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AMALGAMATED SUMS OF GROUPS

by J. M. CORSON

(Received 15th December 1994)

Groups called amalgamated sums that arise as inductive limits of systems of groups and injective
homomorphisms are studied. The problem is to find conditions under which the groups in the system do not
collapse in the limit. Such a condition is given by J. Tits when certain subsystems are associated to buildings.
This condition can be phrased to apply to certain systems of abstract groups and injective homomorphisms. It
is shown to imply that no collapse occurs in the limit in a strong sense; namely the natural homomorphism of
the amalgamated sum of any subsystem into the amalgamated sum of the full system is injective. This answers
a question of S. J. Pride.

1991 Mathematics Subject Classification: Primary 20F05, 20F06; Secondary 20E99.

1. Introduction

We consider amalgams of the following form; our terminology and notation is
essentially that of J. Tits [11]. Let / be a set. Assume given (1) for any subset J<=I of
cardinality | J | ^ 2, a group Pj, (2) for each J <= J' a I with | J' | g 2, an injective
homomorphism §jr: PJ-*PJ. such that 4>JJ = '\A and 4>jj" = <t>j-j"<Pjr f°r JczJ'^J". We
often write P9 = B,P{i) = Pi,(l>m = <t>i, and Plitfl = PiJ=PJi for ijel. In addition, we shall
require that (3) for each i,j e /, PtJ is generated by the images of Pt and P}.

This note concerns the 'crucial problem' of finding conditions under which the
inductive limit G, also called the amalgamated sum, of such an amalgam P does not
collapse. It is perhaps worth noting that G can be viewed as the free product of the Pj

^2) with added relations 4>JJ{X) = X for all choices of J,J', and x (such that(for \J
JczJ', J'\ <L2, and xePj).

For distinct ijel, observe that the injective homomorphisms P^Py and Pj-*PtJ

determine a homomorphism P^gPj^Pij. Let 2m0 be the length of a shortest nontrivial
element in its kernel (in the usual length function on the amalgamated free product), or
put mi}= oo if the kernel is trivial. When such a nontrivial word exists, it has even length
so m{j is a positive integer or oo.

Three distinct elements i,j,kel shall be called a spherical triple with respect to P if

(where l/oo is understood to mean 0). In [8, p. 210], S. J. Pride remarks that it seems
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plausible that if no spherical triples with respect to P exist, then all the natural
homomorphisms of the given groups P^ into the amalgamated sum G are injective. Our
aim is to prove this result. In fact, we prove more, namely the theorem below.

For Kczl, let GK be the amalgamated sum of the system of groups {Py. JcK and
| j | ^ 2 } relative to the set of homomorphisms {(f>jy. JcJ'czK and | J ' | ^ 2 } . In
particular G, = G.

Theorem. Suppose I contains no spherical triples with respect to P. Then for each
subset Kczl, the natural homomorphism GK-*G is injective.

Remarks. 1. In the case where | / | =3, such an amalgam P has been termed a
triangle of groups. The theorem for triangles of groups has been shown by Gersten and
Stallings; see [10]. For generalizations in another direction, to complexes of groups, see
also [2, 3, 5, 9].

2. Some special cases of the theorem are established by Pride; see [7, Theorem 4] and
[8, Theorem 3]. Edjvet [4] extends Pride's results to more general types of amalgams
than those considered here.

3. In the case that the chamber system associated to each subamalgam on a subset
Jczl with | J | = 2 is a building, the theorem follows from an amazing result of J. Tits
[11, Theorem 1]. In this case much more is true, namely the chamber system associated
to the full amalgam is a building. Furthermore, Tits does not assume that no spherical
triples exist, he only requires that the chamber system associated to a spherical triple be
a building.

4. The theorem remains true without the requirement (3) that each PtJ be generated
by the images of P, and Pj, however, the arguments become more complicated.

The methods we use are geometric, employing the notion of a picture; recall that
pictures are dual to van Kampen diagrams [6, Chapter V]. The alternative statement of
the theorem below is more suitable for this technique of proof. We first introduce some
notation: For each subset Kczl, let FK denote the free product of the family {Pk}keK

with the subgroup B amalgamated via the monomorphisms (f>k: B^Pk. The elements of
FK are represented (non-uniquely) by words ^ . . .a , , whose letters a, belong to uk e KPt

(disjoint union).
Condition (3) implies that for K<=I, the group GK is generated by the images of the

groups Pk, keK. Thus, the homomorphism FK-*GK determined by the natural
homomorphisms Pk-*GK is surjective. In particular, for distinct ijel, the homomor-
phism Pi*BPj->Pij is surjective; let Rij = RJi be the set of words representing elements of
its kernel.

