expect that every
pattern is type 1.

In this paper, we will prove that every pattern whose centre is not a source or a sink
is type 2. To this end, will use the following characterization of type 2 regions.
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Lemma 2.1. Let R be a consistent region of the P-graph P and let a and r be edges
of P so that as one travels around the boundary of R in some direction, one leaves a
positive vertex on the germ labelled <J and a negative vertex on the germ labelled f. Then
R is a type 2 region.

Proof. Assume we are given R, cr and r, as in the statement of the lemma. We need
to show that R is a type 2 region. Without loss of generality, assume that a and r are
realized, as in the statement of the lemma, by travelling clockwise around R.

Since R is a consistent region, the corner that is immediately clockwise of the edge a
on P is neutral. Call this corner k. We see that every corner of R at a positive vertex
is labelled k. Similarly, let T be the corner immediately clockwise of f on P. Then every
corner of R at a negative vertex is labelled /. So R is a type 2 region. •

We see that we will want to find regions that are bounded by a certain type of simple
closed path on P. Let a and r be edges of P. A (cr, f)-path on P is a simple closed path
C, so that as one travels along it in some direction, one leaves positive vertices on the
germ labelled a and negative vertices on the germ labelled f. In what follows, (<r, f)-paths
will usually be consistently oriented. This may or may not coincide with the direction
C is travelled to make it a (cr, f)-path. If this latter direction is clockwise (respectively,
counterclockwise) with respect to the disc D bounded by C, we say the pair (C, D) is
clockwise (respectively, counterclockwise).

If one of a and r is directed toward the centre of P and the other is directed away
from the centre of P, we call the pair (a, f) forcing. The reason for this terminology will
become evident in the following lemma, which we call the Forcing Lemma.

Lemma 2.2 (Forcing Lemma). Let P be a P-graph. Assume that C is a simple
closed path on P and that D is one of the discs that it bounds. Assume that at each
positive vertex on C, the germ labelled a lies in the closure of D, and that at each
negative vertex of C the germ labelled f lies in the closure of D. Furthermore, assume
that there is at least one vertex v on C so that the appropriate germ at v lies in the
interior of D. Then, if (cr, f) is forcing, there is a (a,f)-path that bounds a disc D' that
is strictly contained in D.

Proof. Each positive vertex has exactly one germ labelled a and each negative vertex
has exactly one germ labelled f. Furthermore, the assumptions on a and r imply that if
an edge of P has one germ labelled a or f, the other germ is not labelled with either of
these two labels. We can find the (cr, f)-path by leaving the vertex v on the appropriate
germ. At the next vertex we reach, the germ labelled either a or f is not the germ on
which we arrived. So we may continue our path by leaving that vertex on the appropriate
germ. Since P is finite, this process will eventually lead us to a vertex that we have already
visited. This completes a closed path, which is a (cr, f)-path.

The assumptions on the germs of vertices of C assure us that whenever we leave from
a vertex on the boundary of D, we do not leave D. Since we entered the interior of D,
the resulting (a, f)-path bounds a disc D' that is strictly contained in D. D
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Figure 2. Significant edges.

Note that this lemma remains valid if we assume that the path C is trivial. In this
case, the lemma just asserts that there is some (a, f)-path on F.

3. First tessellation result

We shall call a pattern stable if its centre is either a source or a sink. In this paper,
we will assume that all patterns are not stable. So, every pattern will have at least two
neutral corners and at least two significant edges.

Let P be such a pattern. If v is an edge of P, we will refer to the edges next to it as v~
and v+, where v~ is immediately counterclockwise of v and u+ is immediately clockwise
of v. Moreover, let v~ be the first significant edge one reaches by going counterclockwise
from v around the centre of P. Similarly, let i/+ be the first significant edge one reaches
by going clockwise from v (see Figure 2).

Note that on P, V~ (respectively, P+) is the first significant edge clockwise (respectively,
counterclockwise) of P. The following observation is stated without proof.

