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(Log) twisted curves

Martin C. Olsson

Abstract

We describe an equivalence between the notion of balanced twisted curve introduced by
Abramovich and Vistoli, and a new notion of log twisted curve, which is a nodal curve
equipped with some logarithmic data in the sense of Fontaine and Illusie. As applications
of this equivalence, we construct a universal balanced twisted curve, prove that a balanced
twisted curve over a general base scheme admits étale locally on the base a finite flat cover
by a scheme, and also give a new construction of the moduli space of stable maps into a
Deligne–Mumford stack and a new proof that it is bounded.

1. Introduction

This work is motivated by the construction in [AV02] of a moduli space for stable maps into a
Deligne–Mumford stack, and forthcoming work of Abramovich, Graber, and Vistoli on these moduli
spaces.

1.1 Let S be a scheme and C/S a proper flat tame Deligne–Mumford stack C → S whose fibers are
purely one-dimensional and geometrically connected with at most nodal singularities (recall that C
is tame if for every algebraically closed field k and morphism x : Spec(k) → C the stabilizer group
StabC(x)(k) has order invertible in k). Let C → C be the coarse moduli space of C, and let Csm ⊂ C
be the open subset where C → S is smooth. Assume that the inverse image C ×C C

sm ⊂ C is equal
to the open substack of C where C → S is smooth and that for every geometric point s̄ → S the
map Cs̄ → Cs̄ is an isomorphism over some dense open subset of Cs̄. Then the coarse space C is a
nodal curve over S, and as reviewed in Proposition 2.2 below, for any geometric point mapping to
a node s̄→ C there exists an étale neighborhood Spec(A) → C of s̄ and an étale morphism

Spec(A) → SpecS(OS [x, y]/xy − t) (1.1.1)

for some t ∈ OS , such that the pullback C ×C Spec(A) is isomorphic to

[Spec(A[z,w]/zw = t′, zn = x,wn = y)/Γ] (1.1.2)

for some element t′ ∈ OS , where Γ is a finite cyclic group of order n invertible in A such that if
γ ∈ Γ is a generator then γ(z) = ζz and γ(w) = ζ ′w for some primitive nth roots of unity ζ and ζ ′.
The stack C is called balanced if étale locally there exists such a description with ζ ′ = ζ−1.

Definition 1.2 [AV02, 4.1.2]. A twisted curve is a stack C → S as above such that the action at
each nodal point s̄ → C is balanced. A twisted curve C → S has genus g if the genus of Cs̄ is g for
every geometric point s̄→ S. An n-pointed twisted curve is a twisted curve C → S together with a
collection of disjoint closed substacks {Σi}n

i=1 of C such that:
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(Log) twisted curves

(i) each Σi ⊂ C is contained in the smooth locus of C → S;
(ii) the stacks Σi are étale gerbes over S;
(iii) if Cgen denotes the complement of the Σi in the smooth locus of C → S then Cgen is a scheme.

Remark 1.3. This definition differs from that in [AV02] where the above notion of twisted curve is
called a ‘balanced twisted curve’. Since we will not use unbalanced twisted curves in this paper, we
omit the adjective ‘balanced’.

Remark 1.4. A priori, the collection of twisted curves over a scheme S form a 2-category. However,
as explained in [AV02, 4.4.2] this 2-category is equivalent to a 1-category. It therefore makes sense
to speak of the category of twisted curves over S.

The main purpose of this paper is to establish an equivalence between the above notion of twisted
curve, and a new notion of ‘log twisted curve’ defined using logarithmic structures in the sense of
Fontaine and Illusie [Kat89] (in what follows we will only consider fine log structures so we usually
omit the adjective ‘fine’).

Definition 1.5 [MO05, 3.1]. Let X be a Deligne–Mumford stack.
(i) A log structure M on X is called locally free if for every geometric point x̄→ X the monoid

Mx̄ := Mx̄/O∗
X,x̄ is isomorphic to N

r for some r.
(ii) A morphism M → N of locally free log structures on X is called simple if for every geometric

point x̄→ X the monoids Mx̄ and N x̄ have the same rank, the morphism ϕ : Mx → N x̄ is injective,
and for every irreducible element f ∈ N x̄ there exists an irreducible element g ∈ Mx̄ and a positive
integer n invertible in k(x̄) such that ϕ(g) = nf .

