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On the Sylow subgroups of a doubly

transitive permutation group III

Cheryl E. Praeger

Let G toe a 2-transitive permutation group of a set !! of n

points and let P be a Sylow p-subgroup of G where p is a

prime dividing \G\ . If we res t r ic t the lengths of the orbits

of P , can we correspondingly res t r ic t the order of P ? In the

previous two papers of this series we were concerned with the

case in which a l l P-orbits have length at most p ; in the

second paper we looked at Sylow p-subgroups of a two point

stabiliser. We showed that either P had order p , or

G > A , G = PSL(2, 5) with p = 2 , or G = M of degree 12

with p = 3 . In this paper we assume that P has a subgroup Q

of index p and a l l orbits of Q have length at most p . We

2
conclude that either P has order at most p , or the groups

are known; namely PSL(3, p) S G5 PGL(3, p) ,

ASL(2, p) £ G 5 AGL(2, p) , G = PrL(2, 8) with p = 3 ,

G = M with p = 3 , G = PGL(2, 5) with p = 2 , or G > A

2
with 3p - n < 2p ; a l l in their natural representations.

Let G be a doubly transitive permutation group on a set ft of n

points and let P be a Sylow p-subgroup of G where p is a prime

dividing \G\ . The previous two papers [9, JO] were concerned with the

situation in which P has no orbit of length greater than p . We showed

essentially that either G contains the alternating group or P has order

p . The general problem is the following:
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212 Cheryl E. Praeger

If we impose certain restrictions on the orbit structure of P , can

we restrict the order of P ?

The results of [9, JO] deal with the simplest possible structure for

P , and I was uncertain whether similar methods could be used to

investigate groups whose Sylow subgroups P have a more complicated

structure. However i t seems that the results can be extended, and they

yield an unusual characterisation of the 2-dimensional affine and

protective linear groups. (The results are useful in the search for

2-transitive groups; for if G is 2-transitive of some fixed degree then

the results give us information about the order and orbit structure of the

Sylow subgroups of G .) We prove the following result.

THEOREM. Let G be a doubly transitive 'permutation group on a set fi

of n points. Let p be a prime dividing \G\ and let P be a Sylow

p-subgroicp of G . Suppose that P has a subgroup Q of index p , all

of whose orbits have length at most p . Then one of the following holds:

(a) \P\ = p ;

(b) \P\ = p , and P has an orbit of length p unless

(I) G is PSL(2, 5) of degree 6 and p = 2 , or

(II) G is M in its 3-transitive representation of

degree 12 , and p = 3 ;

(c) \P\ = p and G satisfies one of the following:

(I) PSL(3, p) 5 G 2 PGL(3, p) , of degree 1 + p + p2 ,

(II) ASL(2, p) 5 G 2 AGL(2, p) , of degree p2 ,

( I I I ) p = 3 and G is PrL(2, 8) of degree 9 or G

is M of degree 12 ,

(IV) p = 2 and G is PSL(2, 5) of degree 6 ;

o
(d) C D 4 j where p 2 n < 2p .

Notation. (a) By A , S , M we mean the alternating, symmetric, or

Mathieu group of degree n , respectively; PSL(m, q), PGL(m, q), PrL(m, q)
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denote respectively the group of projective special linear, general linear,

and semilinear transformations of (ffl-l)-dimensional projective space over

a field of q elements; similarly ASL(wi, q) , and so on, denote the

groups of affine transformations.

(b) Most of the notation used for permutation groups is standard and

the reader is referred to Wielandt's took [74]. By a long orbit we mean

one containing more than one point. If a group G acts on a set fi then

we denote by fix,-/? , and suppoG the subsets of £2 which are fixed by

G , and permuted nontrivially by G , respectively. If the set in question

is obvious then we shall often omit the subscript and write simply fix G,

supp G .

The group generated by objects, say x, y (which may be elements or

subgroups) is denoted by (x, y) . If X is a group then X? will denote

< ar | x (. X) . X? is a characteristic subgroup of X . We mean by

x ~- y that xr = y for some g in G , and if the group G is obvious

from the context we may write just x ~ y . Finally, if x and y are

integers then {x, y) denotes the greatest common divisor of x and y .

1 .

Let G, P, Q satisfy the conditions of the theorem. If \p\ > p 2

then P has an orbit of length p unless G^A , G is PSL(2, 5) of

degree 5 » or G is M of degree 12 . This follows from the result

in [9], since the existence of the subgroup Q means that P has no

2
orbits of length greater than p ; in the second and third cases P has

order k and 9 respectively. Thus the theorem is true if |p| 5 p , so

we shall assume hereafter that P has order at least p . Also we assume

that G :£> A . Then P has at least one orbit of length p

The method of proof will depend both on |fix P\ and on conjugation

properties of Q . In this section we shall proceed as far as possible

without splitting into subcases. In Sections 2 and 3 we consider the case

when fix P is nonempty and this is divided into two subcases depending on
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the fusion of Q % in Section 2 we characterise PSL(3, p) . In the

f ina l Section, 4, we deal with the case fix P = 0 .

REMARK I . I . By [JO] i t follows that Q i s not the Sylow p-subgroup

of a s t ab i l i s e r of two points . Hence if | f ix P\ S 1 , i t follows that

fix Q = fix P .

LEMMA 1.2. Q is the only subgroup of P of index p such that all

long Q-orbits have length p . In particular, Q is weakly closed in P

with respect to G ; that is, if g (. G and eft c P then Qg = Q .

Proof. Suppose t h a t Q., Q a r e d i s t i n c t subgroups of P with t h e

p r o p e r t y . Then \p : Q. \ = p , \Q.\ > p 2 , and Q. 3 P . So P = Q Q
is U is A. £

2
and B = Q^ nfl . has index p in P .

2
Let F be a P-orbit of length p . Suppose that Q, has p

orbits F, , . . . , F of length p in T . Then Q~ permutes these orbits

nontrivially since P = Q-.Q~ is transitive on V . It follows that R

fixes F pointwise. Thus P acts regularly on each long P-orbit, and in

particular, P is abelian. Now let Q be any subgroup of P containing

R with \P : Q\ = p . Then Q is not transitive on any P-orbit of

length p (since R fixes them all pointwise), and so Q has a l l long

orbits of length p .

Now we shall show that R is weakly closed in P . Define

N* = < Q* z> R | Q* is conjugate to one of the groups Q

such that R c Q cz P) .

Then N* 3 N(R) , and P = < Q , Q > c N* . Also, since a l l of these

generators Q* of N* have the same orbits as R has in supp R , i t

follows that N* acts on supp R as an elementary abelian p-group with

a l l orbits of length p . Hence N*^ fixes supp R pointwise. How let

P* be any Sylow p-subgroup of G containing R . Since P* is abelian,

2
P* c N(R) and hence P* c_ N* . Hence al l P*-orbits of length p l ie in

fix R and i t follows that R is the kernel of the action of P* on the

2
union of i t s orbits of length p
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-1
How if R9 c P for some g in G , then R c P^ and as above, i?

^ " X 2

i s the kernel of the action of ™ on i t s orbi ts of length p ; thus

R i s the kernel of the action of P on i t s orbi ts of length p , that

i s , Er = R . Hence R is weakly closed in P .

Hence N(R) i s 2- t ransi t ive on fix R (see [75], Satz 3). As

N* >̂ P , N* acts nontrivial ly and hence t rans i t ive ly on fix R . Also as

N*P is a character is t ic subgroup of N* , i t i s normal in N(R) . Suppose

f i r s t that ff*" is t r i v i a l . Then N* i s a p-group containing P ; so

N* = P . As N* i s t r ans i t ive on fix R , and as P has an o rb i t , say
r , of length p 2 in fix R , i t follows that fix R = V and
fix P = fix Q = 0 (see Remark 1.1). Since P has orbi ts of length p

o

(that i s , the long orbi ts of R ) , c learly p does not divide n . Then

for a in fix i? , R i s a subgroup of index p of a Sylow p-subgroup

T of Ga , T i s conjugate to some # satisfying R c Q cz p , and hence
T has a l l long orb i t s of length p , a contradiction to [JO].

