Corrigenda

Volume 98 (1985), 403-412

'On the mobility of bodies in \mathbb{R}^n '

By R. J. M. DAWSON

Corpus Christi College, Cambridge

(Received 10 September 1985)

The proof of the following theorem which I gave in the above paper is incorrect. A correct proof is given here.

THEOREM 2.1. Let \mathscr{B} be an intersection regular, finite collection of bodies, and \mathscr{F} a manoeuvre on \mathscr{B} . \mathscr{F} is strongly separating if and only if every component of $S(\mathscr{B}, \mathscr{F})$ is positive; and, if any $S_{(i,j,n)}(\mathscr{B}, \mathscr{F})$ is negative, \mathscr{F} is colliding.

Proof. We will first prove this for the case where $\mathscr{B} = \{B_0, B_1\}$; applying this to every pair of bodies gives the general case. Suppose that, for some p, $S_{(0,1,p)}(\mathscr{B},\mathscr{F})$ is negative. Without loss of generality, suppose B_0 to be regular at p. Then

$$(\mathbf{d}f_1(p) - \mathbf{d}f_0(p)) \cdot \mathbf{n}_0(p) < 0,$$

and so, for small enough positive t, $f_1^t(p) \in \inf f_0^t(B_0)$. Hence, some interior points of $f_1^t(B_1)$ are also interior to $f_0^t(B_0)$, and \mathscr{F} is colliding.

Suppose that, for some p, $S_{(0,1,p)}(\mathcal{B},\mathcal{F}) = 0$. Then, by Lemma 1.2,

$$0 = \lim_{t \downarrow 0} \frac{1}{t} D(f_1^t(p), f_0^t(B_0))$$

$$\geq \lim_{t \downarrow 0} \frac{1}{t} D(f_1^t(B_1), f_0^t(B_0));$$

and, by definition, F is not strongly separating.

To complete the proof, it suffices to show that, if $S_{(0,1,p)}(\mathcal{B},\mathcal{F})$ is positive, there exists a neighbourhood U_p of p and positive constants a_p , T_p such that

$$x \in B_1 \cap U_p, \ 0 < t < T_p \Rightarrow D(f_1^t(x), f_0^t(B_0)) > a_p t. \tag{1}$$

As B_1 is compact, a finite subset of the neighbourhoods $\{U_p\}$ cover it, and, taking a and T to be the (positive) minima of the corresponding $\{a_p\}$ and $\{T_p\}$:

$$0 < t < T \Rightarrow D(f_1^t(B_1), f_0^t(B_0)) > at,$$

which implies the desired result that \mathcal{F} is strongly separating.

It remains only to prove that, for suitable U_p , a_p , and T_p , (1) holds. As we wish to use only the compactness of one of the bodies, say B_1 , we must consider two cases.

Case I. B_0 is regular at p

We will use coordinates as in the proof of Lemma 1.2, and represent the boundary of B_0 as the graph of $x^0 = g(\tilde{\mathbf{x}})$ for some suitable differentiable function $g: \mathbb{R}^{n-1} \to \mathbb{R}$. This coordinate system has been chosen so that g(0) = 0, $\nabla g(0) = 0$, and so that B_0 is

immobile with **p** at the origin. B_1 is acted upon by a motion f; we may factor this as $f = \tau \circ \rho$, where ρ fixes **p** and $\tau^t(\mathbf{x}) = \mathbf{x} + f^t(\mathbf{p})$. f and τ are differentiable, so ρ must also be differentiable; hence,

$$\|\mathbf{d}\rho\| = \max_{\|\mathbf{x}\| = 1} \lim_{t \to 0} \frac{\|\rho^t(\mathbf{x}) - \mathbf{x}\|}{t}$$

is finite. Because ρ^t is a linear transformation,

$$\|\mathbf{d}\rho\| = \max_{\mathbf{x} \neq 0} \lim_{t \to 0} \frac{\|\rho^t(\mathbf{x}) - \mathbf{x}\|}{t \|\mathbf{x}\|};$$

so there exists T > 0 such that for 0 < t < T, $x \neq 0$:

$$\|\mathbf{x}\| \|\mathbf{d}\rho\| > \frac{\|\rho^t(\mathbf{x}) - \mathbf{x}\|}{2t}.$$

For any $\epsilon > 0$, let $U = \{\mathbf{x} : 2\|\mathbf{x}\| \|\mathbf{d}\rho\| < \epsilon\}$. Then, for $x \in U$, 0 < t < T,

$$||f^t(\mathbf{x}) - \tau^t(\mathbf{x})|| = ||\rho^t(\mathbf{x}) - \mathbf{x}|| < \epsilon t;$$

it is thus enough to prove (1) in the case where B_0 is immobile and B_1 is translated.