Lemma 3.1. Let F be a P-graph. Let C be a simple closed path that is consistently
directed bounding a disc D to the right of the direction ofC.

Assume v is a positive vertex on C so that C involves the germs labelled /J, directed
toward v and v directed away from v. Then, if n~ is directed toward v, it lies in the
interior of D, otherwise it lies in the closure of D. Similarly, if v^ is directed away from
v it lies interior to v, otherwise it lies in the closure of D.

Assume v is a negative vertex on C so that C involves the germs labelled p, directed
toward v and P directed away from v. Then, if /2+ is directed toward v, it lies in the
interior of D, otherwise it lies in the closure of D. Similarly, if v~ is directed away from
v it lies interior to v, otherwise it lies in the closure of D.

Theorem 3.2. Let P be a non-stable pattern. Then P is type 2.

Proof. Let P be a pattern and let F be a P-graph. Let E be the set of edges of P.
Consider the set A of forcing pairs (a, f) e E x E. Since P is not stable, A is not empty.

We define an A-path to be a pair (C,D), where C is a (a, f)-path for some {a, f) £ A
and D is a topological disc it bounds.
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We define a partial order < on the set of A-paths by (C, D) < (C, D') if D is strictly
contained in D'. By the Forcing Lemma, we know there is at least one (a, f)-path C on
F for some (a, f) G A. Now, C bounds two discs D and D'. The A-paths {C,D) and
(C,D') are not comparable under <. It follows that F must have at least two minimal
A-paths.

From Lemma 2.1, it suffices to show that if (C,D) is a minimal A-path, then D is a
region of F. We do this contrapositively. Moreover, we need only prove this in the case
where (C, D) is clockwise as the counterclockwise case follows from this by a switch of
ambient orientation.

Let (C, D) be an A-path with C a (a, f )-path for some (a, f) £ A and D not a region.
We may assume that at each positive vertex v of C, the corner in D adjacent to the germ
labelled a is neutral. If not, then the germ labelled a+ is directed in the same direction as
a, so (<7+, f) is a forcing pair. From Lemma 3.1, the germ at each positive vertex labelled
<T+ lies interior to D. From the Forcing Lemma, there is a (cr+, r)-path C" bounding a
disc D1 with D' strictly contained in D. So (C, D) is not minimal.

Similarly, we may assume that at each negative vertex v of C, the corner in D adjacent
to the germ labelled f is neutral. It follows that (a+,f~) is a forcing pair. Furthermore,
at each positive vertex of C, the germ labelled a+ lies in the closure of D. Similarly, at
each negative vertex of C, the germ labelled f~ is in the closure of D. Since D is not
a region, one of these germs must lie in the interior of D. It follows from the Forcing
Lemma that (C, D) is not minimal.

This ends the proof. •

4. Representing patterns with words

In [3], we denned the class of type K patterns. These were non-stable patterns that had
no sink corners, so that the collection of source corners were contiguous as one circled
the centre. For the next two sections, we wish to generalize this to patterns that we
call pre-stable. A pre-stable pattern is a non-stable pattern with no sink corners. Such a
pattern will be called non-singular if it has at least one source corner. In [3], we showed
that each type K pattern was a type 1 pattern. Figure 1 shows a pre-stable pattern that
is not type 1. From the previous section, we know that every non-stable pattern is type 2.
This includes pre-stable patterns. However, there is more we can say. In the next section,
we will show that if P is non-singular and pre-stable and F is a P graph, then there are
two regions Ri and R2 of F so that each RL is either type 1 or type 2, where the corner
labels of Rt come out of a restricted set of neutral corners of P.