Thus #* is a nontr ivial normal subgroup of N(R) and so acts

t rans i t ive ly on fix R (and N*™ fixes supp R pointwise). By a resul t

of Bochert ([JZ], 52-5U), we have |supp R\ 2 %(n-l) . With th is

condition, i t follows from work of Kantor [6] (and since G £ A ) that G

sa t is f ies one of the following l i s t ; where a = \supp R\ :

List 1.3. (a) psL(m, q) 2 G 2 pri,(m, q) for m 2 3 , where

n = {qm-l)/(q-l) and e = [q""1-l)I'{q-\) .

(a ) G is a subgroup of GL(U, 2) isomorphic to 4 , n = 15 and

e = 23 - 1 = 7 .

(b) ASL(m, q) < G S kThim, q) for m > 2 , where n = q™ , and
m-l m-2

either e = <? , or a = q and £7 = 2 .
(b1) G i s a semi-direct product of the t ransla t ion group of the

U-dimensional affine geometry over a f ie ld of 2 elements, and a subgroup
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of GL(1», 2) isomorphic to A ; in the case n = 16 , a = h .

(c) G i s M where n is 22, 23 , or 2k , or £ i s aut [M 2) ,

and e = n - 16 .

Suppose that G 2 PSL(m, <?) (or G r^ A ) . Then

| fix i?| = w - e = q* , s o | f ix R\ - 1 = (<7-l)|supp R\ = 0 (mod p) .

Hence n = 1 (mod p) and by Remark 1.1, since G i s 2- t rans i t ive ,

| f ix P\ = | fix Q| = 1 for a l l R c Q a P . As P has orbi ts of length
p

p , then n - 1 i s not divis ible by p . If a, (3 € fix R then i? is a

subgroup of index p of a Sylow p-subgroup T of (7 „ ; T i s conjugate

to some 6 such that R <^ Q c P and hence a l l long orb i t s of T have

length p , contradicting [70].

Next suppose that G 2 ASL(m, q) . Then | supp R\ = a i s a power of
2

^ so p divides c? . As P-orbits have length at most p we must have

q = p , m = 2 . However a Sylow p-subgroup of ASL(2, p) i s nonabelian;

contradict ion. We deal with case (b ) similarly.

Finally suppose that G 2 M , and a = 8, 7, 6 as n i s 2U, 23, 22

respect ively. As p divides a we see easily that n i s congruent to

0 or 1 mod p . As above, we can show that a Sylow p-subgroup of a two
2

point s t ab i l i s e r has a l l o rb i t s of length p , and order at leas t p

contradicting [ /0 ] . This completes the proof.

Now l e t A be a long Q-orhxt and l e t R be the pointwise s tab i l i se r

of A in Q . Then \Q : R\ = p so R i s normal in Q . We shall

consider N{R) and the subgroup N* defined by

N* = <Q* => R | Q* ~QQ) .

Clearly N* 3 N(R) . Since each generator Q* has the same orbits as R

in supp R i t is easy to show that N* acts on supp R as an elementary

abelian p-group with a l l orbits of length p . Then clearly N*™ fixes

supp R pointwise.

LEMMA 1 .4. Q is a Sylow p-subgroup of N* . (Hence all generators

Q* of N* are conjugate in N* .)

Proof. If not, then a Sylow p-subgroup P of N* i s a Sylow
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p-subgroup of G . Then a l l P-orbits in supp R have length p , so al l

P-ort i ts of length p l i e in fix R . Since \P : R\ = p i t follows

that R is the kernel of the action of P on the union of i t s orbits of

2
length p , and hence that P is abelian. Therefore if P* is any

Sylow p-subgroup of G containing R , then P* c N(R) , and hence

P* c_N* . Thus R i s the kernel of the action of P* on the union of i t s

orbits of length p . I t follows that R is weakly closed in P (for

if R3 C P , then i? c P* = P3 ; so i? is the kernel of the action of

P* on i t s orbits of length p ; hence R° is the kernel of the action

of P on i t s orbits of length p , that i s , FP = R ) .

Thus il7(if) is 2-transitive on fix R ([75], Satz 3). First suppose

that the group N*" i s t r i v i a l . Then N* is a p-group containing P ,

so N* = P . Since N* 2 N{R) , then N* is transitive on fix R , and as

P has an orbit of length p in fix R , i t follows that |fix R\ = p ,

fix P is empty, and n is divisible by p . Since P has orbits of

length p (in supp if), n is not divisible by p . However this means

that, for a in fix R , R is a subgroup of index p in a Sylow

p-subgroup T of G ; then T <=_ N(R) , and as N(R) has a unique Sylow

p-subgroup, T c P . Thus T i s a subgroup of P of index p fixing a

2
point a of the P-orbit fix R of length p , contradiction.

Hence N*? is a nontrivial normal subgroup of N{R) , and hence is

transitive on fix R . Also N*? fixes supp R pointwise. Thus by [6],

G satisfies one of (a)-(c) of List 1.3. In case (a) or (a1) we find, as

in the proof of Lemma 1.2, that |fix P\ = |fix Q\ = 1 . As P has orbits

2
of length p , then n - 1 is not divisible by p , so for a, 6 in

fix R , R i s a subgroup of index p of a Sylow p-subgroup T of G „ .

As | r | > p i t follows from [JO] that 2* has an orbit of length p .

On the other hand, T is a p-group normalising R , so J1 c ff* , and

2
hence a l l T-orbits of length p l i e in fix i? . This is a contradiction
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as Tflx R c~ T/R has order p .

In cases (b) and (b 'K we find as in Lemma 1.2 that n = p and

ff 2: ASL(2, p) . Again we have a contradiction since the Sylow p-subgroups

of ASL(2, p) are nonabelian. Finally in case (c) we find that either n

or n - 1 i s divisible by p and this leads to a contradiction as in case

(a) above.

COROLLARY 1.5. Each long orbit of N* contains a long Q-orbit.

Proof. This is t r iv ia l ly true if fix Q is empty, so suppose that

fix Q contains a point a . We shall show that either the ff*-orbit

containing a contains a long (J-orbit or N* fixes a .

If a is fixed by a l l conjugates Q* of Q which contain 7? then

a is fixed by N* . Hence if a l ies in a long N*-orbit, there is some

Q* containing R such that a l ies in a long <5*-orbit. By Lemma 1.1+,

Q* = Q for some g in N* . Hence <xg l ies in a long Q-orbit and the

containing a contains this orbit.

LEMMA 1.6. A Sylow p-subgroup of N[R) is a Sylow p-subgroup of

G unless either

( I ) ASL(2, p) S G 5 AGL(2, p ) , n = p2 , or

(II) G = PTh(2, 8) , n = 9 , and p = 3

(and these groups satisfy the conditions of the theorem).

Proof. Suppose that a Sylow p-subgroup of N[R) has order less than

\P\ . Then Q <= N* i s a Sylow p-subgroup of N(R) . If P i s a Sylow

p-subgroup of G containing Q , then we deduce that P is nonabelian and

2
R i s the s tabi l i ser of a point in a P-orbit F of length p such that

P i s nonabelian. Then Q contains p dist inct subgroups each of which

i s conjugate to R by an element of P .

