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On the Sylow subgroups of a doubly

transitive permutation group Il

Cheryl E. Praeger

Let G be a 2-transitive permutation group of a set Q of n
points and let P be a Sylow p-subgroup of (G where p is a
prime dividing |G| . If we restrict the lengths of the orbits
of P , can we correspondingly restrict the order of P ? 1In the
previous two papers of this series we were concerned with the
case in which all P-orbits have length at most p ; in the

second paper we looked at Sylow p-subgroups of a two point

stabiliser. We showed that either P had order p , or
G = An , G =PSL{2,5) with p=2 ,o0r G-= Mil of degree 12

with p =3 . In this paper we assume that P has a subgroup &
of index p and all orbits of & have length at most p . We

conclude that either P has order at most p2 , or the groups
are known; namely PSL(3, p) =< G = PGL(3, p) ,
ASL(2, p) =G = AGL(2, p) , G = PTL(2, 8) with p =3,

G=Ml2 with p=3, G =PGL(2, 5) with p=2, or GzAn

with 3p =n < 2p2 ;3 all in their natural representations.

Let G be a doubly transitive permutation group on a set § of n
points and let P be a Sylow p-subgroup of G where p is a prime
dividing IGI . The previous two papers [9, 10] were concerned with the
situation in which P has no orbit of length greater than p . We showed
essentially that either (G contains the alternating group or P has order

p . The general problem is the following:
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If we impose certain restrictions on the orbit structure of P , can

we restrict the order of P 7

The results of [9, 10] deal with the simplest possible structure for
P , and I was uncertain whether similar methods could be used to
investigate groups whose Sylow subgroups P have a more complicated
structure. However it seems that the results can be extended, and they
yield an unusual characterisation of the 2-dimensional affine and
projective linear groups. (The results are useful in the search for
2-transitive groups; for if G is 2-transitive of some fixed degree then
the results give us information about the order and orbit structure of the

Sylow subgroups of G .) We prove the following result.

THEOREM. Let G be a doubly transitive permutation group on a set
of n points. Let p be a prime dividing |G| and let P be a Sylow
p-subgrowp of G . Suppose that P has a subgroup @ of index p , all
of whose orbits have length at most p . Then one of the following holds:

(a) |P| =p;

() |P| =p°, and P has an orbit of length p°  unless

(I) ¢ is PSL(2, 5) of degree 6 and p =2, or
(11) ¢ 1is M, in 1ts 3-transitive representation of
degree 12 , and p = 3 ;

p3 and G satisfies one of the following:

.\
R
N
)
i

(1) PsL(3, p) =6 = PeL(3, p) , of degree 1 +p + p2 s

(I1) ASL(2, p) =G = AGL(2, p) , of degree p2 »
(III) p=3 and G is PIL(2, 8) of degree 9 or G
18 M, of degree 12 ,

(IV) p=2 and G <s PSL(2, 5) of degree 6 ;
(d) G2A_ , where p=n <2p° .

Notation. (a) By A, Sn’ Mn we mean the alternating, symmetric, or

Mathieu group of degree n , respectively; PSL(m, q), PGL(m, q), PTL(m, q)
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denote respectively the group of projective special linear, general linear,
and semilinear transformations of (m-1)-dimensional projective space over
a field of ¢ elements; similarly ASL(m, g) , and so on, denote the

groups of affine transformations.

(b) Most of the notation used for permutation groups is standard and
the reader is referred to Wielandt's book [74]. By a long orbit we mean
one containing more than one point. If a group G acts on a set  then

we denote by fixQG , and suprG the subsets of £ which are fixed by

G , and permuted nontrivially by G , respectively. If the set in question
is obvious then we shall often omit the subscript and write simply fix G,

supp G .

The group generated by objects, say &, ¥ (which may be elements or
subgroups) is denoted by (x, y> . If X 1is a group then ¥ will denote
(mp l x € X) . Xp is a characteristic subgroup of X . We mean by
z ~n Yy that xg =y for some g in G , and if the group G 1is obvious

from the context we may write just x* ~y . Finally, if x and y are

integers then (z, y) denotes the greatest common divisor of « and y .

1.

Let G, P, § satisfy the conditions of the theorem. If ]PI > p2
then P has an orbit of length p2 unless G ;:An , G is PSL(2, 5) of
degree 5 , or G 1is Mll of degree 12 . This follows from the result
in [9], since the existence of the subgroup § means that P has no
orbits of length greater than p2 5 1in the second and third cases P has
order 4 and 9 respectively. Thus the theorem is true if ]PI = p2 » SO
we shall assume hereafter that P has order at least p3 . Also we assume

that G jzAn . Then P has at least one orbit of length p2 .

The method of proof will depend both on Ifix Pf and on conjugation
properties of @ . In this section we shall proceed as far as possible
without splitting into subcases. In Sections 2 and 3 we consider the case

when fix P is nonempty and this is divided into two subcases depending on
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the fusion of @ ; 1in Section 2 we characterise PSL(3, p) . In the

final Section, 4, we deal with the case fix P =@ .

REMARK I.l. By [10] it follows that @ 1is not the Sylow p-subgroup
of a stabiliser of two points. Hence if |fix P| =1 , it follows that
fix @ = fix P .

LEMMA 1.2. @ <s the only subgrowp of P of index p such that all
long @-orbits have length p . In particular, Q 1is weakly closed in P

with respect to G ; that is, if g € G and G cpP then ¢9 = Q.
Proof. Suppose that Ql, Q2 are distinet subgroups of P with the

. - 2 =
property. Then IP : Qil D > lQil > p~ , and Qi sSP. So P= Q1Q2

and R = Ql n Q2 has index p2 in P .

Let T be a P-orbit of length p2 - Suppose that @ has p

orbits T

EIREED Fp of length p in T . Then Q2 permutes these orbits

nontrivially since P = Q1Q2 is transitive on I' . It follows that R

fixes I pointwise. Thus P acts regularly on each long P-orbit, and in
particular, P 1is abelian. Now let § be any subgroup of P containing

R with IP : Q| =p . Then § is not transitive cn any P-orbit of

length p2 (since R fixes them all pointwise), and so § has all long
orbits of length p .

Now we shall show that R is weakly closed in P . Define

N* =(g* OR | R* 1is conjugate to one of the groups &
such that Rc Q < P) .

Then N* < N(R) , and P = <Ql, Q2) C N* . Also, since all of these

generators @* of N* have the same orbits as R has in supp R , it

follows that N* acts on supp B as an elementary abelian p-group with

all orbits of length p . Hence N*p fixes supp R pointwise. DNow let

P* be any Sylow p-subgroup of ( containing R . Since P* is abelian,

P%* c N(R) and hence P* € N* , Hence all P*-orbits of length p2 lie in
fix R and it follows that R is the kernel of the action of P* on the

union of its orbits of length p2 .
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-1
Now if RY CP for some g in G , then R S_Pg and as above, R

is the kernel of the action of Pg_l on its orbits of length p2 ;3 thus
Rg is the kernel of the action of P on its orbits of length p2 , that
is, R =R . Hence R is weakly closed in P .