Remark 1.6. In [MO05, 3.1] we did not assume n invertible in k(x̄) in the definition. The definition
makes sense without this assumption, but we need it for Theorem 1.9 below to hold.

Remark 1.7. Recall that if P is a sharp monoid (i.e. P ∗ = {0}), then an element p ∈ P − {0} is
irreducible if for any equality p1 + p2 = p in P we have p1 = 0 or p2 = 0.

Let S be a scheme and f : C → S a nodal curve. As discussed in § 3, there exist canonical log
structures MC and MS on C and S respectively, and an extension of f to a log smooth morphism
(C,MC) → (S,MS).

Definition 1.8. An n-pointed log twisted curve over a scheme S is a collection of data

(C/S, {σi, ai}n
i=1, � : MS ↪→ M′

S), (1.8.1)

where C/S is a nodal curve, σi : S → C are sections, the ai are integer-valued locally constant
functions on S such that for every s ∈ S the integer ai(s) is positive and invertible in k(s), and
� : MS ↪→ M′

S is a simple morphism of log structures on S, where MS denotes the canonical log
structure on S mentioned above.

There is a natural notion of a morphism of n-pointed log twisted curves (see § 3.11).
The main result of this paper is the following.

Theorem 1.9. For any scheme S, there is a natural equivalence of groupoids between the groupoid of
n-pointed twisted curves over S and the groupoid of log twisted n-pointed curves over S. Moreover,
this equivalence is compatible with base change S′ → S.

An important consequence of this is the following. Fix integers g and n, and let Sg,n denote
the fibered category over Z which to any scheme S associates the groupoid of all (not necessarily
stable) n-pointed genus g nodal curves C/S. The stack Sg,n is algebraic, and as explained in § 5 the
substack S0

g,n ⊂ Sg,n classifying smooth curves defines a log structure MSg,n on Sg,n.
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Theorem 1.10. Let Mtw
g,n denote the fibered category over Z which to any scheme T associates the

groupoid of n-marked genus g twisted curves (C, {Σi}) over T . Then Mtw
g,n is a smooth Artin stack,

and the natural map

π : Mtw
g,n −→ Sg,n (1.10.1)

sending (C, {Σi}) to its coarse moduli space with the marked points induced by the Σi is repre-
sentable by Deligne–Mumford stacks. Moreover, there is a natural locally free log structure MMtw

g,n

on Mtw
g,n and a log étale morphism

(Mtw
g,n,MMtw

g,n
) −→ (Sg,n,MSg,n) (1.10.2)

with underlying morphism of stacks (1.10.1).

Remark 1.11. Consider a field k and an object (C, {Σi}) ∈ Mtw
g,n(k). Let (C, {σi}) be the coarse

moduli space, and let R be a versal deformation space for the object (C, {σi}) ∈ Sg,n(k). Let
q1, . . . , qm ∈ C be the nodes and let ri be the order of the stabilizer group of a point of C lying
above qi. As in [DM69, 1.5], there is a smooth divisor Di ⊂ Spec(R) classifying deformations where
qi remains a node. In other words, if ti ∈ R is an element defining Di then in an étale neighborhood
of qi the versal deformation C̃ → Spec(R) of (C, {σi}) is isomorphic to

Spec(R[x, y]/xy − ti). (1.11.1)

It follows from the proof of Theorem 1.10 that a versal deformation space for the twisted curve
(C, {Σi}) is given by

R[z1, . . . , zm]/(zr1
1 − t1, . . . , z

rm
m − tm). (1.11.2)

The proof of Theorem 1.10 also shows the following corollary.

Corollary 1.12. For any integer N > 0, let Mtw,�N
g,n denote the substack of Mtw

g,n classifying
n-pointed genus g twisted curves such that the order of the stabilizer group at every point is less
than or equal to N . Then Mtw,�N

g,n is an open substack of Mtw
g,n and the map Mtw,�N

g,n → Sg,n is of
finite type.

Remark 1.13. For any fixed dual graph Γ, there is a locally closed substack SΓ
g,n ⊂ Sg,n (with the

reduced structure) whose geometric points classify n-marked genus g nodal curves (C, {σi}) whose
dual graph (see for example [DM69, p. 86]) is isomorphic to Γ. This substack SΓ

g,n is of finite type.
Indeed for m sufficiently big, the substack SΓ

g,n is in the image of the morphism

Mg,m → Sg,n (1.13.1)

which associates to a stablem-marked curve (C, {σi}m
i=1) the object (C, {σi}n

i=1) of Sg,n. For example,
if r is the number of vertices of Γ, then we can take m = 3r + n since any n-marked nodal curve
(C, {σi}) defines an object of Mg,3r+n after marking three points on each component.