First suppose that | fix P\ S 1 . Then for a, 6 in fix R , l e t T

be a Sylow p-subgroup of ff . containing R . Wow | T | < \P\ , and we

suppose f i r s t that T + R . Then \T : R\ = p , so T c N(R) , and as

\T\ = \Q\ , T i s conjugate to Q in N(R) . This is impossible as

| fix T\ > | fix Q\ . Hence T = R is a Sylow p-subgroup of G R with a l l
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2
orbits of length p , and a l l long P-orbits have length p . I t follows

that

(I) \R\ = p (by [JO]),

(II) for any y in supp Q , Q is conjugate to R ,

(III) N(R) i s 2-transitive on fix R ([75], Satz 3).

If N* i s t r i v i a l then N* i s a p-group containing Q , so N* = Q ,

and as A?* is t rans i t ive on fix R (because N* 5 N(R) ) , | fix R\ = p .

Hence fix P is empty and so p divides n . Now |Q| = p and so Q

has p + 1 subgroups of order p . However, by ( I I ) , Q has nip

dist inct subgroups of order p which fix points of fi , I t follows that

n = p , and so by [77], either ASL(2, p) £ G 5 AGL(2, p) , or p = 3 and

G is PTL{2, 8) . Clearly these groups satisfy the hypotheses of the

theorem, and i t i s not difficult to see tha t , for them, Q i s a Sylow

p-subgroup of N(R) .

On the other hand, if N*" is nontrivial then i t is t ransi t ive on

fix R ; also N*P fixes supp R pointwise. So by V41, 13-5,

|fix R\ 2 %n . However we noted above that there are p dist inct

conjugates of R by elements of P which are contained in { , and the

fixed point sets of any pair of these overlap in precisely the set fix P ,

(and |fix P| S 1 ) . Hence n 5 p ( | f ix R\-l) + 1 2 p(%n-l) + 1 , and so

p = 2 and | f ix R\ = %(n+|fix P|) (since | fix i?| i s an integer). By

[6] , G is one of the groups of List 1.3, where again a = | supp R\ , and

i t i s easy to check that G must be AGL(m, 2) , and |fix P| = 0 .
2

However since P has no orbit of length greater than p , then m = 2

and so C D A , contradiction.

Thus we may assume that |fix P| > 2 . Then p > 3 . We claim that

a l l long tf*-orbits in fix R contain at least two points of fix Q and

have length prime to p . Let F be a long i!/*-orbit in fix R , and l e t

a, 3 be two points of supp Q in F (by Corollary 1.5)• Let P1 be a

Sylow p-subgroup of G R containing if . Then R i s a proper subgroup

of Q' = N(R) n P' , and i t follows that Q' i s a Sylow p-subgroup of

N(R) and hence is conjugate to Q . Thus Q' l i e s in N* and so
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3'^ = Q for some g in N* . Then a.9, $g l i e in fix Q and so

|r n fix S| - 2 . Since «' S ff(i?)a , i t follows that | r | is prime to

Thus by [74], 17.1 , N*^ is transit ive on each long N*-orbit in

fix R ; and so N*" i s nontrivial. Since N*" fixes supp R pointwise,

| supp N*P\ 5 | fix i?| = / + rp , where | f ix Q\ = f and R fixes r long

5-orbits. On the other hand, as Q acts nontrivially on each long

N*-orbit in fix R , i t follows from [S] that | supp N*P \ < 2rp . Finally

by Bochert ([7 2] , 52-5U), |supp N*P\ > kn (unless n = 25 , and the

minimal degree equals | supp N* \ - 6 . However each long tf* -orbit has

length at least p + 2 5 5 and has length prime to p , a contradiction).

Thus, if Q has q long orbits we have

f + rp > %(/+qp) , and 2rp > %{f+qp) .

Eliminating / we find that r > q/l • Wow Q contains p distinct

conjugates of R by elements of P and the fixed point sets of any two

overlap in precisely the set fix Q . Hence there are pr > pq/l long

S-orbits which are fixed by one of these groups. As Q has just q long

orbits i t follows that p is 3 or 5 •

Let M = N(Q) n N(R) and let I = \N(Q) : M\ ; I is the number of

conjugates of R in Q by elements of N(Q) . Since Q is a Sylow

p-subgroup of M , i t follows that I is divisible by p , and as

q 2; rl > ql/1 , then I 2 6 . Hence either I = p = 3 or 5 , or

I = 2p = 6 . If either f > I , or (/ , I) = 1 , then M is transitive on

fix Q (by [5], Hilfsatz 1, (though the result was known to Burnside) and

[?4], 17.1), and by our observations about the orbits of N* i t follows

that N(R) is transitive on fix R ; hence N*™ is %-transitive on

fix R , contradiction (see Lemma 1.2).

So suppose that M is transitive on fix Q . Then an orbit V of

N*P in fix R is a block of imprimitivity for N{R) , and i t is easy to

see that T = T n fix Q is a block of imprimitivity for M in fix Q .

We showed above that |V\ > 2 . Now for a in fix Q ,
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t r ans i t ive on the f - 1 points of fix Q - {a} , and f - 1 i s not

divisible by p . Hence as |tf(Q) : M \ = I is p or 2p , then

(/-I, I) S 2 and it follows from [74], 17.1, that either M is

transitive on fix Q - {a} , or M has two orbits in fix Q - {a} , each

of length %(/-l) . In either case M is primitive on fix Q and so

T = fix Q . Hence T = fix R and N*P is transitive on fix R . Thus by

[6], G is one of the groups in List 1.3, where again 0 = | supp i?| .

However in each of the cases we showed that n or n - 1 is divisible by

p , a contradiction since / 5: 2 .

Thus M is not transitive on fix Q and hence (/, I) ± 1 , so

I = 2p = 6 and / is even. Since p = 3 , we have / = 2 (mod 3) .

Then, since / 5 Z = 6 , we must have f = 2 . It follows that iV*P is

transitive on fix R , a contradiction as before.

Finally in this section we prove

LEMMA 1.7. If a conjugate Q* of Q normalises R then Q*

contains R .

Proof. Suppose that Q* c N(R) but Q* £ R . Then P* = Q*R is a

Sylow p-subgroup of G contained in N(R) . We claim that P* is

2 T
abelian. If not then P* has an orbit F of length p such that P*

r
i s nonabelian; P* has a unique set of blocks of length p , namely the
set of S*-orbits contained in V . Now as R 3 P* and \P* : R\ = p ,

clearly R does not fix any points of T , and so R has p orbi ts of

length p in F which are blocks of imprimitivity for P* . Hence

Q*R = P* leave the unique set of blocks fixed setwise, contradiction.

Hence P* i s abelian and so the Sylow p-subgroup P containing Q l i e s

in N(R) . Therefore P& = P* for some g in N(R) and hence

R c <f = Q* , contradiction.

COROLLARY 1.8. If there is a conjugate R' of R contained in P

such that P = QR' j then P is nonabelian.

Proof. If P = QR' and P is abelian, then Q c N(R') and so by

Lemma 1.7. Q ̂ > R' , contradiction.
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2 . C h a r a c t e r i s a t i o n o f P S L ( 3 , p )

Consider the following hypothesis:

A: For each, long Q-orbit A , the group R = Q. has a conjugate

Ft' contained in P such that P = QR' .

In this section we shall prove the following proposition.

PROPOSITION 2 . 1 . If Hypothesis A i s true and if fix P is nonempty,

then

n = 1 + p + p2 and PSL(3, p) ± G 5 PGL(3, p) .