Hence WN(R) 1is 2-transitive on fix R (see [15], Satz 3). As
N* D P, N* acts nontrivially and hence transitively on fix R . Also as
P is a characteristic subgroup of N* , it is normal in N(R) . Suppose

first that N*p is trivial. Then ~N* is a p-group containing P ; so

N* =P . As N* is transitive on fix R , and as P has an orbit, say

T, of length p° in fix R , it follows that fix R =T and
fix P=fix Q= @ (see Remark 1.1). Since P has orbits of length p

(that is, the long orbits of R ), clearly p2 does not divide #»n . Then
for & in fix R, R 1is a subgroup of index p of a Sylow p-subgroup

T of Ga , T 1is conjugate to some & satisfying R € @ € P , and hence

T has all long orbits of length p , a contradiction to [10].

Thus N*p is a nontrivial normal subgroup of N(R) and so acts

transitively on fix R (and P fixes supp R pointwise). By a result
of Bochert ([171, 52-5L4), we have |supp R| = %(n-1) . With this
condition, it follows from work of Kantor [6] (and since @ éAAn ) that ¢

satisfies one of the following list; where ¢ = |supp R| :
List 1.3, (a) Psi(m, q) = G = PTL(m, q) for m = 3 , where

(@"-1)/(q-1) and e = (@"ta)/(g-1) .

n:

(a') G is a subgroup of GL(4, 2) isomorphic to A7 , m =15 and
e = 23 -1=T7.

(b) ASL(m, q) = G = ATL(m, q) for m= 2 , where n = qm , and
either ¢ = qm-l ,or ¢ = qm-2 and ¢ =2 .

(b!) G is a semi-direct product of the translation group of the

h-dimensional affine geometry over a field of 2 elements, and a subgroup

https://doi.org/10.1017/50004972700024424 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700024424

216 Cheryl E. Praeger

of GL(L4, 2) isomorphic to 4 in the case n =16, ¢ =14 .

7 ;
(¢) G is M_ where n is 22,23 ,o0or 24 , or G is aut(¥ ,

n 22
and ¢ =n - 16

Suppose that G = PSL(m, q) (or G ~ A7 ]. Then

|fix R| =n - ¢ = qm_l , so |fix R| -1

{g-1) |supp R| = 0 (mod p) .
Hence 7n = 1 (mod p) and by Remark 1.1, since G is 2-transitive,
|fix P| = |fix @] =1 for all Rc@C P . As P has orbits of length

p » then n - 1 is not divisible by p2 . If a, B € fix R then R is a
subgroup of index p of a Sylow p-subgroup T of G&B 35 T 1is conjugate

to some & such that R C @ € P and hence all long orbits of T have
length p , contradicting [10].

Next suppose that G = ASL(m, q) . Then |supp R] = ¢ 1is a power of

q so p divides q . As P-orbits have length at most p2 we must have
gq=p ., m=2 . However a Sylow p-subgroup of ASL(2, p) is nonabelian;

contradiction. We deal with case (b!) similarly.

Finally suppose that G 2= M , and ¢ = 8, 7, 6 as n is 24, 23, 22
respectively. As p divides ¢ we see easily that =»n 1is congruent to

0 or 1 mod p . As above, we can show that a Sylow p-subgroup of a two

point stabiliser has all orbits of length p , and order at least p2
contradicting [10]. This completes the proof.

Now let A be a long @-orbit and let R be the pointwise stabiliser
of A in Q. Then [Q : R| =p so R is normal in § . We shall
consider N(R) and the subgroup N* defined by

4 = ( Q% A~ .
N @ >R | @q @
Clearly N* 2 N(R) . Since each generator @* has the same orbits as R
in supp R it is easy to show that N* acts on supp R as an elementary

abelian p-group with all orbits of length p . Then clearly *P  rixes

supp R pointwise.

LEMMA 1.4, @ <s a Sylow p-subgroup of N* . (Hence all generators

@* of N* are conjugate in N* .)

Proof. 1If not, then a Sylow p-subgroup P of N* is a Sylow
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p-subgroup of G . Then all P-orbits in supp R have length p , so all

P-orbits of length p> 1lie in fix R . Since |P : R| = p° it follows
that R 1is the kernel of the action of P on the union of its orbits of

length p2 , and hence that P 1is abelian. Therefore if P* is any
Sylow p-subgroup of G containing R , then P* E_N(R) , and hence

P* C N* . Thus R 1is the kernel of the action of P* on the union of its

orbits of length p2 . It follows that R 1is weakly closed in P (for

-1
ir A9 C P, then RCP*= 12 3 so R 1is the kernel of the action of

P* on its orbits of length p2 ;5 hence B9  is the kernel of the action
. . 2 R 7 =
of P on its orbits of length p~ , that is, =R ).
Thus N(R) is 2-transitive on fix R ([15], Satz 3). First suppose

that the group #P  is trivial. Then N* is a p-group containing P ,
so N* =P . Since N* =@ N(R) , then N* is transitive on fix R , and as

P bas an orbit of length p2 in fix R , it follows that [fix R| = P,
fix P is empty, and n is divisible by p . ©Since P has orbits of

length p (in supp R), »n 1is not divisible by p2 . However this means
that, for o in fix R, R 1is a subgroup of index p in a Sylow
p-subgroup T of Ga ; then T c N(R) , and as N(R) has a unique Sylow

p-subgroup, T € P . Thus T 1is a subgroup of P of index p fixing a

point a of the P-orbit fix R of length p2 , contradiction.

Hence N** is a nontrivial normal subgroup of N(R) , and hence is
transitive on fix R . Also N*f fixes supp B pointwise. Thus by [6],

¢ satisfies one of (a)-(c) of List 1.3. In case (a) or (a!) we find, as

in the proof of Lemma 1.2, that lfix p

= |fix @] =1 . As P has orbits

of length p , then »n -1 1is not divisible by p2 , so for a, B in
fix R , R 1is a subgroup of index p of a Sylow p-subgroup 7T of GaB .

2

As |T| = p° it follows from [10] that T has an orbit of length p2 .

On the other hand, T is a p-group normalising R , so T € N* , and

hence all T-orbits of length p2 lie in fix R . This is a contradiction
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as T B L 7/R thes order p -

In cases (b) and (b'), we find as in Lemma 1.2 that # = p2 and

G =z ASL(2, p) . Again we have a contradiction since the Sylow p-subgroups
of ASL(2, p) are nonabelian. Finally in case (c) we find that either =
or n -1 is divisible by p and this leads to a contradiction as in case

(a) above.
COROLLARY 1.5. Each long orbit of N* contains a long Q-orbit.

Proof. This is trivially true if fix @ is empty, so suppose that
fix ¢ contains a point o . We shall show that either the N*-orbit

containing o contains a long &-orbit or N* fixes o .

If a 1is fixed by all conjugates §* of ¢ which contain R +then
o 1is fixed by ~N* . Hence if a lies in a long N*-orbit, there is some

@* containing R such that o lies in a long @*-orbit. By Lemma 1.k,

Q*g = ¢ for some g in N* . Hence 0g lies in a long §&-orbit and the

N#*-orbit containing o contains this orbit.
LEMMA 1.6. 4 Sylow p-subgroup of N(R) is a Sylow p-subgroup of
G unless either
(1) AsL(2, p) = G = AGL(2, p) , n=p° , or
(11) 6 =7Pri(2, 8), n=9, and p = 3
(and these groups satisfy the conditions of the theorem).

Proof. Suppose that a Sylow p-subgroup of N(R) has order less than
[P|] . Then @ C ¥* is a Sylow p-subgroup of N(R) . If P is a Sylow

p-subgroup of & containing €& , then we deduce that P is nonabelian and
R 1is the stabiliser of a point in a P-orbit [ of length p2 such that

Pr is nonabelian. Then & contains p distinct subgroups each of which

is conjugate to R by an element of P .