Put RK = vRij where the union is over the distinct pairs iJeK. Let NK be the normal
subgroup of FK generated by RK. Then NK is the kernel of the natural homomorphism
FK-*GK; whence FK/NK^GK. This can be seen by observing that the group FiJNK and
natural homomorphisms Pj-+FfJNK for JczK and | J | ^ 2 possess the universal
mapping property defining the amalgamated sum of the amalgam restricted to K (see
[11])-

Set Ff = F, R, = R and N, = N; thus G^F/N where N is the normal subgroup
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generated by R. Now the theorem is precisely the Freiheitssatz: The inclusion induced
homomorphism FK/NK-*F/N is injectivefor each subset Kd.

2. Preliminaries

Disc pictures. A picture F consists of a finite disjoint union of (small) discs v{,...,vn in
the interior of the standard closed disc D2, and a compact 1-manifold £ properly
embedded in X = Z)2\Int(uu;); the following terms shall be employed:

vertices: the embedded discs vl,...,vn

arcs: the components of £,
corners: the components of 3S\^ (excluding those that are circles)
regions: the components of D 2 \F.

A region A is called interior if it does not meet 3D2; otherwise A is called a boundary
region. A picture is termed spherical if it has at least one vertex and no arcs meeting
3D2. Observe that a spherical picture has exactly one boundary region. (See [1] for a
survey of the theory of pictures.)

The degree or valence of a vertex v of a picture F, denoted by d (v), is the number of
arcs incident with v, counted with multiplicity so that an arc with two endpoints on v
contributes 2 to d(v); equivalently, d(v) is the number of corners in the boundary of v.
The degree of a region A of F, denoted by d(A), is the number of arcs in the boundary
of A, counted with multiplicity so that an arc with A on both sides contributes 2 to
d(A); equivalently, d(A) is the number of corners in the boundary of A.

A corner weighting function on a picture F is a function 6 assigning a real number
(called an angle) to each corner of F. Given a vertex v of F, let 9(v) denote the sum of
the weights on the corners of v. Similarly, for each region A, let 0(A) denote the sum of
weights on the corners in 5A.

We record the following immediate consequence of the curvature formula for
spherical pictures; see for example [1, p. 159].

Lemma 2.1. Suppose F is a connected spherical picture and let 9 be a corner weighting
function satisfying:
(i) 8(v)7z2n for each vertex v;
(H) 6(A) ^ [d (A) — 2]7t for each interior region A.
Then the unique boundary region A,,, is such that 0(Aoo)^[d(Ao

Coloured pictures. Now let / be a fixed set whose elements shall be referred to as
colours, and let {my}, JeI be a fixed family of elements of Nu{oo} such that mij = mji and
for i# ; , ml 7^2.

We make use of the following terminology: a triple of distinct colours i,j, ke I shall be
called a spherical triple if

1 1 1 ,
— + — + — > 1
mij mjk mki
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(where l/oo is understood to mean 0).
By a colouring of a picture F by / we mean an /-valued function on the set of arcs of

F; a picture together with a colouring function into / shall be called an I-coloured
picture.

Lemma 2.2. Suppose I contains no spherical triples and let F be an I-coloured picture
satisfying:
(1) No arc is a circle, nor has both endpoints on the same vertex enclosing a region of
degree one.
(2) Associated to each vertex v are two distinct colours ijel {with m^ oo) such that each
arc incident with v is coloured either i or j and there are at least 2my corners of v joining
one arc of each colour.
(3) No interior region has more than one corner in its boundary joining arcs of the same
two distinct colours.
Conclusion: If some arc ofT is coloured i0, then some arc meeting dD2 is coloured i0.

Proof. Suppose some arc of F is coloured i0, but no arc meeting dD2 is coloured i0.
Let F' be a connected component of the i0-skeleton of F (subpicture consisting of the
arcs coloured i0 and the vertices incident with such an arc). By assumption, F' is a
spherical picture; let A ,̂ be its unique boundary region. Now let F o be a connected
component of the picture obtained from F by deleting the vertices and interiors of arcs
that lie in A^. Then Fo is a connected spherical picture with boundary region A ,̂, and
all the arcs in dAx are coloured i0.

Define a corner weighting function 9 on Fo as follows: let a be a corner in the
boundary of an interior region of Fo. If a joins one arc coloured i and one arc coloured

j , we assign the angle 9(<x) = Tt/mij if i^j and 0(<x) = O if i=j. The remaining
corners—those contained in dAx—are given the angle n. With these angles, we shall
observe that the hypotheses (i) and (ii) of Lemma 2.1 hold for Fo.