Clearly these groups satisfy the conditions of the theorem. Suppose

that Hypothesis A is true. Then by Corollary 1.8, P is nonabelian. For

a fixed R = Q^ le t T = Q n R' , where R' is any group satisfying the

2
conditions of Hypothesis A. If F is any P-ort>it of length p , then

since P = QR' , R' permutes the Q-orbits in F transitively, and i t

follows that T fixes F pointwise. Since P is nonabelian, there is an

orbit r of P of length p such that \P \ > p , and as

\P : T\ = p , i t follows that T is the kernel of the action of P on
2

the union of i t s orbits of length p . Let T be a P-orbit of length
p r ^ r

p such that \P | = p . Then P ^ P/T i s nonabelian and so by [3 ] ,

1.3.U, i t s centre has order p . Let Z be the subgroup of P containing

T such that Z/T = Z(P/T) . Then Z S P and so Z has p orbi ts of

length p in F which are blocks of imprimitivity for P . Since P has

a unique set of blocks of length p in F , namely the <S-orbits in F ,

we conclude that Z c Q . Now let i? , ..., R be the p dis t inc t
p

subgroups of P of index p fixing points in F . Then Q n R. => T for
"V

2
1 5 t S p . Since S/r i s an elementary abelian group of order p , i t

follows that there are precisely p + 1 subgroups of Q of index p ,

containing T , and these are R , ..., R , Z .

LEMMA 2.2. J f Hypothesis A i s irwe t/zerc |P| = p 3 .

Proof. Suppose that Hypothesis A is true and that \P\ > p . Then
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T / 1 . Let A be a long <3-orbit in supp T , and le t R he a conjugate

of Q. contained in P such that P = QB .

2
Let E "be the union of P-orbits of length p , and le t

Z = supp Q - (supp T u Z ) . How as P = QB , clearly B permutes every

Q-orbit in Z nontrivially. Also, as above, Q n B fixes Z

pointwise, and since \Q n i?| = |T| , i t follows that T - Q nRczB . Hence

B fixes no point in supp T , and therefore fix R c_ fix Q u £ . Now

since |fix i?| = |fix Q.\ > | fix Q\ , i t follows that T. i s nonempty.

We claim that Z fixes £„ pointwise. Let A' be a long §-orbit

in £p (A' is an orbit of P ). Then T <= Q , , and since Q^, is

normalised by < P. ) 5 Q) = P , then Q. i does not fix any points in a

P-orbit r of length p such that P is nonabelian. (in future we

shall refer to such an orbit as a "nonabelian P-orbit".) By our remarks

above i t follows that Q,,=Z . Thus we conclude that

f ix Z 3 Z2 u fix Q .

Now if Z1 i s a conjugate of Z contained in P such that P = QZ'

then

(I) Z1 permutes a l l ^-orbits in Z. nontrivially, and

(II) Q n Z' fixes Z pointwise;

as above we conclude that T = Q rt Z' c Z' so that Z' fixes no points of

supp T . Hence fix Zr c fix { u L £ fix Z , and as | fix Z'\ = | fix z| ,

i t follows that fix Z = fix Z1 = fix Q u Z . Now Y = ZZ' i s a subgroup

of P such that fix J = fix Z * fix Q ; thus |P : j | = p and for any

point a in Z , Y = P . The group i? defined above fixes some

S-orbit in Z , and so B c y and fix 5 3 fix ^ = fix Z . We shall show

that B i s conjugate to Z' in P .

First note that neither B nor Z1 i s normal in P (for i f either

were normal, then i t s orbits in the non-abelian P-orbit T would be
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blocks of imprimitivity for P , whereas both R and Z permute

nontrivial ly the Q-orbits in Y and these are the unique blocks of length

p for P in F ). Now X has precisely p + 1 subgroups of index p

containing T , and three of them are Z, Z' , and R . Now as P

normalises Y, T , and Z , i t follows that P permutes t ransi t ively the

p subgroups of Y of index p containing T , and different from Z .

Hence i? is conjugate to Z' in P .

It follows that Z i s conjugate in G to Q. , for any A c supp T .

Now both Z and Q. are normal in P and so by a theorem of Burnside

( [2 ] , 15U-155), Z is conjugate to Q^ in N(P) . This is impossible,

since T i s normal in N{P) and T <= Z , while T £ 6. . Thus \P\ = p .

Now we shall prove Proposition 2 . 1 .

We have |Q| = p , and {# , . . . , i? , z} is the complete set of

subgroups of <2 of order p , and Z?. , . . . , R are a l l conjugate in P .

Let

#* =<8* D j . I Q* ~ Q> for l s i 5 p

and

tf* = <g* 3 Z I Q* ~n Q) •

2
Each R. fixes p points of each nonabelian P-orbit of length p and

fixes no other points of supp Q . Let |supp Q\ = qp , |fix Q\ = f , and

I fix R.\ = rp + f . Then | f ix Z| = / + (q-rp)p , and supp Z is the

union of the nonabelian P-orbits of length p . If R i s a conjugate of

R in P such that P = QR then i? must permute each Q-orbit in

supp Z nontrivially and hence fix Z 3 fix j? . Then since

I fix i?| > I fix §| i t follows that Z fixes points in supp Q . Hence, as

in the proof of Lemma 2.2, there is a conjugate Z' of Z in P such

that P = QZ' ; we find as in Lemma 2.2 that 7 = Z'Z has index p in

P , that fix Y = fix Z ' = fix Z , and that Y = Pg for any 6 in

supp P - supp Z . In particular th i s means that a l l P-orbits of length
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2
p l i e in supp Z

Further, since the group R defined above fixes a point of

supp Q - supp Z , it follows that R c Y , and we can show (by a proof

analogous to that in Lemma 2.2), that R is conjugate to Z1 . Thus it

follows that R. , ... , R , Z are all conjugate in G , and so

n = f + rp(p+l) .

I t is easy to show that Y is weakly closed in P with respect to G

(for if Y' c P i s conjugate to Y then Y' fixes a point 6 of

supp P ; and since \P : Y'\ = p , clearly 6 € fix Y so Y' = P& = Y ) .

Thus, by [75], Satz 3, N{Y) i s 2- t ransi t ive on fix Y . Define

M = N(Y) n il7(Z) ; and then since Y has p + 1 subgroups of order p ,

I = \N(Y) : M\ < p + 1 . By [5 ] , Hilfsatz 1, i f Z < / + rp , then M is

t rans i t ive on fix Y = fix Z .

So suppose that I < f + rp . Then #(Z) i s t rans i t ive on fix Z

and so iV* is %-transitive on fix Z . Firs t of a l l , i f N*P i s t r i v i a l

then by Lemma 1.k, ff* = 6 which is %-transitive on fix Z . Hence

/ = 0 , contradiction. Hence #* is nontrivial and so is %-transitive

on fix Z . Since Q acts nontrivially on each #*-orbit in fix Z , i t

follows from [8] that |supp N*P\ = | f ix Z| = rp + / < 2rp . By Bochert

( [?2] , 52-5U), I supp N*P\ > %n (unless n = 25 and the minimal degree is

equal to |fix Z| = 6 ; but then |supp Z| = 19 which i s impossible).

Hence 2rp > %(qp+/) , and rp + f > %{qp+f) , and eliminating / we find

that r > q/1 = r(p+l)/7 . Hence p 5 5 . We claim now that f S r .