In order to discuss the patterns that we are interested in, we will set up a correspon-
dence between patterns and elements of the free monoid F\t, t~1]. We associate to the
word e 6 F[£, i"1] the pattern Pe having centre v. The pattern Pe has an edge directed
away from v for each occurrence of t in e and an edge directed toward v for each occur-
rence of t~x in e, so that if one circles around v in a counterclockwise direction reading t
for every edge leaving v and t"1 for every edge entering v, one will read a cyclic conjugate
of the word e. This correspondence is well defined up to cyclic conjugacy of elements of
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Fltjt*1] and ambient isotopies of patterns. Obtain the formal inverse, e"1, from e, by
writing e backwards and exchanging every positive power of t for a negative power and
vice versa. It follows that Pe-i = Pe.

In fact, we will be interested in keeping track of the neutral corners of Pe. So, we will
adapt the above correspondence to obtain for each pattern P a word

N

ep = l\(ki)tmi

in the free group F[X U {t}}. Here, X = {hi} is a set of corners of P that contains
all neutral corners. (It should be noted that Pep is the pattern dual to the relative cell
corresponding to e as described in [1].) For example, if e = at2bt^1ct3dt"1, then Pe is
shown in Figure 1.

It should be clear that a pattern P is pre-stable exactly when the corresponding word
ep, when considered cyclically, does not have two consecutive occurrences of t"1. It is
also non-singular if it has consecutive occurrences of t.

We will now describe the class of non-singular pre-stable patterns by describing their
associated words.

An alternating piece is a word of the form

otj - tk^tl)t~
lk(j:2)tk(j£)t~lfc(j]4). ..tk(jt2nj-i)t~ k(j,2nj)t,

where rij ^ 1. Then, the class of words in question are of the form

where OCJ is an alternating piece and nij ^ 0 for each j . Let Pe be the corresponding
pattern with the set of neutral corners given by X = {k(jti) | 1 ̂  j < p; 1 < i ^ 2rij}. We
realize that the set of corners of Pe is being used to define Pe. This is only for notational
convenience. Since the exponent sum of e is positive and the occurrences of t~* in e
are isolated by positive occurrences of t, Pe is non-singular and pre-stable. Furthermore,
every non-singular pre-stable pattern or its inverse can be obtained in this manner.

5. Second tessellation result

Theorem 5.1. Let P be a non-singular pre-stable pattern with associated word

v
eP = J ] ajtmi

3 = 1

as described above. Let P be a P graph. Then there are two consistent regions R\ and R?
of F so that for each i = 1,2 there exist i and j satisfying one of the following conditions:

(1) each corner of Ru is positive and labelled by the corner k^j.i) of P; or
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Figure 3.

(2) each corner of Rt is negative and labelled by the corner k^^ of P; or

(3) each positive corner of Rb is labelled &(•,,!) and each negative corner is labelled
k(i,i); or

(4) each positive corner of RL is labelled fc(j,2nj) smd each negative corner is labelled
k(i,2n.i)-

Proof. Let P and ep be as described in the statement of the theorem, and let E be
the set of edges of P.

Let f b e a P-graph. As described previously, the correspondence of vertices of F with
the patterns Pe and Pe induces a labelling of the germs of P by elements of E U E; and
a labelling of the neutral corners of P by elements of X U X.

As in [3], we need to add a collection of dotted edges to P. Let R be a region that
is not consistent. We pair the corners of R that are not neutral, so that a dotted edge
runs from each source corner to the sink corner to which it has been paired. We do this
in such a way as to keep these added dotted edges from intersecting. Call the resulting
graph f (see Figure 3).

Every source corner of P is at a positive vertex; every sink corner of P is at a negative
vertex. Every source corner of P received the initial germ of a dotted edge, and each
sink corner received the terminal germ of a dotted edge. So, each added dotted edge runs
from a positive vertex to a negative vertex.