Fix also an integer N , and write Mtw,�N,Γ
g,n for the fiber product Mtw,�N

g,n ×Sg,n SΓ
g,n. The stack

Mtw,�N,Γ
g,n classifies N -marked twisted curves (C, {Σi}) such that the coarse space C of C has dual

graph Γ. Since the map Mtw,�N,Γ
g,n → SΓ

g,n is of finite type by Corollary 1.12, it follows that the stack
Mtw,�N,Γ

g,n is also of finite type.

The construction of the universal twisted curve also enables us to prove the following useful
result (which holds automatically over a field by [KV03, 2.1]).

Theorem 1.14. Let C/S be a twisted curve. Then after replacing S by an étale cover there exists
a finite flat morphism Z → C with Z/S a projective scheme.
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As an application of these results, let us show how these theorems can be combined with the
general theory of Hom-stacks developed in [Ols06] to construct the moduli space of stable maps into
a Deligne–Mumford stack, and to prove that it is bounded.

1.15 Let S be a scheme and X/S a tame Deligne–Mumford stack of finite presentation with quasi-
projective coarse moduli space. Let Kg,n(X , d) be the fibered category over S which to any S-scheme
T associates the groupoid of data as follows:

(1.15.1) a twisted n-pointed curve (C/T, {Σi}) over T ;

(1.15.2) a representable morphism f : C → X such that the induced morphism on coarse moduli
spaces C → X is a stable n-pointed map of degree d.

Theorem 1.16 [AV02, 1.4.1]. The fibered category Kg,n(X , d) is a Deligne–Mumford stack of finite
presentation over S.

Remark 1.17. The most difficult part of this theorem is the quasi-compactness of Kg,n(X , d). When
the coarse space X of X is projective over S, one can use the valuative criterion for properness as
in [AV02, 6.0.4] to deduce from the above that Kg,n(X , d) is a proper Deligne–Mumford stack over
S with projective coarse moduli space.

Proof of Theorem 1.16. By a standard limit argument, we may assume that S is of finite type over Z.
Let X denote the coarse moduli space of X . By [AO01, 2.8], the stack Kg,n(X, d) is representable
and of finite presentation over S. Let N be the maximal order of any of the stabilizer groups of X .
Since the maps f : C → X are required to be representable, the natural map

Kg,n(X , d) −→ Mtw
g,n ×Sg,n Kg,n(X, d) (1.17.1)

has image in Mtw,�N
g,n ×Sg,n Kg,n(X, d). Hence by Corollary 1.12 it suffices to show that (1.17.1) is

of finite type.
If Z and W are separated Deligne–Mumford stacks over S, and Z is proper and flat over S, let

HomS(Z,W) be the stack over S which to any scheme T → S associates the groupoid of functors
Z ×S T → W ×S T . Assume that fppf-locally on S there exists a finite flat surjection U → Z with
U a scheme, and that the coarse moduli space Z of Z is projective over S. Then by [Ols06, 1.1],
the stack HomS(Z,W) is a Deligne–Mumford stack locally of finite type over S, and the substack
Homrep

S (Z,W) ⊂ HomS(Z,W) classifying representable functors is an open substack. If furthermore
the coarse space Z is also flat over S, then by [Ols05, 1.1] the natural map

HomS(Z,W) → HomS(Z,W ) (1.17.2)

is of finite type.
If S → Mtw,�N

g,n ×Sg,n Kg,n(X, d) is a morphism corresponding to an n-pointed twisted curve
(C/S, {Σi}) of genus g with a stable map f : C → X of degree d, then the fiber product

Kg,n(X , d) ×Mtw,�N
g,n ×Sg,nKg,n(X,d)

S (1.17.3)

is isomorphic to the following fiber product:

S�f

Homrep
S (C,X ) π−−−−→ HomS(C,X)

(1.17.4)

As stated above, the morphism labeled π is of finite type, and hence it follows that (1.17.3) is also
of finite type.
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2. Twisted curves

We recall some definitions and results from [AV02].