For each x, select q(x), a point in bdy (B_0) at minimum distance from x. (This cannot in general be chosen continuously.) As bdy (B_0) contains the origin,

$$\|\mathbf{q}(\mathbf{x})\| \leqslant 2\|\mathbf{x}\|. \tag{2}$$

For any $\epsilon > 0$, we can select a neighbourhood U of p and a positive constant T such that

$$\mathbf{x} \in U, \ 0 < t < T \Rightarrow \max\{\|\mathbf{x}\|, \|\tau^t(\mathbf{x})\|\} < \epsilon. \tag{3}$$

As g is continuously differentiable in a neighbourhood of the origin, for any $\varepsilon > 0$ there exists a disc D about the origin in \mathbb{R}^{n-1} such that $\|\nabla g\| < \varepsilon$ in D. Using (2) and (3), we can find a neighbourhood U and positive T such that, for $\mathbf{x} \in U$, 0 < t < T, both $\tilde{\mathbf{q}}(\mathbf{x})$ and $\tilde{\mathbf{q}}(\tau^t(\mathbf{x}))$ are in D. As D is convex,

$$\epsilon \|\tilde{\mathbf{q}}(\mathbf{x}) - \tilde{\mathbf{q}}(\tau^t(\mathbf{x}))\| \geqslant \|g(\tilde{\mathbf{q}}(\mathbf{x})) - g(\tilde{\mathbf{q}}(\tau^t(\mathbf{x})))\|
= |g^0(\mathbf{x}) - g^0(\tau^t(\mathbf{x}))|.$$
(4)

Now, as $\mathbf{q}(\mathbf{x})$ is selected to be at minimum distance from \mathbf{x} , if we are close enough to the origin that bdy (B_0) is smooth, $\mathbf{q}(\mathbf{x})$ must be the foot of a perpendicular from \mathbf{x} to bdy (B_0) . Thus, $\tilde{\mathbf{q}}(\mathbf{x}) - \tilde{\mathbf{x}} = (x^0 - q^0(\mathbf{x})) \nabla g(\tilde{\mathbf{q}}(\mathbf{x}))$; and, using (2) and the continuity of g, we can find, for any $\epsilon > 0$, some $\delta > 0$ such that

$$||x|| < \delta \Rightarrow ||\nabla g(q^{0}(\mathbf{x}))|| < \epsilon$$

$$\Rightarrow ||\tilde{\mathbf{q}}(\mathbf{x}) - \tilde{\mathbf{x}}|| < \epsilon |x^{0} - q^{0}(\mathbf{x})| \le \epsilon ||\mathbf{x}||.$$
(5)

From the fact that τ is differentiable and a translation, we know that for all a > 0 there exists T > 0 such that

$$0 < t < T \Rightarrow \|\mathbf{x} - \tau^t(\mathbf{x})\| = \|\mathbf{p} - \tau^t(\mathbf{p})\| < \alpha t$$
$$\Rightarrow \|\tilde{\mathbf{x}} - (\tau^t(\mathbf{x}))\| < \alpha t.$$

Combining this with (5), we can find positive a, T, and a neighbourhood U of the origin such that

$$0 < t < T, \mathbf{x} \in U \Rightarrow \|\tilde{\mathbf{q}}(\mathbf{x}) - \tilde{\mathbf{q}}(\tau^t(\mathbf{x}))\| < at;$$

substituting this into (4), for $\epsilon > 0$ we can find T > 0 and U such that

$$0 < t < T, \mathbf{x} \in U \Rightarrow |q^0(x) - q^0(\tau^t(\mathbf{x}))| < \epsilon t. \tag{6}$$

By hypothesis, if $\mathbf{x} \in B_1$, $\mathbf{x} \notin \text{int } B_0$. Hence, within a region where bdy (B_0) is a graph, $q^0(\mathbf{x}) \leq x^0$, and so

$$(\tau^t(\mathbf{x}))^0 - q^0(\mathbf{x}) \ge (\tau^t(\mathbf{x}))^0 - x^0$$

= $(\tau^t(\mathbf{p}))^0$ (as τ^t is a translation).

As $S_{(0,1,p)}(\mathcal{B},\mathcal{F}) > 0$, by Lemma 1.2 we can find positive a, T such that

$$0 < t < T \Rightarrow (\tau^t(\mathbf{p})) > at.$$

Thus, for small enough x in B_1 ,

$$(\tau^t(\mathbf{x}))^0 - q^0(\mathbf{x}) > at.$$

Combining this with (6), we find that there exist positive constants a, T, and a neighbourhood U of \mathbf{p} , such that 0 < t < T, $\mathbf{x} \in B_i \cap U \Rightarrow (\tau^t(\mathbf{x}))^0 - q^0(\tau^t(\mathbf{x})) > at$. As $D(\tau^t(\mathbf{x}), B_0) \geqslant (\tau^t(\mathbf{x}))^0 - q^0(\tau^t(\mathbf{x}))$, we are done.

Case II. B_1 is regular at p

By the proof of Case I, there exists a neighbourhood U_0 of p, and constants a, T_0 such that

$$0 < t < T_0, \mathbf{x} \in U_0 \cap B_0 \Rightarrow D(\mathbf{x}, f^t(B_1)) > at.$$

We can find $U_1 \subset U_0$, and positive T_1 , such that

$$0 < t < T_1, \mathbf{x} \in U_1 \Rightarrow \mathbf{q}(f^t(\mathbf{x})) \in U_0.$$

Therefore, taking $T = \min\{T_0, T_1\}$,

$$0 < t < T, \mathbf{x} \in U_1 \cap B_1 \Rightarrow D(f^t(\mathbf{x}), B_0) \geqslant D(\mathbf{q}(f^t(\mathbf{x})), B_1)$$

$$> at.$$