If we create P by adding a dotted edge to each source corner of Pe and obtain P from
P as before, then P is a P-graph. To complete the story, if we let the variable s represent
the new dotted edges of P in the same way that t represented the old solid edges of Pe,
then

We will call this word e.
We extend the definitions used previously to deal with graphs in which some of the

edges are dotted.
Let a and r be edges of P. We will call the pair (cr, f) forcing if either one of a and r

is directed toward the centre of P and the other is directed away from the centre; or one
of these edges is solid and the other is dotted. A (a, f )-path will be defined as previously.
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Let (<r, T) be a forcing pair. As before, if an edge of F has one germ labelled either a or
f, then the other germ is not labelled either a or f. Because of this, the Forcing Lemma
holds for f.

As above, we wish to consider a family of paths on F. To this end, we will give specific
names to some of the edges of P.

Consider the subgraph of P corresponding to the subword Wj = ctjS of e. For each
j = 1,.. . , p, let rj = 2rij + 1 be the number of occurrences of t and t"1 in Wj. These
occurrences correspond to Tj edges of P, which alternate direction (relative to the central
vertex v). We refer to the edge corresponding to the ith occurrence of t in ctj as the
ordered pair [j,i]- Finally, we refer to the dotted edge of P corresponding to the sole
occurrence of s in Wj as Sj.

We now have names for every significant solid edge of P. Also, there are p dotted edges,
which have names. The dotted edge Sj is next to the solid edge [j, rj] for each 1 ^ j ^ p.
Furthermore, the edge [j, i] is directed toward v if i is even and away from v if i is odd.

Consider the following six sets of forcing pairs:

(i) ^ ! = {([a,2],[6,l]) j 1 ^ a , b < p};

(iii) A3 = {{[a, ra], [b, rb - 1]) | 1

(iv) A4 = {([a, ra - 1], [6, r6]) | 1

(v) A5 = {([a,u],Sb) | 1 < a,b^

a,

k,

2

2

6

u ^

1

)

n
- i } ;

- i } ;(vi) Ae = {{sa, [b, u}) | 1 ^ a, b

and let A = Ai U A2 U A3 U A4 U A5 U A6.

As before, an ordered pair (C, D) is an yl-path if C is a (a, f)-path for some {a, f) e A
and C bounds D\ and (C, D) < (C, D') if D' properly contains D.

We note that if (C, D) is an A-path and D is a region, then C does not contain any
dotted edges. This is because every dotted edge connects a positive vertex to a negative
vertex and if (a, f) £ A and one of a or f is dotted then the other is not adjacent (on P
or P) to a dotted edge. Let us run through the possibilities of labels on the corners of D.

First, assume (C, D) is counterclockwise with C a (a, f)-path.

If (o~,f) G A\, then there exists some j so that each corner of D is labelled fc(j,2)-

If (a, f) £ A2, then there exist some i and j so that each corner of D is labelled

tyj.i) o r %i ) -

If (a, f) € A3, then there exist some i and j so that each corner of D is labelled

If (<r, r) S A4, then there exists some j so that each corner of D is labelled k(j2ni—i)•

If (a, f) € A5, then there exist some i and j so that each corner of D is labelled
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If (cr, f) € AQ, then there exist some i and j so that each corner of D is labelled

Next, assume that (C, D) is clockwise with C a (a, f )-path.

If (a, f) S Ai, then there exist some i and j so that each corner of D is labelled

If (cr, f) S A2, then there exists some j so that each corner of D is labelled fc(j,2)-

If (cr, f) 6 A3, then there exists some j so that each corner of D is labelled fc^^n -i)-

If (a, f) € A4, then there exist some i and j so that each corner of D is labelled

If (cr, f) € A5, then there exist some i and j so that each corner of D is labelled

If (cr, f) 6 AQ, then there exist some i and j so that each corner of D is labelled

In short, we see that if (C, D) is an A-path with D a region, then the labels on the
corners of D satisfy the conclusions of the theorem for D = RL. So, it suffices to show
that if (C, D) is an A-path and D is not a region, then (C, D) is not minimal.

Let (C, £>) be an A-path in which D is not a region. So C is a (cr, f )-path for some
(cr, f) S A. We will prove the case where C is counterclockwise with respect to D. The
clockwise case is proved similarly. We do this in cases as follows.