2.1 Let S be a scheme and C/S and π : C → C be as in § 1.1. By the same argument used in [DM69,
p. 81], the fact that C is flat over S and has nodal geometric fibers implies that C is étale locally on
S and C isomorphic to the relative spectrum over S

SpecS(OS [x, y]/xy − t), (2.1.1)

for some element t ∈ OS .
Recall that the smooth locus Csm

s̄ is assumed to be equal to the inverse image of the smooth
locus Csm

s̄ ⊂ Cs̄, and that over some dense open subset U ⊂ Cs̄ the map Cs̄ ×Cs̄ U → U is an
isomorphism. In what follows, we refer to the maximal open subspace of C over which the map π
is an isomorphism as the non-special locus.

By [AV02, 4.1.1], the coarse moduli space C is a nodal curve over S.

Proposition 2.2. Let s̄→ C be a geometric point and set Csh := C ×C Spec(OC,s̄).
(i) If s̄ maps to a smooth point of C, then

Csh � [Spec(OC,s̄[z]/zr = π)/Γ], (2.2.1)

where π ∈ m ⊂ OC,s̄ is a local coordinate (i.e. defines an étale map C → A
1
S in some étale

neighborhood of s̄), r is an integer invertible in k(s̄), and Γ is a cyclic group of order r for which a
generator γ ∈ Γ acts by z �→ ζz for some primitive rth root ζ of 1.

(ii) If s̄ maps to a node of C, choose elements t ∈ OS,s̄ and x, y ∈ OC,s̄ such that xy = t and OC,s̄

is isomorphic to the strict henselization of OS,s̄[x, y]/(xy − t) at the point defined by (mS,s̄, x, y).
Then

Csh � [Spec(OC,s̄[z,w]/zw = t′, zr = x,wr = y)/Γ], (2.2.2)
where r is an integer invertible in k(s̄), t′ ∈ OS,s̄ is an element with t′r = t, and Γ is a cyclic group
of order r such that a generator γ ∈ Γ acts by z �→ ζ1z and w �→ ζ2w for some primitive rth roots
ζ1 and ζ2 of 1.

Proof. By the proof of [AV02, 2.2.3], the stack Csh is isomorphic to a quotient [U/Γ], where U is a
connected scheme finite over Spec(OC,s̄). Write U = Spec(A) with A a strictly henselian local ring,
and let s̃ ∈ U be the closed point. In fact we can and will take A = OC,s̃.

If s̃ is a smooth point, choose an isomorphism between A and the strict henselization of
Spec(OS,s̄[z]) at the point defined by (mS,s̄, z). Let Ā denote the quotient A/mS,s̄A, and let z̄
denote the image of z. The ring Ā is isomorphic to the strict henselization of k(s̄)[z̄] at the point
{z̄ = 0}. Fix a generator γ ∈ Γ. Since γ fixes the point {z̄ = 0}, we must have γ(z̄) = uz̄i for some
u ∈ Ā∗. Since γ has finite order invertible in k(s̄), we must have i = 1 and u a root of unity invertible
in k(s̄). Furthermore since the map Csh

s̄ → Spec(OCs̄,s̄) is generically an isomorphism the action of
Γ on the one-dimensional k(s̄)-space (z)/(z2)⊗OS,s̄

k(s̄) is faithful. It follows that Γ is a finite cyclic
group of some order r invertible in k(s̄) and that a generator γ ∈ Γ acts by multiplying z̄ by a
primitive rth root ζ of 1. Since the order of the group Γ is invertible in k(s̄), there is a canonical
decomposition A =

⊕
iAi, where γ acts on Ai by multiplication by ζi. Let z′ ∈ A1 be a lifting of

z̄ ∈ A1 ⊗OS,s̄
k(s̄). The elements z and z′ differ by an element of mS,s̄A, and in particular the map

OS,s̄[t] → A sending t to z′ induces an isomorphism between A and the strict henselization of OS,s̄[t]
at the point (mS,s̄, t). Thus after replacing z by z′ we obtain the description of Csh given in (i).

