The Many Vortexes of NGC 5236 Nucleus in The Central 80×200 Parsecs

R. Diaz 2, I. Rodrigues ${ }^{1}$, H. Dottori ${ }^{1}$, D. Mast ${ }^{3}$, and M. P. Agüero ${ }^{3}$
${ }^{1}$ Instituto de Física, UFRGS,cp: 15051, cep: 91501-970, Porto Alegre, Brazil email: dottori@if.ufrgs.br
${ }^{2}$ Gemini Observatory, Southern Operations Center, Chile. CASLEO, CONICET, Argentina. e-mail:rdiaz@gemini.edu
${ }^{3}$ Observatório Astronómico de Córdoba, Laprida 854, Córdoba, Argentina

Abstract

GEMINI-S+CIRPASS configuration has been used to obtain 490 high quality spectra, centred in 1.3 microns of the NW-SE oriented, central $80 \times 200 \mathrm{pc}$ of NGC 5236 (M83), with spectral resolution of 3200 . We determine the kinematics of this region with 0.36 arcsec sampling, sub-arcsec resolution. Disk-like motions are detected in $\mathrm{Pa} \beta$ at parsec scales around: a) the optical nucleus (ON), b) the dynamical centre of the CO velocity map (Sakamoto et al. 2004) coincident with the K-band center (hereafter KC; Thatte et al. 2000), located 50 pc to the W of the optical nucleus, and c) the hidden condensation (hereafter HN; Mast et al. 2006), now more precisely located at 120 pc to the N-NW of the optical nucleus. The disk around ON has a radius of $10-15 \mathrm{pc}$ and those around KC and HN can be traced approximately up to $40-50 \mathrm{pc}$ from their kinematical centres. Rotation curve fittings using Satoh like spheroids give masses of $2-4 \times 10^{6} \mathrm{M}_{\odot}, 10-15 \times 10^{6} \mathrm{M}_{\odot}$ and $15-20 \times 10^{6} \mathrm{M}_{\odot}$ respectively. N-body simulations using Gadget2 (Springel, 2005) show that ON, KC and HN will merge in 20-50 Myrs. A question that arise immediately is if this degree of dynamical activity is peculiar of M83 or it is a common behaviour, seen in this galaxy in all its dramaticity due to its small distance from us.

Figure 1. From left to right: a) Large scale image of M83; b) Hst image of the central part outlining the CIRPASS field; c) $\mathrm{Pa} \beta$ isovelocity contours, showing the positions of ON, KC and HN ; d) Time evolution of the distance KC-ON, KC-HN and ON-HN, from one of our N-body simulations: all structures will merge in 23 Myr .

References

Diaz, R. J., Dottori, H., Mediavilla, E., Aguero, M., \& Mast, D. 2006, New Astron. Rev. 49, 547. Mast, D., Diaz, R., \& Aguero, M.P. 2006, AJ 131, 1394.
Sakamoto,K., Matsushita, S., Peck, A.B., Wiedner, M., \& Iono, D. 2004, ApJ (letters),616, 59. Springel, V. 2005, MNRAS 364, 1105.
Thatte, N., Tecza, M., \& Genzel, R. 2000, AधA 364, 47.