Suppose on the other hand that f > r . Let A be a long S-orbit in

fix Z . Then M permutes the long Q-orbits in fix Z in some way, so i f

L i s the setwise s tab i l i se r of A in M then \M : L\ r . Hence

\N(X) : L\ 5 (p+l)r < rp + f , so by [5 ] , Hilfsatz 1, L i s t rans i t ive on

fix Z . However L fixes setwise the #*-orbit containing A . Hence N*

i s t rans i t ive on fix Z , and as / # 0 , # i s also t rans i t ive on

fix Z . Then, by [ J4 ] , 13.5, | f i x Z| = rp + / > % « = %( r p ( p + 1 ) + / ) > t h a t

i s / > rp(p- l ) . This i s impossible since f < rp (by [S]) . Hence

/S r .
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Now as R • i s conjugate to Z , we know tha t N*. i s %-transit ive

on fix R. for £ = 1 , 2 . Consider the set S = \ [g , g ~] \ g. € fl*P\ .
7s I X c. Is 7s I

If S = {l} then N*^ i s normal in (ft*^, ^o / = ^ » say. So /l/^ is

%-transitive (or t r i v i a l ) on each L-orbit. I t follows that N} fixes

pointwise each orbi t of L (and hence each orbit of NX ) which contains

a point of fix R - fix Z . This means that N*^ fixes fix Q point-

wise, a contradict ion. Hence -S contains a nontrivial element which, by

[ I ] , permutes at most 3 / points. Hence 3 / - %w (by [13], 52—5U); that

i s , rp(p+l) - 1 1 / 5 l l r . Hence p = 2 , and as G i s 2- t ransi t ive we

must have f = 1 . Thus G contains a non-identity element permuting at

most 3 points . By LI 41, 13-3, G -2 A , contradiction.

Thus we conclude that p+l>l>f+rp , and so r = f = 1 . By

[77] i t follows that PSL(3, p) - G £ PGL(3, p) and the proof i s complete.

3. Completion of the proof when fix P / 0

We shall assume now that fix P is nonempty and that Hypothesis A

is not true. Then for some 6 in supp Q , R = Q~ satisfies the

hypothesis :

B: If P' is any Sylow p-subgroiqp of G containing R then

R is a subgroup of Q' 3 the unique conjugate of Q lying

in P' .

We now proceed to obtain a contradiction. We shall consider N{R)

and N* = < Q* 3 R \ Q* ~ Q> .

LEMMA 3 . 1 . (a) Each long N*-orbit £ in fix R contains a long

Q-orbit and at Least d = min(2, | f ix P\) points of f ix Q . Further,

111 i s prime to p , and hence N*? is transitive on T, .

(b) If a € f ix Q and if f = | f ix Q\ 5 2 , then each long N*-orbit

contains a long Q-orbit and a point of fix Q .

Proof. Let I be a long /^-orbit in fix R and let A be a set of
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d = min(2, / ) points in £ n supp Q (by Corollary 1.5). Let P' be a

Sylow p-subgroup of G. containing R , and then by Hypothesis B,

R c_Q' , the unique conjugate of Q in P' . Then Q' c_ N* and so, by

Lemma l.U, Q'g = Q for some g in N* . Then A? c fix g n J , By

Lemma l.U, since Q c #* , E has length prime to p . Part (W can be

proved analogously.

It follows from Lemma 3.1 that N*" is t rans i t ive on each A?*-orbit

in fix if , and in particular that N*^ is nontr ivial . By Bochert ( [ ' 2 ] ,

52-5U), Isupp N* \ - kn (unless n = 25 and the minimal degree is equal

to Isupp N* I = 6 , by Lemma 3-1, then p - 5 9 and since p does not

divide n , then p is 2 or 3 . Since each long A?*-orbit has length

prime to p and length at least p + 1 , i t follows that p = 2 and hence

I fix P\ = 1 . By Lemma 3 .1 , N*^ i s t ransi t ive on fix i? , a

contradiction to [ M ] , 13.5). By [S] we have 2rp > | supp N*^\ 5 %(qp+f) ,

and also rp + / 2: | supp #*" | - %{qp+f) , where, as usual, | fix §| = / ,

I supp Q\ = qp , and |fix i?| = rp + / . Hence, eliminating / , we find

that r > q/7 . So there are at most six dis t inct conjugates of fl in

Q •

Now we show that N*" is not transitive on fix if . If i t is

transitive then, by [6] , G is one of the groups in List 1.3. In case

(a), G 2 PSL(m, s) for some m - 3 , and prime power s . We found that

f = 1 . Since |supp i?| = [sm~X-i)/(s-l) > %(n-l) (by [J2], 52-5U), i t

follows that s 5 I) , while if s = U then | supp R\ < hn which

contradicts [7 2], 52-5U (since n # 25 ). Hence s is 2 or 3 . Now if

p > s then fix if is a subspace (for if a, g € f i x i? , the line through

a and 6 contains s - 1 < p points distinct from a and 3 and so is

fixed pointwise by if ). Then | fix if| = [s - l ) / ( s - l ) for some t > 1 ,

which is impossible. Hence p < s and so p = 2 and s = 3 . However

for any m - 3 , the Sylow 2-subgroups of PSL(m, 3) have an orbit of

length greater than U , so none of these groups are satisfactory. In

case (b) and (b ) we found that / = 0 so the case does not arise either.
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Finally, in case ( c ) , we found t ha t , since p divides \G\ , p i s 2

or 3 . Then as | supp i? | = n - 16 is divis ible by p , n + 23 , and as

f # 0 , we must have p = 3 and n = 22 . However 3 does not divide

|Aut M | . Hence W*" i s not t rans i t ive on fix R . Then, by Lemma 3 .1 ,

i t follows tha t f = | f ix Q\ > 3 .

Now iV(Q) i s 2- t ransi t ive on fix Q (by Lemma 1.2 and [75], Satz

3 ) . If N(Q) has a subgroup of index x where either x < f or

(#> / ) = 1 , then that subgroup i s t rans i t ive on fix Q (by [5] , Hilfsatz

1, and V4~\, 17.1) .

Let M = N{Q) n N(R) and l e t I = \N{Q) : M\ , the number of dis t inc t

conjugates of R in Q by elements of N(Q) , I S 6 . Suppose f i r s t

tha t M i s t r ans i t i ve on fix Q . Then by Lemma 3 .1 , #(•??) i s t rans i t ive

on fix ft , and so /If* i s %-transitive on fix R . An N*^-orbit Z in

fix R i s then a block of imprimitivity for N(H) and i t i s easy to see

tha t r = Z n fix Q is a block of imprimitivity for M in fix Q . By

Lemma 3-1, i t follows that 2 5 |E| < f , so E i s a nontr ivial block.

Let a € I ; then Z i s a union of A^-orbits in fix Q , and by [?4] ,

1 7 . 1 , each long M -orbi t in fix Q has length a multiple of

( f - l ) / ( f - l , I) • Hence b = \l\ = 1 + a ( / - I ) / ( f - 1 , I) , for some integer

a , 1 5 a < (f-1, I) and b divides / . Checking for I S 6 we find

tha t the only p o s s i b i l i t i e s are the following:

List 3.2

I

f
b

fib = d

3

2

2

6

U

2

2

5

6

2

3

5

6

3

2

1*

9

3

3

5

16

k

6

25

5

5

If on the other hand M is not transitive on fix Q , then by our

remarks above it follows that 3 5 f £ I £ 6 , and that (/, I) # 1 .

Hence

(3.3) either 3 £ / = Z £ 6 , or Z = 6 and / is 3 or It .

We note that in al l cases f < rl ; this is trivially true if f < I ,
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while in the cases of List 3-2, N* has f/b o rb i t s and each contains a

long Q-orbit, and we check that / 5 I f/b 5 rl .

Now since I > 1 , l e t R' be a conjugate of R contained irj Q ,

R' t R , and l e t N'*, N'*P "be the analogues of N*, lf*P for R' .

Consider the set S = {[g, g' ] | g € N*P, g' € N'*P] . If S = {l} then

N*P is normal in L = < N*P, N'*P) and hence tf*P acts %-transitively

(or t r i v i a l l y ) on every L-orbit . Hence #*" fixes pointwise every orbit

of L (and hence every orbi t of N'* ) which contains a point of

fix R' - fix Q . Thus, by Lemma 3 .1 , N*P fixes II' = supp If'* n fix Q

pointwise.