If s̃ is a node, there exists an element t′ ∈ OS,s̄ such that A is isomorphic to the strict henselization
of Spec(OS,s̄[z,w]/(zw− t′)) at the point defined by (z,w,ms̄). Again since the group Γ is finite the
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action on the two-dimensional k(s̄)-space ((z,w)/(z,w)2) ⊗OS,s̄
k(s̄) is faithful. Let z̄ and w̄ be the

images of z and w in Ā := A ⊗OS
k(s̄). The action of Γ necessarily preserves the two components

{z̄ = 0} and {w̄ = 0} of Spec(Ā) since Spec(OC,s̄ ⊗OS
k(s̄)) is reducible. It follows that an element

γ ∈ Γ acts by z̄ �→ ζ1z̄ and w̄ �→ ζ2w̄ for some roots of unity ζ1 and ζ2. Since the action of Γ on
Spec(Ā) is generically free, it follows that Γ is a cyclic group of some order r invertible in k(s̄). Fix
a generator γ ∈ Γ. Then the elements γ(z), γ(w) ∈ A have the property that γ(z) · γ(w) = t′ and
(z,w,mS,s̄) = (γ(z), γ(w),mS,s̄) (equality of ideals in A). By [Kat00, 2.1] this implies that γ(z) = uz
and γ(w) = vw for some elements u, v ∈ A∗. Since γ is also of finite order we must have u = ζ1 and
v = ζ2. This proves case (ii).

Definition 2.3. Let C/S be as in § 2.1, and let s̄ → C be a geometric point mapping to a node.
We say that the stack C is balanced at s̄ if we can describe the stack Csh as in Proposition 2.2(ii)
such that ζ1 = ζ−1

2 .

Remark 2.4. The notion of being balanced at s̄ can be described more intrinsically as follows.
Set G = Spec(k(s̄)) ×C C and let I ⊂ OG be the nilradical. The sheaf I/I2 defines a locally free
sheaf on Gred and the condition that the stack is balanced at s̄ is equivalent to the condition that
the invertible sheaf

∧2(I/I2) on Gred is trivial. In Remark 3.8, we give another interpretation of the
notion of ‘balanced’ in terms of the existence of certain log structures on the stack.

Remark 2.5. Since the group Γ has order invertible in the base, in Proposition 2.2(ii) either the
stack is balanced at s̄ or t = 0.

We define twisted curves of genus g and n-pointed twisted curves as in Definition 1.2.

2.6 As discussed in [AV02, 4.1.2], the image of the Σi in C is a collection of sections {σ1, . . . , σn}
of C → S and hence (C, {σi}) is an n-pointed nodal curve in the usual sense. Furthermore, if Cgen

denotes the complement of the σi in the smooth locus of C → S, then the map

C ×C Cgen −→ Cgen (2.6.1)

is an isomorphism by assumption.

3. Log structures on twisted curves

3.1 Let us first make a motivational remark. Let Mg,n denote the Deligne–Mumford compactifi-
cation of the moduli space of n-pointed curves, and let (U , {σi : Mg,n → U}n

i=1) be the universal
n-pointed curve over Mg,n. The closed substack (with the reduced structure) D ⊂ Mg,n classifying
singular n-pointed curves is a divisor with normal crossings on Mg,n, and hence by [Kat89, 1.5]
there is a natural log structure MMg,n

on Mg,n. In addition, the inverse image of D in U together
with the union of the sections σi is a divisor with normal crossings on U and hence there is also a
natural log structure MU on the universal curve U . There is also a natural morphism of log stacks

(U ,MU ) −→ (Mg,n,MMg,n
), (3.1.1)

which is log smooth [Kat89, 3.7(2)]. This implies that if (C, {si}) is an n-pointed nodal curve over
a scheme T arising from a morphism T → Mg,n, then C → T can naturally be given the structure
of a log smooth morphism (C,MC) → (T,MT ) by pulling back the log structures on U and Mg,n.
As we now explain, this structure can be defined intrinsically (i.e. without using Mg,n) and more
generally for twisted curves.

3.2 Although the results of [Ols03b] are only stated there for schemes, they apply equally well to
Deligne–Mumford stacks. We summarize here the results we need from [Ols03b].
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Definition 3.3. A log smooth morphism f : (X,MX ) → (S,MS) is essentially semi-stable if for
each geometric point x̄→ X the monoids (f−1M̄S)x̄ and M̄X,x̄ are free monoids, and if for suitable
isomorphisms (f−1M̄S)x̄ � N

r and M̄X,x̄ � N
r+s the map

(f−1M̄S)x̄ → M̄X,x̄ (3.3.1)

is of the form

ei �→
{
ei if i �= r,

er + er+1 + · · · + er+s if i = r,
(3.3.2)

where ei denotes the ith standard generator of N
r.