First suppose that |fix P| <=1 . Then for o, 8 in fix R , let T
be a Sylow p-subgroup of G&B containing R . ©Now |T| < IPI » and we

suppose first that T # R . Then |T : Rl =p , so T C N(R) , and as
[T| = |Q| , T 1is conjugate to @ in N(R) . This is impossible as

|fix | > |fix @| . Hence T = R is a Sylow p-subgroup of G with all

B
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orbits of length p, and all long P-orbits have length p2 . It follows
that

(1) |r] =p (vy [101),

(II) for any Y in supp @ , QY is conjugate to R ,

(ITII) WN(R) 1is 2-transitive on fix R ([75], Satz 3).

1r N is trivial then N* is a p-group containing @ , so N* =@ ,

and as N* is transitive on fix R (vecause WN* = N(R) )}, |fixR| =p .

Hence fix P 1is empty and so p2 divides n . Now @] = p° and so @
has p + 1 subgroups of order p . However, by (II), & has n/p
distinct subgroups of order p which fix points of § . It follows that

n = p2 , and so by [11], either ASL(2, p) = G = AGL(2, p) , or P = 3 and
G is PIL(2, 8) . Clearly these groups satisfy the hypotheses of the
theorem, and it is not difficult to see that, for them, & 1is a Sylow
p-subgroup of N(R) .

On the other hand, if ¥*f  is nontrivial then it is transitive on

fix R 3 also P fixes supp R pointwise. So by [141, 13.5,

|fix R| = 4n . However we noted above that there are p distinct
conjugates of R by elements of P which are contained in € , and the
fixed point sets of any pair of these overlap in precisely the set fix P ,
(and |fix P| <1 ). Hence n = p(|fix R|-1) +1 2 p(n-1) + 1 , and so

p =2 and |fix R| = %(n+|fix P|) (since |fix R[ is an integer). By
[6], G 1is one of the groups of List 1.3, where again ¢ = Isupp RI , and
it is easy to check that G must be AGL(m, 2) , and |fix Pl =0.
However since P has no orbit of length greater than p2 , then m= 2

and so G BAh , contradiction.

Thus we may assume that |fix P| =2 . Then p = 3 . We claim that
all long ~N*-orbits in fix R contain at least two points of fix @ and
have length prime to p . Let T be a long N*-orbit in fix R , and let
o, B be two points of supp § in I (by Corollary 1.5). Let P' be a
Sylow p-subgroup of GaB containing K . Then R 1is a proper subgroup

of @' = NR) nP', and it follows that @' 1is a Sylow p-subgroup of

N(R) and hence is conjugate to @ . Thus Q' 1lies in N* and so
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g

9'9 = 9 for some g in N* . Then oY, B9 1ie in fix @ and so

T n fix @] 2 2 . since Q' =< M(R), , it follows that [T] is prime to
P .
Thus by [14], 17.1, ¥ is transitive on each long N*-orbit in
fix R 3 and so N*p is nontrivial. Since N*p fixes supp R pointwise,

|supp W*¥| < |fix R| = £ + rp , where |[fix @| = f and R fixes » long
@-orbits. On the other hand, as & acts nontrivially on each long

N*—orbit in fix R , it follows from [§] that |supp N*P| < 2rp . Finally
by Bochert ([7121, 52-54), |supp N*p| > 4n  (unless n = 25 , and the

minimal degree equals |supp IV*p| = 6 . However each long N*p—orbit has
length at least p + 2 = 5 and has length prime to p , a contradiction).
Thus, if & has g long orbits we have

£+ 0= %(frqp) , and 2rp > k(frqp) .

Eliminating f we find that r > ¢/7 . Now & contains p distinct
conjugates of R by elements of P and the fixed point sets of any two
overlap in precisely the set fix @ . Hence there are pr > pg/7 long
@-orbits which are fixed by one of these groups. As & has just ¢ long
orbits it follows that p is 3 or 5 .

Let M= N(Q) n N(R) and let 1 = |1V(Q) : MI 3 7 1is the number of
conjugates of R in @ by elements of N(Q) . Since ¢ is a Sylow
p-subgroup of M , it follows that I 1is divisible by p , and as
g zrl >ql/T , then 1 =6 . Hence either 72 =p =3 or 5 , or
l=2p=6 . If either f>1 ,0r (f, 7)) =1, then M 1is transitive on
fix @ (vy [5], Hilfsatz 1, (though the result was known to Burnside) and
[14], 17.1), and by our observations about the orbits of N* it follows

that WN(R) 1is transitive on fix R ; hence vP  is 4 _transitive on

fix R , contradiction (see Lemma 1.2).
So suppose that M is transitive on fix @ . Then an orbit T of

¥P in fix R is a block of imprimitivity for WN(R) , and it is easy to
see that T =T n fix @ is a block of imprimitivity for M in fix @ .

We showed above that |T| = 2 . Now for o in fix @ , N(Q)a is
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transitive on the f - 1 points of fix § - {a} , and f -1 1is not
divisible by p . Hence as IN(Q)a : M&I =1 is p or 2p , then

(f-1, 1) =2 and it follows from [714], 17.1, that either Ma is
transitive on fix @ -~ {a} , or M& has two orbits in fix @ - {a} , each
of length %(fll) . In either case M 1is primitive on fix @ and so

T = fix @ . Hence T = fix R and w+P is transitive on fix R . Thus by
[6], G is one of the groups in List 1.3, where again ¢ = |supp R| .
However in each of the cases we showed that n or »n - 1 is divisible by

P , a contradiction since f = 2 .

Thus M 1is not transitive on fix § and hence (f, 1) #1 , so
Il=2p=6 and f 1is even. Since p = 3, we have f = 2 (mod 3)

Then, since f =1 = 6 , we must have f =2 . It follows that N*p is

transitive on fix R , a contradiction as before.
Finally in this section we prove

LEMMA 1.7. If a conjugate @* of @ normalises R then @*

contains R .

Proof. Suppose that @* C N(R) but @* PR . Then P* = Q*R is a
Sylow p-subgroup of G contained in N(R) . We claim that P* is

abelian. If not then P* has an orbit T of length p2 such that P*F
r
is nonabelian; P* has a unique set of blocks of length p , namely the

set of @*-orbits contained in I . Now as R 2 P* and |P* : R| = p2 s
clearly R does not fix any points of I' , and so R has p orbits of
length p in T which are blocks of imprimitivity for P* . Hence

@*R = P* leave the unique set of blocks fixed setwise, contradiction.

Hence P* 1is abelian and so the Sylow p-subgroup P containing @ 1lies
in N(R) . Therefore P9 = P+ for some g in N(R) and hence
R cC Qg = @* , contradiction.

COROLLARY 1.8. If there is a conjugate R' of R contained in P
such that P = QR' , then P is nonabelian.

Proof. If P = gR' and P is abelian, then @ < N(R') and so by

Lemma 1.7, @ D R' , contradiction.
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2. Characterisation of PSL(3, p)
Consider the following hypothesis:

A: For each long @-orbit A , the group R = @, has a conjugate

A
R' contained in P such that P = QR' .

In this section we shall prove the following proposition.

PROPOSITION 2.1. If Hypothesis A is true and if fix P 1is nonempty,
then

n=1+p +p2 and PSL(3, p) = G < PGL(3, p) .