In the cases of List 3.2, #*" fixes no points of fix Q whereas by

Lemma 3 .1 , | l l ' | 2 2 . So we have cases (3.3) to consider. If N'* has

at least two orbi ts in fix R' then | n ' | 5 It , and similarly (since

R ~ R' ) , II = supp N* n fix Q contains at l eas t four points and i s fixed

by N'*P . Hence II n II' = 0 and so / > | l l u l l ' | > 8 > j ,

contradiction. So If'*" has just one long orbit which contains at most

|fix Q - II| < f - 2 points of fix Q , and so, by 1141, 13.5,

rp + / - 2 > |supp N'*P\ > %(<5P+/) > hirlp+f) ; that i s ,

1 ^ %/ - 2 > %rp(Z-2) > %p . However, since / > 3 , we have p > 3 ,

contradict ion.

Hence S contains a non-identity element which, by [7 ] , permutes at

most 3 / points . By [141, 15 .1 , 3 / * | n ( l - a ) , where a = 2//n • If

p > 11 , then 9 / > (l-a)(<7p+f) , so ( 8 - a ) / > (l-a)qp > l l ( l - a ) rZ , and

since / 5 rl we have a 5 3/10 ; that i s n < k5 • However since

p divides \G\ , t h i s means that there i s a p-element of degree at most

2p with many fixed points , a contradiction by [ M ] , 13.10.

Hence p i s 3, 5 , or 7 (since / > 2 , then p i* 2 ); f S rl ,

and by [7 3 , 52-5^> 3 / - %w (unless n = 25 and the minimal degree i s

equal to 3f = 6 , which i s impossible since f - 3 ); that is qp 5 1 1 / .

Suppose f i r s t that Af i s t r ans i t ive on f ix Q . Then N*P has d = f/b

orbi ts each containing say r' long S-orbi ts , where r = r'd . Hence
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1 1 / > qp > r'dlp = r'flp/b . Then from List 3.2, b/l 2 5/6 , so

r'p 5 9 . If r 1 = 1 then ff* has d orbits of length p + b 2 p + 2

with a p-element acting nontrivially on each. Clearly this constituent

contains an insoluble factor with order divisible by p , and we deduce

that N* contains a p-element of degree dp . If p = 7 then d - 5 ;

if p = 5 then / * 25 so d 5 U . Hence i t follows from [74], 13.10,

that p = 3 • Also if r' > I , then p = 3 • However since / > 2 ,

neither / nor / - 1 is divisible by 3 , and so none of the values of

/ in List 3.2 is suitable.

We conclude that AT1 is intransitive and that the values of /

and I satisfy (3.3) • Then 1 1 / 5 qp > rip 5 rfp ; so rp £ 11 .

If N*" has only one long orbit , i t has length at most rp + / - 1 ,

which is less than kn (since 1 5 / ), which contradicts [74], 13.5-

Hence N*" has at least two long orbits and since rp £ 11 and by Lemma

3.1, it follows that / 2 h , r 2 2 , and p is 3 or 5 . If p = 5

then r = 2 , / = h (since / ( / - I ) is prime to p ), and ff*P has two

orbits of length 7 . Hence G contains a 7-element of degree \k , a

contradiction to [74], 13.10. If p = 3 then / = I = 5 . and r is 2

or 3 . By Lemma 3.1, N has exactly two long orbits, and since neither

orbit length is divisible by 3 , each orbit contains exactly two points of

fix Q . Hence at least one orbit has length p + 2 = 5 , and so G

contains a 5-element of degree at most 10 , a contradiction to [74],

13.10. This completes the proof that there are no groups satisfying

Hypothesis B, with fix P nonempty.

4 . The c a s e f i x P = 0

This section will complete the proof of the theorem: we shall prove

PROPOSITION 4 . 1 . If P fixes no points then G satisfies one of

the following

( I ) ASL(2, p) 5 G £ AGL(2, p) , n = p 2 ;

( I I ) G = PrL(2, 8) , n = 9 , and p = 3 ;

( I I I ) G = Mx2 , n = 12 , and p = 3 ;
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(IV) G = PGL(2, 5 ) , n = 6 , and p = 2 .

By Remark 1 . 1 , f ix <3 i s empty. As in t h e previous s ec t i o n s we s h a l l

consider subgroups of Q , R = Q , for a i n 2 , and the subgroups N*

and N*P of N(R) . F i r s t we show:

LEMMA 4 . 2 . If p 2 divides n then G satisfies ( I ) or ( I I ) of

Proposition !+.lj and those groups satisfy the conditions of the theorem.

o
Proof. Suppose t h a t p d iv ides n . Then R = Q i s a Sylow

p-subgroup of G . Hence, by [ ? 5 ] , Satz 3 , N(R) i s 2 - t r a n s i t i v e on

f ix R , and hence N* i s t r a n s i t i v e on f ix i? . Now, by Lemma 1.6, t h e

lemma i s t r u e un les s a Sylow p-subgroup P' of N(R) i s a Sylow

p-subgroup of G . However t h i s means t h a t , as R 2 P' , f ix if i s a

union of P ' - o r b i t s , and so | f i x R\ i s d i v i s i b l e by p . Hence

\N* 1 I i s d i v i s i b l e by p , a c o n t r a d i c t i o n t o Lemma l .U . Thus the

lemma i s proved.

Hereafter we s h a l l assume t h a t n i s d i v i s i b l e by p but not by

p , and t h a t a Sylow p-subgroup of N(R) has order \P\. Let S be a

Sylow p-subgroup of G con ta in ing R . Then \s\ = \Q\ .

LEMMA 4 . 3 . Either

( I ) |P | = p 3
) ( ) i .

(II) \P\ > p and i? is the only subgroup of S of index p

with all long orbits of length p .

Hence R is weakly closed in S with respect to G .

Proof. Assume that \P\ > p , that is \R\ > p , and assume that

R and R- are distinct subgroups of S of order |i?| with a l l long

orbits of length p . Since \R.\ > p , the group T = R n R i s non-

t r iv ia l and is normalised by (R , R> = S . If T is an 5-orbit of

2
length p , then R permutes the R-orbits in V , and i t follows that
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T fixes F pointwise. Thus S acts regularly on each of i ts orbits of
2

length p , and in particular S is abelian. Also T is the kernel of
2

the action of S on the union of its orbits of length p . Define

X = (S* => T I 5* ~ 5> .
IT

Then X 2 N(T) . We claim that a l l these generators S* of X are

conjugate in X to S . Let a € fix S , B € fix S* , and l e t S' be a

Sylow p-subgroup of G R containing T . Then as S*, S' are both Sylow

p-subgroups of Jg , S*& = S' for some g in Z, , and as S', S are

both Sylow p-subgroups of X , S*g = S' = S for some h in XQ .

Now l e t S* be any conjugate of S containing T . Then S* = Sg

for some g in X . As g fixes fix T setwise i t follows that a l l

S*-orbits of length p l i e in fix T , and hence T i s the kernel of the
2

action of S* on the union of i t s orbi ts of length p . From th is i t i s

easy to show that T i s weakly closed in 5 with respect to G , and

hence N(T) i s 2- t rans i t ive on fix T by [ /5] , Satz 3. Further, since

a l l S*-orbits in supp T have length p , we deduce that X acts on

supp T as an elementary abelian p-group with a l l orbi ts of length p ,

and hence that Xr fixes supp T pointwise. Now i f IF i s nontrivial

then }P i s t r ans i t i ve on fix T , and as | supp T\ > %(n-l) (by [7 2],

52-5U), i t follows from [6] that G i s one of the groups in List 1.3,

where a = \ supp T\ . Since p but not p divides n , we can show (as

in the proof of Lemma 1.2) that cases ( a ) , (b) , and (b1) are not possible.