Case 5.2. (a, r) = ([a, 2], [b, 1]) 6 A\ for some a and b. Here, as we traverse C, we
are travelling against the directions of the arrows on C. So each germ we arrive on js
directed away from the corresponding vertex. Consider the edge [b, 1] on the pattern P.
If we travel around the centre in a counterclockwise direction, we pass the dotted edge
Jb^T before we reach a solid edge that is directed away from the centre. (Here b - 1 is
taken modulo p.)

If there is a negative vertex v on C, the germ at v that is labelled SfcZT enters the
interior of D. Now, the forcing pair ([a, 2],st_i) S A5 C A. It follows from the Forcing
Lemma that (C, D) is not minimal.

If there is no negative vertex on C, then at each positive vertex, the germ labelled [a, 3]
is in the closure of D, and at least one of these germs lies in the interior of D. If ra — 3,
the Forcing Lemma assures us that there is a ([a, 3], [a, ra — l])-path in D. If rQ ^ 3, the
Forcing Lemma assures us that there is a ([a,3],s^)-path in D. In either case, (C,D) is
not minimal.

Case 5.3. (cr,r) = ([a, 1], [b, 2]) e A2. Here, at each positive vertex the germ labelled
[a, 2] lies in the closure of D, and at each negative vertex the germ labelled [b, 1] lies in
the closure of D. Since D is not a region, at least one of these germs enters the interior
of D. Now, ([a, 2], [6,1]) e Ax. So, (C,D) is not minimal.
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Case 5.4. (<x, T) = ([a,ra], [6,rj, — 1]) G A\ for some a and b. As in Case 5.2, as we
traverse C we are travelling against the direction of the arrows on C. Consider the edge
[a, ra] on the pattern P. If we travel around the centre in a counterclockwise direction, we
pass the dotted edge sa before we reach a solid edge that is directed toward the centre.

If there is a positive vertex v on C, the germ at v, which is labelled sa, enters the
interior of D. Now, the forcing pair (sa, [b,rb — 1]) G Ae C A. It follows from the Forcing
Lemma that (C, D) is not minimal.

If there is no positive vertex on C, then at each negative vertex, the germ labelled
[b, r;, — 2] is in the closure of D and at least one of these germs lies in the interior of D.
If rb — 2 = 1, the Forcing Lemma assures us that there is a ([b, 2], [b,rb — 2])-path in D.
If rb — 2 T̂  1, the Forcing Lemma assures us that there is a (sb, [b, rb — 2])-path in D. In
either case (C, D) is not minimal.

Case 5.5. (a, r ) = ([a, ra — 1], [b, rb]) G A4. Here, at each positive vertex the germ la-
belled [o, ra] lies in the closure of D, and at each negative vertex the germ labelled
[b,rb — 1] lies in the closure of D. Since D is not a region, at least one of these germs
enters the interior of D. Now, ([a, 2], [6,1]) € A%. So, (C, D) is not minimal.

Case 5.6. (cr, f) = ([a,u],st) G A^ for some 2 ^ u ^ ra — 1. Here, at each positive
vertex, the germ labelled [a,u + 1] is in the closure of D, and at each negative vertex,
the germ labelled [6, r^] lies in the closure of D.

If u + 1 ^ ra — 1, then the forcing pair ([a, u + l],Sb) G A5, and there is a ([a,u + l],sj)-
path that bounds a disc strictly contained in D. So (C, D) is not minimal.

If u + 1 = ra, then u = ra — 1 and ([a,u], [6,r(,]) G A4, and there is a ([a,u], [6, r-(,])-path
that bounds a disc strictly contained in D. So (C, D) is not minimal.

Case 5.7. (cr, r) = (sa, [b,u]) G J46 f°r some 2 ^ u ^ r& — 1. Here, at each negative
vertex, the germ labelled [b, u — 1] is in the closure of D. If u — 1 ^ 2, then the forcing
pair (sa , [6, u — 1]) G ̂ 6 , and there is a (sa, [b,u — l])-path that bounds a disc strictly
contained in D. So (C, D) is not minimal.