Clearly these groups satisfy the conditions of the theorem. Suppose
that Hypothesis A is true. Then by Corollary 1.8, P is nonabelian. For
a fixed R = QA let T =@ nR' , where R' is any group satisfying the

conditions of Hypothesis A. If [ 1is any P-orbit of length p2 , then
since P = QR' , R' permutes the Q-orbits in T transitively, and it

follows that 7T fixes I pointwise. Since P is nonabelian, there is an

orbit I' of P of length p2 such that !PF| > p3 , and as

|7 : 7] = p3 » it follows that T is the kernel of the action of P on

the union of its orbits of length p2 . Let T be a P-orbit of length

y
p° suchthat |P | = p3 . Then Pl «~ P/T is nonabelian and so vy (37,

1.3.4, its centre has order p . Let Z be the subgroup of P containing
T such that Z/T = Z(P/T) . Then Z =P and so Z has p orbits of
length p in T which are blocks of imprimitivity for P . Since P has
a unique set of blocks of length p in I , namely the @-orbits in T ,

we conclude that Z € @ . DNow let Rl, cees Rp be the p distinct

subgroups of P of index p2 fixing points in T . Then @@ O Ri > 7T for

1 =<1 =p . Since @/T is an elementary abelian group of order p2 , it
follows that there are precisely p + 1 subgroups of & of index p ,

containing T , and these are Rl, R A/

p

LEMMA 2.2. If Hypothesis A is true then |P| = p3 .

Proof. Suppose that Hypothesis A is true and that |P| = ph . Then
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T#1 . Let A be along @-orbit in supp T , and let ﬁ be a conjugate
of QA contained in P such that P = Qﬁ .

Let Zl be the union of P-orbits of length p2 , and let
22 = supp @ - (supp T v Zl) . Now as P = Q§ , clearly ﬁ permutes every

@-orbit in Zl nontrivially. Also, as above, @ N B fixes I

1
pointwise, and since |@ n B| = |T| , it follows that T = Q@nRcE . Hence
® fixes no point in supp 7 , and therefore fix ﬁ CfixQu 22 . Now
since ]fix §| = |fix QAI > |fix Q| , it follows that 22 is nonempty.

We claim that Z fixes 22 pointwise. Let A' %be a long @g-orbit

in 22 (A' is an orbit of P ). Then T C QA’ , and since QA' is

normalised by (PA" @) = P , then QA' does not fix any points in a

T
Porbit I of length p2 such that P is nonabelian. (In future we
shall refer to such an orbit as a "nonabelian P-orbit".) By our remarks

above it follows that QA’ =7 . Thus we conclude that
fix 22 L, v fix @ .

Now if Z' is a conjugate of Z contained in P such that P = Qz'
then

(I) Z' permutes all g-orbits in Zl nontrivially, and

(II) @ nZ' rixes Zl pointwise;
as above we conclude that T =@ n Z' © 2' so that Z' fixes no points of
supp T . Hence fix Z' S fixQu I, < fix 7 , and as Ifix z'| = |fix 2] ,
it follows that fix Z2 = fix Z2' = fix Q u 22 . Now Y =122' 1is a subgroup
of P such that fix Y= fix Z # fix @ 3 thus |P : Y} = p and for any
point & in 22 , Y= Pa . The group § defined above fixes some
@-orbit in 22 , and so ﬁ C Y and fix ﬁ.z fix ¥ = fix Z . We shall show
that R is conjugate to Z' in P .

First note that neither R nor Z' is normal in P (for if either

were normal, then its orbits in the non-abelian P-orbit I would be
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blocks of imprimitivity for P , whereas both IA? and 2' permute
nontrivially the @g-orbits in T and these are the unique blocks of length
p for P in T ). Now Y has precisely p + 1 subgroups of index p
containing T , and three of them are Z, Z' , and R. Nowas P
normalises Y, T , and Z , it follows that P permutes transitively the
p subgroups of Y of index p containing T , and different from Z .

Hence R 1is conjugate to Z' in P .
It follows that Z 1is conjugate in G to @, , for any A C supp T .
Now both Z and QA are normal in P and so by a theorem of Burnside

(C2]3, 154-155), Z 1is conjugate to QA in N(P) . This is impossible,
since T is normal in N(P) and T < Z , while TiQA . Thus |P| = p3 .
Now we shall prove Proposition 2.1.

We have |[Q| = p2 , and {R -» B, Z} is the complete set of

s e 5

subgroups of @ of order p , and R ees Rp are all conjugate in P .

l b ]
Let

NE=(Q*DRi|Q*~GQ) for 1271 =p
and

N% =(Q* D7 [ Q*NGQ)

Fach Ri fixes p points of each nonabelian P-orbit of length p2 and

fixes no other points of supp @ . Let |suwp @] =gp , |[fix Q| = f , and
| fix Ril =yp + f. Then |fix Z| = f + (q—rp)p , and supp Z 1is the

union of the nonabelian P-orbits of length p2 . If R is a conjugate of
Rl in P such that P = Q}?’ then ?? must permute each @-orbit in

supp 7z nontrivially and hence fix Z D> fix R . Then since

| fix §| > |fix @| it follows that Z fixes points in supp ¢ . Hence, as

in the proof of Lemma 2.2, there is a conjugate Z' of Z in P such
that P = @z' ; we find as in Lemma 2.2 that Y = Z'Z has index p in

P, that fix Yy = fix 2' = fixZ , and that Y =P, for any § in

§
supp P - supp Z . In particular this means that all P-orbits of length
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p2 lie in supp Z
Further, since the group B defined above fixes a point of
supp & - supp Z , it follows that b4 € Y , and we can show (by a proof

analogous to that in Lemma 2.2), that R is conjugate to Z' . Thus it

follows that Rl, ceey Rb, Z are all conjugate in G , and so
n=f + rp(p+l) .

It is easy to show that Y is weakly closed in P with respect to &
(for if Y' € P is conjugate to Y then Y' fixes a point & of
supp P ; and since |P : Y'| =p , clearly 6 € fix ¥ so Y' = Py =Y ).

Thus, by [15], Satz 3, N(Y) is ©o-transitive on fix Y . Define
M= N(Y) 0o N(Z) ; and then since Y has p + 1 subgroups of order p ,
1= |NY) : M =p+1 . By [5], Hilfsatz 1, if 7 < f+ rp , then M is

transitive on fix ¥ = fix Z .
So suppose that 7 < f + rp . Then N(Z) 1is transitive on fix Z

and so N* is X%-transitive on fix Z . First of all, if P g trivial

then by Lemma 1.4, #¥* = @ which is %-transitive on fix Z . Hence

f =0, contradiction. Hence N*p is nontrivial and so is %-transitive

on fix Z . Since & acts nontrivially on each W~N*-orbit in fix Z , it
follows from [4] that |supp #*| = |fix Z| = rp + f < 2rp . By Bochert

([721, 52-54), |supp N*p| > %4n (unless 7 = 25 and the minimal degree is

equal to |fix Z| = 6 ; but then |supp Z! = 19 which is impossible).
Hence 2rp > %(qp+f) , and rp + f = %(qp+f) , and eliminating f we find
that r > q/7 = r(p+1)/7 . Hence p <5 . We claim now that f=<r .
Suppose on the other hand that f > r . Let A be a long &-orbit in

fix Z . Then M permutes the long @-orbits in fix Z in some way, so if
L is the setwise stabiliser of A in M then |[M : L] r . Hence

|N(Y) : L| = (p+l)r <rp + f, so by [5], Hilfsatz 1, L is transitive on

fix Z . However L fixes setwise the N*-orbit containing A . Hence N*

is transitive on fix Z , and as f# 0 , N*p is also transitive on

fix Z . Then, by [141, 13.5, |fix Z| = rp + £ = ¥n = %(rp(p+1)+f) , that
is f = rp(p-1) . This is impossible since f < rp (by [8]). Hence
f=sr.
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Now as Ri is conjugate to Z , we know that N;Ep is %-transitive