In case ( c ) , since p divides \G\ , p = 2 ; however a Sylow

2-subgroup of AL. has orb i t s of length 8 (see [4 ] , 60) so none of these

groups i s su i tab le . Thus A*= 1 , and so X i s a p-group containing 5

which i s t r ans i t i ve on fix T . As fix S ± 0 , X must be a Sylow
2

p-subgroup of G , but then X has orbi ts of length both p and p in

fix T , contradict ion. Thus the lemma is proved.

LEMMA 4.4. If R = Q is weakly closed in a Sylow p-subgroup S
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of G with respect to G (for some a in ft ) , then Q 5 N(R) and

fix R is an orbit of Q ; that is, |fix R\ = p . Also if p > 5 , then

G is not 3-transitive.

Proof. Suppose that R i s weakly closed in S . Then N(R) i s

2- t ransi t ive on fix R by [75], Satz 3, and so N* i s t rans i t ive on

fix R . Suppose f i r s t that N** i s nontr ivia l ; then i t is t rans i t ive and
2

by [ 6 ] , G i s one of the groups of List 1.3. Since p but not p

divides n , we show as before that cases ( a ) , ( a 1 ) , (b) , (b1) are not

possible; in case (c) since p divides \G\ , p i s 2 or 3 , and as

in Lemma 4 .3 , p i s not 2 . Hence p = 3 and so n = 2h ; however

|supp R\ = 8 , contradiction. Hence we conclude that N*" = 1 and

therefore N* i s a p-group containing Q which is t rans i t ive on fix R .

By Lemma 1.4 then N* = Q and fix R i s an orbit of Q . Finally, since

N(R) is 2-transitive with the normal p-subgroup Q i t follows

that N(R)t:LxR SAGL(1, p) , which is not 3-transitive if p 2 5 ; i t

follows from [75], Satz 3, that G is not 3-transitive if p > 5 . This

completes the proof.

LEMMA 4 . 5 . If \p\ = p 3 then either

( I ) G = M , n = 12 , and p = 3 , or

(II) G = PGL(2, 5) , n = 6 , and p = 2 ,

and these groicps satisfy the conditions of the theorem.

Proof. Consider R = Q , for some a in ft . By Lemmas 1.6 and 1-7

we may assume that R is normal in P . We claim that P has an orbit

of length p in fix R (for if S' is a Sylow p-subgroup of N(R) ,

and if P1 is a Sylow p-subgroup of N(R) containing S' , then

S' = P' , so the P'-orbit containing a has length p , and P' is

conjugate to P in #(i?) ) . Thus we may assume that the P-orbit

containing a has length p . Let S - P^ . Suppose that R is not

weakly closed in 5 . Then there is a conjugate i?1 of R , distinct from

R , contained in S , and as Q n S = R , and R' £ Q , then P = QR' .

Hence, by Corollary 1.8, P is nonabelian. Then we can show (as in §2)
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tha t the subgroups of Q of order p are R , — , R (each of which

2
fixes p points in each nonabelian P-orbit of length p , and no other

points of £2 ) , and Z(P) (which fixes the remaining points of fi ). The

only group normal in P is Z(P) , so R = Z(P) , and supp R is the

2
union of the nonabelian P-orbits of length p . Now, by Lemmas 1.6 and

1.7> a Sylow p-subgroup P. of N(RA has order \P\ and R. l ies in

i t s subgroup conjugate to Q . Since R. 3 P. , i t follows that

i? = Z(P.) . Hence i? is conjugate to R. = Z(P.) . Thus if

| fix i?| = rp then n = rp(p+l) .

Again since P = QR' , R' permutes every S-orbit in supp R , and

since | supp i?| = | supp R' | and S = RR' , i t follows that

supp R = supp R' = supp S , and every long S-orbit has length p . Now

N(S) is 2-transitive on fix S by [7 5], Satz 3.

Define X = <P* 3 5 | P* ~ G P> .

2 J
Then every ^-orbit F in supp S has length p and A has a

r
transitive normal p-subgroup S . It is easy to show that either

r r
X S AGL(2, p) or X £ AGL(l, p) wr AGL(l, p) , and hence the only

possible nonabelian simple factor of X ^^ with order divisible by p

is PSL(2, p) . On the other hand X is a nontrivial normal subgroup

of N{S) 1 X (which is 2-transitive). If we suppose that |fix S\ > p ,

then fix S is not a prime power and hence, by [74], 11.3, #(•?) does

not have a regular normal subgroup. It follows (from [Z], p. 202) that

X is a nonabelian simple group with order divisible by p . If

X ^ PSL(2, p) then the kernel of X acting on supp S is transitiveo n fix S , and hence rp = |fix R\ = | f ix S\ > %w = %2>p(p+l) (by [74],

•f* 1 V S"

13-5), a contradiction. If X ^ PSL(2, p) , then

£ Aut(PSL(2, p)) i s 2-transi t ive of degree | f ix 5| 2 2p , which

i s impossible. Hence | f ix S\ = | f ix R\ = p .

If on the other hand R is weakly closed in S , then by Lemma U.h,
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I fix i?| ? p . Hence in any case, if n = qp then Q has q distinct

subgroups of order p fixing points of 0, . Therefore q 5 p+1 , and

2 2
since P has orbits of length both p and p , we have n = p + p

. 2
Thus 5 acts regularly on i t s unique long orbit which has length p , and

i t follows from [7] that G is (p+1)-transitive. Hence, by [76, Satz 3 ] ,

N(S) en S . However
P

AGL(1, p) wr AGL(1, p) .

Hence if p - 1 then N(S) p p would contain a p-element of degree

p , contradicting [74], 13.9- If P = 5 , since G is 6- transi t ive, then

G contains a 13-element of degree 26 , a contradiction to [75], 13.10.

If p i s 2 or 3 then we obtain the groups PGL(2, 5) and M of

degree 6 and 12 respectively by [7 3] , and i t is easy to check that they

satisfy the conditions of the theorem.

Now we shall assume that \p\ £ p . Then, by Lemmas U.3 and k.k, a l l

the subgroups {Q \ a € Q] are conjugate in G and each fixes exactly

p points. Let R = Q , R' = Q~ , for some points a, (3 in Q such

that R * R' . Then T = R n R' is nontrivial , \P : T\ = p 3 . Since

each | fix i?| = p , clearly P has no orbits of length p on which i t

2
acts regularly. So in each P-orbit T of length p , P has a unique

set of blocks of length p , namely the S-orbits in T . Thus if 5 i s

the s tabi l iser of a P-orbit of length p , i t follows from P = QS , and

Q n 5 t 1 that 5 i s t ransi t ive on V . Suppose without loss of

generality that 5 = P => R , Q n S = R .

LEMMA 4.6. There is a conjugate T' of T , distinct from T ,

contained in S such that S = RT' .

Proof. Suppose th i s is not t rue . Then if S' i s a Sylow p-subgroup

of G for some a in fix T , S' 3 T , then T l i e s in the unique

subgroup R' of S' conjugate to R (see Lemma h.3). Consider N(T)

and define

X = <Q* 3 T I Q* ~ Q) .
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Then X 2 N(T) and xSUVvT i s elementary abelian with a l l orbits of

f ixSlength p . We shall show that X is t ransi t ive . Let 6, y be

arbitrary points of fix T , and l e t S' be a Sylow p-subgroup of G-

containing T . Then T <=_R' , the subgroup of S' conjugate to R . If

P' i s a Sylow p-subgroup of G containing S' , then f c j ' c j ' c ? 1 ,

where Q' ~ Q , and 9' c j . By Lemma U.U, fix 5r is an orbit of £' ,

and i t follows that y, 6 l i e in the same J-orbit . Hence X is

t rans i t ive on fix T .

fi-xTNext we show that X is primitive. Assume to the contrary that

B i s a nontrivial block of imprimitivity for X in fix T . Suppose that

B contains a point 6 of a long §-orbit A . Then B n A is a block

for Q in A and so has length 1 or p . If B n A = {6} then Q^

fixes B setwise, so B is a union of Qg-orbits. Since fix Q* = A , B

contains a (J-orbit A' . Then Q. r fixes S setwise, but is transit ive

on A , a contradiction. Hence B contains A and i t follows that B is

a union of Q-orbits. By the same argument, B is a union of $*-orbits

for any conjugate Q* of Q in X . Choose & € B , y £ fix T - B and,

as above, choose Q* >̂ T with 6 and Y in the same Q*-orbit. This is

a contradiction. Hence X X is primitive. Thus as |fix T\ > p , X

i s not a p-group and so XF is a nontrivial normal subgroup of X .