For vertices not in dA^, condition (i) follows immediately from (2) and the definition
of 9. Suppose v is vertex in dAx. Then v meets arcs coloured i0, and by (2), v meets arcs
of precisely two colours; say j is the other colour. Since all i0-coloured arcs of F that
meet v also belong to Fo (as Fo contains a component of the i0-skeleton of F), it follows
by (2), that v contains at least 2mioJ—2 corners of Fo having angle iz/mioJ. Also v
contains at least one corner with angle n; whence condition (i) holds for v (recall that

To verify condition (ii), let A be an interior region of Fo. Initially, it should be noted
that d(A)^l, by (1), so the right hand side of the inequality (ii) is at least zero. If the
arcs in dA are all the same colour, then 0(A) = O and the condition holds. It is not
possible for the arcs in dA to be of exactly two distinct colours by (3). Suppose dA
consists of arcs of exactly three distinct colours, say i,j,kel. Then by (3), there are
exactly three corners in dA joining arcs of different colours. Since / contains no
spherical triples,

wi:; m,k mk
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Also d(A)^3 so (ii) holds for such regions. Finally, if there are arcs in the boundary of
A of at least four distinct colours, then d(A)^4 and (ii) automatically holds since the
corner weights are at most n/2 (as each my^2). This completes the verification of (ii).

Invoking Lemma 2.1, we conclude that

But it follows directly from the definition of 6 that 9(Ax) = nd(Aa>), a contradiction. •

Pictures over <F| R>. Let F and R be as in the introduction. By a picture over <F | /?>
we shall mean a picture F together with the additional data:
(0) Each arc is given a transverse orientation and is labelled by an element of u i e /P,
(disjoint union).
(1) The sequence of labels on the arcs meeting a vertex v, in order once around the
boundary of v, gives a word in R. (Of course, this condition is independent of the
direction and starting point.)
A Picture over <F | /?> is given the obvious colouring (by /): arcs labelled by elements of
Pi are coloured i.

A boundary label of F is, by definition, a word obtained by reading the labels on the
arcs meeting dD2, in order once around dD2 in some direction. Recall that the boundary
label is a consequence of the words on the vertices, i.e., the element of F represented by
a boundary label is contained in the normal closure of the elements represented by the
words around the vertices.

Let w be an element of F. By a picture of w, we shall mean a picture F over <F | i?>
such that some boundary label of F is a word representing w. A picture of w is termed
minimal if (a) no arc is a circle, nor has both endpoints on the same vertex enclosing a
region of degree one, and (b) no picture of w has fewer vertices than F. (An arc such as
in (a), together with the components of the picture it encloses, can always be removed
producing a simpler picture of w.)

Remark 2.3. A minimal picture F of w satisfies the three hypotheses of Lemma 2.2:
(1) This is assumed by the definition of minimal. (2) This follows from the definition of
the m.j upon noting that no word labelled around a vertex of F represents the trivial
group element: if this situation occurred, then it is a well-known fact that there would
be a picture for w with one less vertex. (3) Assume that such an interior region in F
exists; let <x and jS be two corners in its boundary joining arcs of the same two distinct
colours, say i and j . There are two cases to consider:

Firstly, suppose a and /? lie on distinct vertices of F, say vx and v2. Take a simple
closed curve C enclosing only the vertices vt and v2, and having only transverse
intersections with arcs (see Fig. 1). Observe that the product of the labels encountered in
a trip around C is an element of Rtj. Hence, replacing ut and v2 with a single vertex
(with boundary C), we get a picture for w with one less vertex—a contradiction.

Secondly, suppose a and /? are on the same vertex, say v. Then the region is as
depicted in Fig. 2; we draw a simple closed curve C as shown. The subpicture bounded
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FIGURE 1

FIGURE 2

by C contains at least one vertex in addition to v, so that condition (1) is not violated.
By assuming our region is an 'innermost' one violating condition (3) (meaning that
condition (3) is satisfied by every region that is enclosed by a simple closed 'path'
consisting of vertices and arcs of T that lie in the boundary of our region), we may
assume that Lemma 2.2 applies to the subpicture bounded by C. Hence, each arc in the
subpicture is coloured i or j , as only arcs of these colours meet its boundary. It follows
that a boundary label of the subpicture is also a word in R^ (as, by its definition, J?y

contains all of its consequences). Now everything enclosed by C can be replaced by a
single vertex, thus producing a picture for w with fewer vertices than T. Again this
contradicts minimality.
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From the standpoint of the considerations in Section 3, the following observation is
of key importance:

Proposition 2.4. Suppose I contains no spherical triples and let w be a cyclically
reduced element of F. Then weN if and only if there exists a minimal picture of w with a
boundary label which is a cyclically reduced word representing w.

This is rather easily proved by appropriately modifying the standard procedure of
producing pictures over 2-complexes with analogous properties. However, there is a
subtle point involved in achieving a cyclically reduced boundary label; indeed the
proposition is probably not true in general without some type of curvature assumption.
One should expect this due to the same problem arising in the dual situation of van
Kampen diagrams labelled over free products with amalgamation; see [6]. We sketch a
proof of the proposition in an appendix.