(6. 2 1o, 8}

L , say. So N:’L‘p is

on fix Ri for 7 =1, 2 . Consider the set S

1f S={1} then ¥ is normal in <1v{p, N§p>
% transitive (or trivial) on each L-orbit. It follows that N{p fixes
pointwise each orbit of L (and hence each orbit of Nép ) which contains

a point of fix R, - fix Z . This means that N:’L*p fixes fix @ point-

2
wise, a contradiction. Hence S contains a nontrivial element which, by
[11, permutes at most 3f points. Hence 3f = %n (vy [13], 52-54); +that
is, rp(p+l) <11f =1lr . Hence p =2 , and as G is 2-transitive we
must have f =1 . Thus G contains a non-identity element permuting at

most 3 points. By [14], 13.3, G.3An , contradiction.

Thus we conclude that p+ 1272 f+rp ,andso r=f=1. By
[11] it follows that PSL(3, p) = G < PGL(3, p) and the proof is complete.

3. Completion of the proof when fix P # ¢

We shall assume now that fix P 1is nonempty and that Hypothesis A

is not true. Then for some 8 in supp @ , R = Q(S satisfies the
hypothesis :

B: If P' is any Sylow p-subgroup of G containing R then
R 18 a subgroup of Q' , the wnique conjugate of @ Llying
in P!
We now proceed to obtain a contradiction. We shall consider WN(R)
and N* ={(@Q* DR | @* ~a Q) .
LEMMA  3.1. (a) Each long N*-orbit T in fix R contains a long
G-orbit and at least d = min(2, |fix P|) points of fix Q . Further,
|2| <s prime to p , and hence N*¥ is transitive on I .
(b) If o € fix @ and if f= |fix Q| 2 2 , then each long N&-orbit
contains a long @-orbit and a point of fix @ .

Proof. Let I be a long N*-orbit in fix R and let A be a set of
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d = min(2, f) points in X n supp § (by Corollary 1.5). Let P' be a

Sylow p-subgroup of (G, containing R , and then by Hypothesis B,

A
R < @' , the unique conjugate of @ in P' . Then Q' S N* and so, by

Lemma 1.k, @' =@ for some g in N* . Then A9 Cfix gni . By

Lemma 1.k, since @ < N# L has length prime to p . Part (b) can be

A 2

proved analogously.

It follows from Lemma 3.1 that ¥*P  is transitive on each N*—orbit
in fix B , and in particular that WN*’ is nontrivial. By Bochert ([121,
52-54), |supp N*pl Z In (unless n =25 and the minimal degree is equal

to |supp N*pl =6 , by Lemma 3.1, then p =5 , and since p does not
divide n , then p is 2 or 3 . Since each long ~N*-orbit has length
prime to p and length at least p + 1 , it follows that p = 2 and hence

|£ix Pl =1 . By Lemma 3.1, WP is transitive on fix R s a
contradiction to [14], 13.5). By [&] we have 2rp > |supp #*F| = %(qp+f)

and also rp + f 2 |supp N*pl > L(qp+f) , where, as usual, |fix Q| =7f,
|supp Q' = qp , and Ifix R| =rp + f . Hence, eliminating f , we find
that » > q¢/7 . So there are at most six distinct conjugates of R in

Q.

Now we show that N*f 1is not transitive on fix R . If it is
transitive then, by [6], G 1is one of the groups in List 1.3. In case

(a), Gz PsSL{m, s8) for some m 2 3 , and prime power 8 . We found that

f=1. since |supp R| = (" -1)/(s-1) = %(n-1) (vy [121, 52-54), it
follows that & <L , while if s =4 then |supp R| < %n whicnh
contradicts [12], 52-54 (since n # 25 ). Hence s is 2 or 3 . Now if
P =s then fix R is a subspace (for if &, B € fix R , the line through

@ and B contains s -1 < p points distinct from & and B and so is

fixed pointwise by R ). Then |fix R| = (s¥-1)/(s-1) for some ¢ >1 ,
which is impossible. Hence p <s and so p=2 and 8 = 3 . However
for any m Z 3 , the Sylow 2-subgroups of PSL(m, 3) have an orbit of
length greater than 4 , so none of these groups are satisfactory. 1In

case (b) and (b') we found that f = 0 so the case does not arise either.
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Finally, in case (c), we found that, since p> divides 6] , p is 2

or 3 . Then as |supp R| = n - 16 is divisible by p , n # 23 , and as
f#0, we must have p =3 and n =22 . However 33 does not divide

[Aut M Hence N* is not transitive on fix R . Then, by Lemma 3.1,

22|
it follows that f = |fix @| =23 .

Now N(Q) is 2«transitive on fix @ (by Lemma 1.2 and [75], Satz
3). If N(Q) has a subgroup of index x where either z < f or
(x, f) = 1 , then that subgroup is transitive on fix @ (by [5], Hilfsatz
1, and [74]1, 17.1).

Let M= N(Q) n N(R) andlet I = |N(Q) : M| , the number of distinct
conjugates of R in @ by elements of N(Q) , 7 =6 . Suppose first
that M 1is transitive on fix @ . Then by Lemma 3.1, N(R) is transitive

on fix R , and so v is ¥ transitive on fix B . An 7P orvit £ in
fix R is then a block of imprimitivity for N(R) and it is easy to see
that L = L N fix @ is a block of imprimitivity for M in fix @ . By
Lemma 3.1, it follows that 2 < |Z] < f, so I 1is a nontrivial block.
Let o €I ; then L 4is a union of Ma—orbits in fix @ , and by [14],

17.1, each long Ma-orbit in fix € has length a multiple of

(f-1)/(f-1, 1) . Hence b = |X] =1 + a(f-1)/(f-1, 1) , for some integer
a, 1=a<(f-1,1) and b divides f . Checking for I < 6 we find
that the only possibilities are the following:

List 3.2
A 3 6 5 5 L 5 6
f L L 6 6 9 16 25
b 2 2 2 3 3
fib =d 2 2 3 2 3

If on the other hand M is not transitive on fix @ , then by our
remarks above it follows that 3 < f=<1 <6 , and that (f, 1) # 1

Hence
(3.3) either 3= f=171<6,0r 1=6 and f is 3 or L .

We note that in all cases f < »rl ; this is trivially true if f=< 1,
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while in the cases of List 3.2, N* has f/b orbits and each contains a

long @Q-orbit, and we check that f < If/b < rl .

Now since 1 >1 , let R' ©be a conjugate of R contained i ],
n

R'# R , and let N'#*, n'+P be the analogues of N*, ¥*P for R

Consider the set S = {[g, g'] | g € NP, g' € #'*P} . 1f S = {1} then

¥ is normal in I = (N*p, 7'*?) and hence N*P acts Lk-transitively

(or trivially) on every L-orbit. Hence N*p fixes pointwise every orbit

of L (and hence every orbit of N'*p ) which contains a point of

fix R' - fix @ . Thus, by Lemma 3.1, N*f fixes M' = supp N'* n fix @

pointwise.