Hence F is t ransi t ive on fix T and fixes supp T pointwise. As

|supp T\ > %(n-l) by 1121, i t follows, from [6] , that G is one of the

groups of List 1.3, a - \ supp i\ . We see, as in Lemma h.k, that none of

these groups i s suitable. Thus the lemma is proved.

LEMMA 4 .7 . If a conjugate S* of S normalises T then T lies in

the subgroup R* of S* conjugate to R .

Proof. Suppose T 3 S* but T £ R* . Then 5* = TR* . We shall

show that S* i s abelian. If not then there is a nonabelian S*-orbit T

2

of length p . S* has a unique set of blocks of length p in T ,

namely the f?*-orbits in T . Since T < 5* , the T-orbits in T are

(possibly t r i v i a l ) blocks of imprimitivity for S* , and hence TR* = S*

fixes the i?*-orbits in P setwise, a contradiction. Thus S* and hence
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5 i s abelian; so S c N(T) . Let a £ fix S , 6 € fix S* and l e t 5 '

be a Sylow p-subgroup of ^(T^ag • Then 5 is conjugate to 5 r in

N(T) and S' i s conjugate to 5* in N(T)0 , and so $ = S* for somea p

g in N(T) . But then T c_fP = R* , a. contradiction.

COROLLARY 4.8. With the notation of Lemma k.6> S is nonabelian and

U = T' n R is the kernel of S acting on the union of its orbits of

length p . Hence U = T" n j where T" is conjugate to any i?g ,

3 € supp if , in S such that S = RT" .

Proof. Since S = RT' i t follows, from Lemma it.7, that T' i s not

normal in S and hence S i s nonabelian. Let F be an 5-orbit of

length p . Then T' permutes the .ff-orbits in F and so U = T' n R

fixes F pointwise. As 5 is nonabelian we could choose F such that

\P | ^ p 3 , and the resul t follows since \s : u\ = p3 .

2 r
Now l e t F be a nonabelian 5-orbit of length p . Then 5 c* S/U .

Let 2". , . . . , T be the p dis t inct subgroups of S containing U ,

\S : T.\ = p , which fix points of F , and l e t Z be the subgroup of

o
of index p containing U such that Z/U = Z(S/U) . Clearly

T, ..., T fix setwise the unique set of blocks of length p of S in

T , and so are subgroups of R . Also since Z - S , the Z-orbits in F

are blocks for S and so Z <=_R . Then T , ..., T , Z are a l l the

subgroups of R of index p containing U .

Since the T. are not normal in S , each fixes exactly p points of

2
every nonabelian S-orbit of length p and no other points of

supp 5 = supp R . Let £ be the union of the nonabelian S-orbits of

length p2 . If £' = fix £/ - (£ u fix S) contains a point 6 then
£/ c R c f? a n d hence i?B = Z , and £' = fix Z - fix 5 .

P p
«

LEMMA 4.9. Z1 = fix Z - fix R = supp S - {I u supp u) is nonempty.

h
Proof. Suppose first that \P\ = p ; that is, U = 1 . If E' is
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2
empty then supp S = £ and each long S-orbit has length p . Now, by

Lemma U.6, S = RT' , for some T' ~ 2" , and hence 21' permutes every

point of £ = supp i? , a contradiction as

|supp 2" | = |supp Tx | < |supp R| .

Now suppose that \P\ 5 p , and l e t a € supp U . Let 2" be a

conjugate of R in 5 such that 5 = RT' . Then, as before,

supp 2" r> £ . Also J n J 1 ' = i / c T 1 so supp 21' r> supp £/ , and hence

fix r ' c E 1 u fix R . Since | fix T ' | > | f ix R\ i t follows that I' + 0 .

Thus Z = Ro for 8 in Z1 , and, by Lemma k.6, there is a conjugate
P

Z1 of Z in S such that S = RZ' . As in the proof of Lemma k.9 we see

tha t fix Z' c I ' u fix R = fix Z , and hence fix Z' = fix Z . Then

1 = ZZ ' i s the s t ab i l i se r in S of any point of £' , and as Z'

permutes nontr iv ia l ly a l l the i?-orbits in £ , Y i s t r ans i t ive on each

5-orbit in £ . Now i t follows, from Corollary U.8, that £/ ^ N(S) , and

then also Z 2 »(S) (for i f j ( N(S) then Zg => U , and

Z^/i/ = Z(S/U) = Z/U , so Z? = Z ) .

Let a € supp S . We claim that R is conjugate to Z . By Lemma

k.6 and Corollary U.8 there i s a conjugate 21' of R such that 5 = RT'

and ff=f n T ' c r 1 . Then since | f ix 2" | > | f ix i?| , 2" must fix a

point of £' and so T' c Y . Now T has exactly p + 1 subgroups of

index p containing £/ , and Z, Z ' , 2" are three of these. If Z' 2 5

then, by [ 2 ] , 15U-155, z i s conjugate to Z1 in N{S) n G , a

contradict ion, since Z 2 iV(5) . Hence Z1 is not normal in S . Now

since Y, Z, U are a l l normal in S i t follows that S permutes

t r ans i t i ve ly the p subgroups of index p in Y which contain U and

are different from Z . Hence 21' ~ 5 Z' , and so R^~QZ .

Now i f | ? | - p l e t a € supp tf . Then if i s normal in

<5 , R) = S , and so, by [ 2 ] , 15U-155, if i s conjugate to Z in W(S) ,

a contradiction since Z 3 /V(5) . Hence \P\ = p , and {21 , . . . , 21 , Z}

i s the complete set of subgroups of R of order p . Also Y i s the
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stabiliser in S of al l S-orbits of length p , and so Y is weakly

fixY
closed in S . Hence, by [75], Satz 3, N{Y) is 2-transitive. If

P is any Sylow p-subgroup of G containing S then Y is normal in P

(for if a € fix Y - fix S then Y 2 <. P , S) = P )• All p-orbits in

fix Y = E' u fix R have length p, and \p | = p (since 5 is transitive

on a l l P-orbits of length p and since \S : Y\ = p ) . Thus, by [9], either

f i YY

(I) iV(7) ^ A 1 1 ^ ^ y) ( t h e alternating group),

and, since | P f l x J | = p2 , |fix Y\ = 2p ; or

(II) p = 2 , |fix 7| = 6 , and ff(J) ^ PSL(2, 5) ; or

(III) p = 3 , |fix Y\ = 12 , and ^

Now define X = < P* \ P* <^N{Y), P* ~ P> .

Then X 3 tf(Y) and every J-orbit V in supp Y is a Y-orbit; X

2 r
is transitive of degree p with a transitive normal p-subgroup Y . It

follows that the only possible nonabelian simple factor of X with

fixY
order divisible by p is PSL(2, p) . However X contains an

insoluble factor given by (I)-(III) above and hence the kernel of X on

supp Y is nontrivial and therefore is transitive on fix Y , a

contradiction to [74], 13.5.

This completes the proof of the theorem.
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