If u - 1 = 1, then u = 2. So at each negative vertex, the germ labelled [b, u] is
directed away from the negative vertex. This means that one reaches positive vertices on
germs directed toward them. So, as in Cases 5.2 and 5.4, the germ at a positive vertex
of C labelled [a + 1,1] lies in the interior of D. (Here a + 1 is taken modulo p.) Here
{[a+ 1,1], [6,u]) G Ai and there is a ( [a+1,1] , [6, u])-path that bounds a disc strictly
contained in D. So, (C, D) is not minimal.

There are no other cases.
This ends the proof. D

6. Equations over groups

In this final section, we prove Theorems 1.1 and 1.2 stated in § 1.
Let

N

1=1
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be an equation in the variable t, whose coefficient set a\,..., a^ is a subset of the group
G. We say that e is solvable over G if the inclusion induced homomorphism G —> (G, t | e)
is injective. See [2] and [5] for descriptions of equations over groups.

Proof of Theorem 1.1. Let e be an equation over the group G, as described in the
statement of Theorem 1.1. We may assume that e has non-negative exponent sum. If
every occurrence of t is positive, then the result follows from work of Levin [9]. So, we
will assume e has positive and negative occurrences of t, whence Pe is not stable.

Assume that e is not solvable over G. It is a consequence of the work of Howie that
there exists a Pe graph F with a specified region Ao, so that the word in G obtained
by reading around any region A ^ Ao is a relation in G, while the word obtained by
reading around Ao is not a relation of G. Such a graph is called a relative picture over
{G,t | e) and is discussed more fully in [1]. We may assume that F is reduced in the
sense of Seradski [10]. In particular, this means that there is no edge of F connecting
a positive and negative vertex with the germ at the negative vertex labelled with the
inverse label of the germ at the positive vertex.

From Theorem 1.1, Pe is type 2. So, F has two regions of type 2. At least one of these,
say A is different from Ao- Let C be the consistently directed boundary of A. So, there
are i and j such that the word u obtained by reading around A involves only <ij (read
from corners at positive vertices) and cij (read from corners at negative vertices). If C is
oriented clockwise around A, there are corresponding subwords tajt"1 and ta^t~x of e;
if C is oriented counterclockwise around A, there are subwords t~1a,it and t~la,jt of e.

If i ^ j , then there is no word u> involving only a* and dj that is a relation in G.
Therefore, i must equal j and there must be both positive and negative vertices on C.
In this case, F is not reduced.

This contradiction proves the theorem. •

In [2], Brodskii and Howie define the sign index of an equation

N

to be the number of changes of sign in the cyclic sequence (mi,rn2,... , mjv)- The sign
index of any equation is even. We note that if the sign index of an equation is greater
than two, then the first condition of Theorem 1.1 is redundant in the presence of the
others.

In [9], Levin proved that if the sign index of the equation

N

is zero, then e is solvable over any group. In [11], Stallings proved that if the sign index of
e is two and aj and a,j are the coefficients where these two sign changes take place (that
is to say, rrii-\mi < 0 and mj-irrij < 0), then e is solvable over any group in which ai
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and a,j have infinite order. Theorem 1.1 can be viewed as an extension of these previous
results.

Proof of Theorem 1.2. Let e be as in the statement of Theorem 1.2. As explained
above, if e is not solvable over G, then there is a reduced Pe graph F with a region A so
that A satisfies the conclusion of Theorem 1.2 and so that the word obtained by reading
around A is a relation of G. However, the assumptions on e make this impossible. D

We point out that these results can be obtained using standard small cancellation
theory arguments in the case when p ^ 6. In fact, the referee has a small cancellation
proof for the case p = 5.

Acknowledgements. The authors thank the referee for many insightful comments
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