In the cases of List 3.2, N*p fixes no points of fix @ whereas by

Lemma 3.1, [I'|] =22 . So we have cases (3.3) to consider. If N'#*

at least two orbits in fix R' then |II'| = 4 , and similarly (since

has

R~R'), T =supp N* n fix @ contains at least four points and is fixed

by ¥'*P . Hence M nT' = $ andso fz |[Hull'l=28>1,

contradiction. So N'*p has just one long orbit which contains at most

Ifix @ - ] < f - 2 points of fix @ , and so, by [14], 13.5,

rp+ f-22 |supp N'*pl = %(qp+f) = %(rilp+f) ; that is,
1>%f -22%rp(l-2) =2 4p . However, since f2 3, we have p = 3,

contradiction.

Hence S contains a non-identity element which, by [7], permutes at

most 3f points. By [14], 15.1, 3f 2= mn(l-a) , where o = 2/Vn .

If

p 211 , then 9f = (1-a)(gp+f) , so (8-a)f = (1-w)gp = 11{(1-0)rl , and

since f < »rl we have a = 3/10 ; that is #n < 45 . However since

3

2p with many fixed points, a contradiction by [14], 13.10.

p~ divides |G| » this means that there is a p-element of degree at most

Hence p is 3, 5, or 7 {since f>2 ,then p#2); f=rl,

and by [1 4, 52-54, 3f= %n (unless 7n = 25 and the minimal degre
equal to 3f = 6 , which is impossible since f = 3 ); that is ¢p

Suppose first that M 1is transitive on fix @ . Then n#P has d

e

<

is
11f .

f/b

orbits each containing say r' long &-orbits, where r = r'd . Hence

https://doi.org/10.1017/50004972700024424 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700024424

230 Cheryl E. Praeger

11f 2 gp 2 r'dlp = »'flp/b . Then from List 3.2, b/l =5/6 , so
r'p=9 . If r'=1 then N* has d orbits of length p +b = p + 2
with a p-element acting nontrivially on each. Clearly this constituent

contains an insoluble factor with order divisible by p , and we deduce

that N*f contains a p-element of degree dp . If p =7 then d=<5 ;
if p=5 then f#25 so d=<UL . Hence it follows from [/4], 13.10,
that p = 3 . Also if r' >1 , then p = 3 . However since f > 2,
neither f nor f -1 1is divisible by 3 , and so none of the values of

f in List 3.2 is suitable.

We conclude that MfIXQ is intransitive and that the values of f
and ! satisfy (3.3). Then 1f=gp =rip=rfp; so rp =11 .

1r N has only one long orbit, it has length at most rp + f -1 ,
which is less than %m (since I > f ), which contradicts [74], 13.5.

Hence N*p has at least two long orbits and since rp =11 and by Lemma

3.1, it follows that f = 4y , =2, and p is 3 or 5. If p=5

then r =2, f=4 (since f(f-1) is prime to p ), and ¥ has two
orbits of length 7 . Hence G contains a T-element of degree 1L | a

contradiction to [74], 13.10. If p =3 then f=1=5, and »r is 2

or 3 . By Lemma 3.1, N*p has exactly two long orbits, and since neither
orbit length is divisible by 3 , each orbit contains exactly two points of
fix @ . Hence at least one orbit has length p + 2 =5 , and so G
contains a S-element of degree at most 10 , a contradiction to [14],
13.10. This completes the proof that there are no groups satisfying
Hypothesis B, with fix P nonempty.

4, The case fix P = ¢
This section will complete the proof of the theorem: we shall prove

PROPOSITION 4.1. If P fixes no points then G satisfies one of
the following

(1) AsSL(2, p) =G < AGL(2,p) , n = p2 H

(i1) 6=pPrL(2,8), n=9, and p=3;

(IT1) G =M n=12, and p =3 ;

12 °
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(Iv) G=PoL(2,5), n=6,and p=2.
By Remark 1.1, fix @ is empty. As in the previous sections we shall
consider subgroups of @ , R = Qa , for o in § , and the subgroups ~N*

and WP of N(R) . First we show:

LEMMA 4.2, If p° divides n then G satisfies (I) or (II) of
Proposition 4.1, and those groups satisfy the conditions of the theorem.

Proof. Suppose that p2 divides n . Then R = Qa is a Sylow
p-subgroup of G . Hence, by (151, satz 3, N(R) 1is 2-transitive on

fix R , and hence N* is transitive on fix R . Now, by Lemma 1.6, the

lemma is true unless a Sylow p-subgroup P' of N(R) is a Sylow

p-subgroup of G . However this means that, as R 2 P' , fix R is a
union of P'-orbits, and so |fix B| is divisible by p2 . Hence

]N*f1XRl is divisible by p2 , a contradiction to Lemma 1.4. Thus the

lemma is proved.
Hereafter we shall assume that n is divisible by p but not by
p2 , and that a Sylow p-subgroup of N(R) has order IPI. Let S bea

Sylow p-subgroup of G = containing R . Then Is| = |q] .

LEMMA 4.3. FEither

(1) |P| p3 , or

(r1) |P| ph and R 1is the only subgroup of S of index p

with all long orbits of length p .

v

Hence R 1s weakly closed in S with respect to G .

L

Proof. Assume that |P| = p , that is |R| = p2 , and assume that

Rl and R2 are distinct subgroups of § of order |R| with all long
orbits of length p . BSince lRi‘ > p2 , the group T = Rl ) R2 is non-

trivial and is normalised by (Ri, R2) =8 . If T is an S-orbit of

length p2 , then Rl permutes the R2—orbits in T , and it follows that
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T fixes I pointwise. Thus S acts regularly on each of its orbits of
length p2 , and in particular S 1is abelian. Also T 1is the kernel of
the action of S on the union of its orbits of length p2 . Define

x=(s*:T|s*~Gs>.

Then X = N(T) . We claim that all these generators S* of X are
conjugate in X to S . Let o € fix §, B € fix S* , and let S' be a

Sylow p-subgroup of Ga containing 7 . Then as S*, S' are both Sylow

B
p-subgroups of XB , s*9 = 5' for some g in XB , and as S', § are

both Sylow p-subgroups of Xd , S*gh = S’h =S for some h in Xa .

Now let S* be any conjugate of S containing 7 . Then st = g9
for some g in X . As g fixes fix T setwise it follows that all

S*orbits of length p2 lie in fix T , and hence T 1is the kernel of the

action of S* on the union of its orbits of length p2 . From this it is
easy to show that I 1is weakly closed in S with respect to &G , and
hence N(T) is 2-transitive on fix T by [15], Satz 3. Further, since
all S*-orbits in supp T have length p , we deduce that X acts on
supp T as an elementary abelian p-group with all orbits of length p ,

and hence that X‘p fixes supp T pointwise. Now if Xp is nontrivial

then X° is transitive on fix T , and as |supp T| = %(n-1) (vy [12],
52-5L4), it follows from [ 4] that G is one of the groups in List 1.3,

where ¢ = |supp T| . ©Since p but not p2 divides n , we can show (as

in the proof of Lemma 1.2) that cases (a), (b), and (b!) are not possibdle.
In case (c), since ph divides |G| , p =2 ; however a Sylow
2-subgroup of M22 has orbits of length 8 (see [4], 60) so none of these

groups is suitable. Thus Xp =1 , and so X 1is a p-group containing §

which is transitive on fix T . As fix S# @ , X must be a Sylow

p-subgroup of G , but then X has orbits of length both p and p2 in

fix T , contradiction. Thus the lemma is proved.