3. The proof

We are now in a position to supply the details of the proof outlined in the
introduction. Initially, we consider the special case: each mfj^2 for i#j . (Recall that this
condition is assumed in Lemma 2.2.)

Fix K c i . Let w be a cyclically reduced word in FK representing an element in the
kernel of the natural homomorphism FK->F/N. Then by regarding w as an element of
F, via the obvious inclusion FKc+F, there is a minimal picture F of w with a boundary
label which is a cyclically reduced word representing w (by Proposition 2.4). The key
observation here is that each arc of F that meets 3D2 is coloured by an element of K, as
a cyclically reduced word representing an element of FK only contains letters from the
Pk (for k e K). Since the hypothesis of Lemma 2.2 holds for minimal pictures (as noted in
Remark 2.3), we conclude that every arc in F is coloured by an element of K. Thus
weNK, the normal closure of RK in FK. Consequently, the kernel of FK-*F/N is NK,
completing the proof in this case.

For the general case, consider the simplicial graph whose vertex set is / and whose
edge set consists of the pairs (i,j) such that my/oo. The vertex sets of the connected
components of this graph form a partition of the set /, say { / J^A- NOW the theorem
follows from the special case, and well-known properties about free products with an
amalgamated subgroup, once we establish the claim: G is the free product of the family
of groups {G,x}x£\ with the subgroup B amalgamated, and the theorem holds for the
restriction of the amalgam P to each subset lx.

The second assertion follows from the special case unless Ix contains distinct indices
ij such that mi}=\. But this implies that Ix = {i,j}', otherwise Ix would contain a
spherical triple. The theorem holds automatically for restrictions to such subsets.

If i andy do not belong to the same subset Ix, then my=oo; whence every word in R,j
represents the identity. Hence, the first assertion is seen by viewing G as the quotient of
F= *BP-t by the normal subgroup generated by R = <<jRij. (The natural homomorphism
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FIGURE 3

B^G,X is injective by definition if | / A | g 2 , and by the special case applied to the
restriction of the amalgam P to the subset Ik if | lk | ^ 3.)

Appendix: proof of proposition 2.4

First of all, it is clear that minimal pictures of w exit, for example, the picture dual to
any least area van Kampen diagram for w—such diagrams are exhibited in [6, Chapter
V]. The nontrivial part of the proposition is that we can find such a picture with a
cyclically reduced boundary label. To accomplish this, we start with any minimal
picture F of w and apply various moves, having the effect of cyclically reducing the
boundary label.
I. Consolidation move. Suppose successive arcs encountered in a boundary cycle are
labelled by elements x and y in the same group P,. Then this move, as illustrated in Fig.
3, results in one arc meeting the boundary and labelled by the product xy.
II. Arc deleting move. Delete the interior of an arc labelled by the trivial element of some
Pi-
III. Relabelling move. Let A be a region of F and beB. Then the arcs in dA are
relabelled as follows: let c be such an arc and suppose the label on e is x e Pt. If A is on
just one side of e, then replace the label by x4>,{b) or (l>,{b)~lx depending as the
transverse direction points inward or outward from A. If A is on both sides of e, replace
the label on e by <t>(b)~1x(j)£b). In the example shown in Fig. 4, initially the arcs were
labelled by the xb and b{ = (jfjjlb) where j , is the colour of the arc initially labelled x,.

Under our assumption of no spherical triples, the last possibility in the relabelling
move actually does not occur:

Lemma.
sides.

If F is a minimal picture of w, then no arc of F has the same region on both

https://doi.org/10.1017/S0013091500023300 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500023300


AMALGAMATED SUMS OF GROUPS 569

FIGURE 4

Proof. Suppose e were such an arc, say with the region A on both sides. Then there
exists a simple closed curve that lies in A except at one point where it meets e
transversely. But this is impossible in a minimal picture by the analogous argument
used in Remark 2.3. •

Note the use of the lemma in the following process: Suppose F is a minimal picture of
w; let al...an be a boundary label representing w. If successive letters a, and ai+l

(indices modulo ri) belong to the same Pj, then there is a consolidation move having the
effect of replacing the two letters by a single letter—their product in Pj. Suppose some
letter a, is in the image of B. If e is the arc with label ah then there is a region that lies
on just one side of e (by the lemma). Performing a relabelling move to this region, we
can change the label on e to 1. Then the arc e can be removed by an arc deleting move.

After finitely many steps, this process stops with a picture whose boundary labels are
cyclically reduced words. The boundary label starting at the point that initially gave the
word ax...an, now represents an element of F that differs from w at most by
conjugation by an element of B. Applying a relabelling move, we can arrange that some
boundary label is a cyclically reduced word representing w, precisely.
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