LEMA 4.4, If R = Qa 18 weakly closed in a Sylow p-subgroup S
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of Ga with respect to G (for some o in ), then Q 2 N(R) and

fix R is an orbit of Q ; that is, |fixR| =p . Also if p =5, then

G 1is not 3-transitive.

Proof. Suppose that R is weakly closed in S . Then N(R) is

2-transitive on fix R by [15], Satz 3, and so N* 1is transitive on

fix R . Suppose first that N*p is nontrivial; then it is transitive and
by [6], G is one of the groups of List 1.3. Since p but not p2

divides 7 , we show as before that cases (a), (al!), (b), (b!) are not

possible; in case (c¢) since p3 divides IGI » p is 2 or 3, and as

in Lemma 4.3, p is not 2 . Hence p =3 and so n =24 ; however

supp Rl = 8 , contradiction. Hence we conclude that ¥P =1 and
therefore N* 1is a p-group containing & which is transitive on fix R .
By Lemma 1.4 then WN* = ¢ and fix B is an orbit of @ . Finally, since
N(R)fIXR is 2-transitive with the normal p-subgroup QleR it follows

that  m(R) T

follows from [15], Satz 3, that G 1is not 3-transitive if p = 5 . This

=~ AGL(1, p) , which is not 3-transitive if p = 5 ; it

completes the proof.

LEMA 4.5. If |P| =p> then either

(1) ¢ = Miz , m=12 ,and p=3, or

(11) ¢

PGL(2, 5) , n=6 ,and p=2,
and these groups satisfy the conditions of the theorem.
Proof. Consider R = Q, » for some @ in 2 . By Lemmas 1.6 and 1.7

we may assume that R 1is normal in P . We claim that P has an orbit

of length p in fix R (for if S' 4is a Sylow p-subgroup of N(R)a ,

and if P' 1is a Sylow p-subgroup of N(R) containing S' , then
S' = E& , so the P'-orbit containing 0o has length p , and P' is

conjugate to P in N(R) ). Thus we may assume that the P-orbit
containing o has length p . Let S = Pa . Suppose that R is not

weakly closed in S . Then there is a conjugate R' of R , distinct from
R , contained in S , andas @§nS =R, and R' i_Q , then P = Q@R'

Hence, by Corollary 1.8, P is nonabelian. Then we can show (as in §2)
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that the subgroups of & of order p are Ri, ooy Rp (each of which

fixes p points in each nonabelian P-orbit of length p2 , and no other
points of ), and Z(P) (which fixes the remaining points of ). The
only group normal in P is Z(P) , so R = Z(P) , and supp B 1is the

union of the nonabelian P-orbits of length p2 . Now, by Lemmas 1.6 and

1.7, a Sylow p-subgroup E% of N(Ri) has order |P| and Ri lies in
its subgroup conjugate to & . Since Ri = Pi , it follows that

R = Z(Pi) . Hemce R 1is conjugate to R = Z(Pi] . Thus if

| fix R| = rp then n = ro(p+l) .

Again since P = @R' , R' permutes every Q-orbit in supp B , and

since |supp R| = |supp R'| ana S = RR' , it follows that

supp R = supp R' = supp S , and every long S-orbit has length p2 . Now
N(S) is o2-transitive on fix § by [I15], satz 3.

Define X =(P* D5 | P*~,P)

Then every X-orbit I in supp S has length p2 and Xr has a

T
transitive normal p-subgroup S . It is easy to show that either
r r
X = AGL{2, p) or X = AGL(1, p) wr AGL(1, p) , and hence the only
. . . suppS . NP
possible nonabelian simple factor of X with order divisible by p
ixS
is PSL(2, p) . On the other hand Xflx is a nontrivial normal subgroup

of N(S)flxs (which is 2-transitive). If we suppose that |fix Sl >p ,

then fix S 1is not a prime power and hence, by [714], 11.3, N(S)flxs does

not have a regular normal subgroup. It follows (from (2]}, p. 202) that

XfixS is a nonabelian simple group with order divisible by p . If

XfixS ¢ PSL(2, p) then the kernel of X acting on supp § is tranmsitive
on fix § , and hence rp = |fix R| = |fix S| = 3m = &rp(p+1) (vy [14],
13.5), a contradiction. If XfixS ~ PSL(2, p) , then

N(S)fixs < put (PSL(2, p)) is 2-transitive of degree |fix S| = 2p , which

is impossible. Hence |[fix S| = |fix R| =p .

If on the other hand K 1is weakly closed in S , then by Lemma L4.l,
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| £ix R| = p . Hence in any case, if n = qp then § has ¢ distinct

subgroups of order p fixing points of § . Therefore ¢q < p+l , and
since P has orbits of length both p and p2 , we have n =p + p2 .

Thus S acts regularly on its unique long orbit which has length bg , and
it follows from [7] that G is (p+l)-transitive. Hence, by [14, Satz 3],

fixS -

N(S) 5? . However N(S)SUPPS is a subgroup either of AGL(2, p) or

AGL(1, p) wr AGL(1, p)

)suppS

Hence if p = 7 then WN(S would contain a p-element of degree

p , contradicting [14], 13.9. If p =5, since G 1is 6-transitive, then
G contains a 13-element of degree 26 , a contradiction to [15], 13.10.

If p is 2 or 3 then we obtain the groups PGL(2, 5) and M, of

degree 6 and 12 respectively by [13], and it is easy to check that they

satisfy the conditions of the theorem.

Now we shall assume that |P| = ph . Then, by Lemmas 4.3 and 4.4, all

the subgroups {Qa l a € Q} are conjugate in (G and each fixes exactly

p points. Let R = Qa , R' = Q8 , for some points o, B in £ such

that R#R' . Then T =R NR' is nontrivial, |P : T| = p3 . Since

each |fix R| = p , clearly P has no orbits of length p2 on which it

acts regularly. So in each P-orbit I of length p2 , P has a unique
set of blocks of length p , namely the &-orbits in T . Thus if § is
the stabiliser of a P-orbit of length p , it follows from P = @S , and
@NS#1 that S is transitive on I . Suppose without loss of
generality that S = Pa SR, &nS=FR.

LEMMA 4.6. There is a conjugate T' of T , distinet from T ,
contained in S such that S = RT' .

Proof. Suppose this is not true. Then if S' is a Sylow p-subgroup

of Ga for some « in fix T , S' DT , then T 1lies in the unique

subgroup R' of S' conjugate to R (see Lemma L4.3). Consider N(T)

and define

= * £
X=(@*>T | @ . @ -
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supp”?

Then X 2 N(T) and X is elementary abelian with all orbits of

length p . We shall show that X X1 is transitive. Let 8, Y be

arbitrary points of fix T , and let S' be a Sylow p-subgroup of GGY

containing 7 . Then T E_B' , the subgroup of S' conjugate to R . If
P' is a Sylow p-subgroup of ( containing S' , then TCR' cQ' <P’ ,
where Q' ~ @ , and Q' € X . By Lemma 4.4, fix §' is an orbit of Q' ,
and it follows that 7Y, § 1lie in the same X-orbit. Hence X is

transitive on fix T .

Next we show that XfIXT is primitive. Assume to the contrary that

B is a nontrivial block of imprimitivity for X in fix T . Suppose that
B contains a point 6 of a long @-orbit A . Then B n A is a block
for @ in A and so has length 1 or p . If B nA = {8} then QG

fixes B setwise, so B is a union of Qs—orbits. Since fix Q6 =A, B
contains a @-orbit A' . Then QA' fixes B setwise, but is transitive

on A , a contradiction. Hence B contains A and it follows that B 1is
a union of @-orbits. By the same argument, B 1is a union of @*-orbits
for any conjugate @* of @ in X . Choose 6 € B, Y € fix T - B and,

as above, choose @* DT with 6§ and Y in the same @%-orbit. This is
c s fixT | s e .

a contradiction. Hence X is primitive. Thus as ]flx T| >p , X

is not a p-group and so Xp is a nontrivial normal subgroup of X .

Hence Xp is transitive on fix T and fixes supp T pointwise. As
lsupp 7| = %(n-1) by [12]1, it follows, from [6], that G is one of the
groups of List 1.3, ¢ = |supp T| . We see, as in Lemma 4.4, that none of

these groups is suitable. Thus the lemma is proved.

LEMMA 4.7. If a conjugate S* of S normalises T then T Llies in
the subgroup R* of S* conjugate to R .
Proof. Suppose T =2S* but T i_R* . Then S* = TR* . We shall

show that S* 1is abelian. If not then there is a nonabelian S*-orbit T

of length p2 . 5% has a unique set of blocks of length p in T ,
namely the R*-orbits in I . Since 7T 2 S§* , the T-orbits in [ are
(possibly trivial) blocks of imprimitivity for S* , and hence TR* = S*

fixes the R*-orbits in [ setwise, a contradiction. Thus S* and hence
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5 is abelian; so SCN(T) . Let o € fix S, B € fix 5* and let S'
be a Sylow p-subgroup of N(T)as . Then S is conjugate to S' in

N(T)a and S' is conjugate to S* in IV(T)B , and so ¥ = 5% for some

g in WN(T) . But then T S_Rg = R* , a contradiction.

COROLLARY 4.8. With the notation of Lemma 4.6, S <is nonabelian and

U=T'nR is the kernel of S acting on the union of its orbits of
length p2 . Hemce U=T"nR where T" 1is conjugate to any RB R
B €supp R, in S such that S = RT" .

Proof. Since S = RT' it follows, from Lemma 4.7, that T' is not

normal in S and hence S 1is nonabelian. Let [ be an S-orbit of

length p2 . Then T' permutes the R-orbits in T and so U=7T'nR
fixes I pointwise. As S 1is nonabelian we could choose [ such that
I'yo .3 . . _ .3
IP | Z p~ , and the result follows since IS : U] =p” .
. . 2 T
Now let [ be a nonabelian S-orbit of length p~ . Then S§ = S/U .

Let Tl’ ey Tp be the p distinct subgroups of S containing U ,

IS : T = p2 , which fix points of I , and let Z be the subgroup of

2|

of index p2 containing U such that Z/U = Z(S/U) . Clearly

Tl’ .oy Tp fix setwise the unique set of blocks of length p of S in
' , and so are subgroups of R . Also since Z 2 S , the Z-orbits in T
are blocks for § and so Z<R . Then T, ..., T , 2 are all the

1 p

subgroups of R of index p containing U .

Since the Ti are not normal in 5 , each fixes exactly p points of

every nonabelian S-orbit of length p2 and no other points of
supp S = supp R . Let I Dbe the union of the nonabelian S-orbits of

length p> . If I' = rfix U - (X U fix §) contains a point B then
USSR, <R, and hence R, =2 , and L' ="fix 2 - fix S .
B8 B

LEMMA 4.9, I' =fix 2 - fix R = supp S - (L v supp U) is nonempty.

ph 3 that is, U=1. If I' is

Proof, Suppose first that |P]
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empty then supp S = I and each long S-orbit has length p2 . Now, by

Lemma 4.6, S = RT' , for some T' ~ T

1 e and hence T' permutes every

point of X = supp R , a contradiction as

|supp 7'| = |supp 7, | < |supp B| .

Now suppose that |P| = p5 ,and let o € supp U . Let 7' be a
conjugate of Ra in S such that S = RT' . Then, as before,

supp 7' DL . Also ARnT'=y¢cT' so supp 7' D supp U , and hence
fix T' € L' u fix R . Since |[fix T'| > |fix R| it follows that L' # ¢ .

Thus Z = RB for B in I' , and, by Lemma 4.6, there is a conjugate

Z' of Z in S such that S =RZ' . As in the proof of Lemma 4.9 we see
that fix Z' € L' u fix R = fix Z , and hence fix Z' = fix Z . Then

Y =122'" is the stabiliser in S of any point of Z' , and as Z'
permutes nontrivially all the R-orbits in L , Y 1is transitive on each

S—orbit in I . Now it follows, from Corollary 4.8, that U 2 N(S) , and
then also 2 = N(S) (for if g € W(S) then 295U , and
29/v = z(s/u) = z/u , so 29 =12 ).

Let o € supp S . We claim that Ra is conjugate to Z . By Lemma
L.6 and Corollary L.8 there is a conjugate T' of Ra such that S = RT'

and U=RnT'CT' . Then since |[fix T'| > |fix R| , T' must fix a
point of I' and so T' <Y . Now Y has exactly p + 1 subgroups of
index p containing U , and 2, Z', T' are three of these. If Z' 28§
then, by [2]1, 154-155, Z 1is conjugate to Z' in N(S) n Gy »a

contradiction, since Z = N(S) . Hence Z' is not normal in S . Now
since Y, Z, U are all normal in S it follows that S permutes
transitively the p subgroups of index p in Y which contain U and

are different from Z . Hence T' ~g Z' , and so Ra ~e Z .

Now if |P| > p5 let o € supp U . Then Ra is normal in
(Soz’ R) =58 , and so, by [2], 154-155, Ra is conjugate to Z in WN(S) ,
1r e Tp, z}
is the complete set of subgroups of R of order p . Also Y is the

a contradiction since 2 =2 N(S) . Hence |P| = ph , and {T
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stabiliser in S of all S-orbits of length p , and so Y is weakly

closed in S . Hence, by [15], Satz 3, N(Y)flxy is 2-transitive. If

P 1is any Sylow p-subgroup of € containing S then Y is normal in P
(for if o € fix Y - fix S then ¥ = (P, 5»=pP }. A1l p-orbits in

fiX.YI

fix ¥ = £' u fix R have length p, and IP = p2 (since S is transitive

on all P-orbits of length p° and since |5 : ¥| = p ). Thus, by [97, either

fix¥

(1) WNY) D AMt(fix ¥) (the alternating group),

=P, Jeix v

and, since IP 2p ; or

)fixY

(I1) p=2, |fix Y| =6,anda N ~ PSL(2, 5) ; or

i xY
3, |fix Y| yFix

(111) P 12 , and N(Y

Now define X = (P* | P* < p(y), P* ~a P .

r
Then X = N(Y) and every X-orbit I in supp ¥ is a Y-orbit; X

T
is transitive of degree p2 with a transitive normal p-subgroup Y . It

suppY

follows that the only possible nonabelian simple factor of X with

ixY
order divisible by p is PSL(2, p) . However Xflx

contains an
insoluble factor given by (I)-(III) above and hence the kernel of X on
supp Y is nontrivial and therefore is transitive on fix Y , a

contradiction to [714], 13.5.

This completes the proof of the theorem.
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