Lemma 3.4. If f : (X,MX ) → (S,MS) is essentially semi-stable, then étale locally on X and S
there exist charts N

r → MS, N
r+s → MX such that the map N

r → N
r+s given by formula (3.3.2)

is a chart for f, and such that the map

OS ⊗Z[Nr] Z[Nr+s] → OX (3.4.1)

is smooth.

Proof. Observe that if s ∈ S is a point, then the stalk M̄S,s̄ is a free monoid and hence in some
étale neighborhood of s there exists a chart N

r → MS such that the induced map N
r → M̄S,s̄ is

bijective [Kat89, 2.10]. If x ∈ X is a point lying over s, then there exists in some étale neighborhood
of x a chart

P −−−−→ MX� �
N

r −−−−→ MS

(3.4.2)

such that the induced map

OS ⊗Z[Nr] Z[P ] → OX (3.4.3)

is smooth and such that the map P → M̄X,x̄ is bijective (this follows for example from the proof
of [Kat89, 3.5]). From the bijectivity of P → M̄X,x̄ we conclude that P is a free monoid, and that
the map N

r → P has the desired form (after perhaps applying an automorphism of N
r).

Let S = Spec(k), where k is a separably closed field, and let f : (X,MX ) → (S,MS) be an
essentially semi-stable morphism. Let x ∈ X be a singular point. Then by (3.4) there exists a chart

N
r+s −−−−→ MX −−−−→ OX� � �
N

r −−−−→ MS
α−−−−→ k

(3.4.4)

in an étale neighborhood of x such that

k ⊗Z[Nr] Z[Nr+s] � k[xr, . . . , xr+s]/(xr · · · xr+s − α(er)) → OX (3.4.5)

is smooth. Since x is a singular point, it follows that α(er) = 0 and hence the map

M̄S → M̄X,x̄ (3.4.6)

is of the form N
r′ → N

r′+s as in Definition 3.3 for some r′ � r and s � 1. It follows that if Irr(MS)
denotes the set of irreducible elements in MS , then there is a unique element in Irr(M̄S) whose
image in M̄X,x̄ is not irreducible. This defines a canonical map

sX : {singular points of X} → Irr(M̄S). (3.4.7)
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Definition 3.5 [Ols03b, 2.6]. An essentially semi-stable morphism of log Deligne–Mumford stacks
f : (X,MX ) → (S,MS) is special at a geometric point s̄ if the map

sXs̄ : {singular points of Xs̄} → Irr(M̄S,s̄) (3.5.1)

induces a bijection between the set of connected components of the singular locus of Xs̄ and
Irr(M̄S,s̄). If f is special at every geometric point s̄→ S, then we call f a special morphism.

Theorem 3.6. Let f : C → S be a twisted curve. Then there exist log structures M̃C and MS on
C and S respectively, and a special morphism

(f, f b) : (C,M̃C) −→ (S,MS). (3.6.1)

Moreover, the datum (M̃C ,MS , f
b) is unique up to unique isomorphism.

Proof. The uniqueness statement in the theorem follows from the uniqueness part of [Ols03b, 2.7].
To prove the theorem it therefore suffices to construct the data (M̃C ,MS , f

b). Furthermore, by the
uniqueness it suffices to construct this data étale locally on S. By a limit argument using [Ols03b,
2.17], it even suffices to consider the case when S = Spec(OS) is the spectrum of a strictly henselian
local ring.

Let p1, . . . , pn be the nodes in the closed fiber of C, and choose for each i ∈ {1, n} an open
subset Ui ⊂ C containing pi and no other nodes. Let Ui ⊂ C be the inverse image of Ui. Let ti ∈ OS

be an element such that Ui is étale locally isomorphic to

Spec(OS [z,w]/(zw − ti)), (3.6.2)

and let Mi
S be the log structure on S defined by the map N → OS sending 1 to ti.

Following [Ols03b, 3.1] define a semi-stable log structure on Ui to be a pair (M, f b), where M is
a log structure on Ui and f b : Mi

S |Ui → M is a morphism of log structures such that the following
hold:

The induced morphism (Ui,M) → (S,Mi
S) is log smooth. (3.6.3)

For every geometric point ū→ Ui the stalk Mū is a free monoid and the induced map (3.6.4)

N → Mi
S → Mū (3.6.5)

is the diagonal map.
To prove the theorem, it suffices to show that for each i there exists a semi-stable log structure

on Ui. To see this, assume given a semi-stable log structure (Mi, f b) on Ui for each i. It follows for
example from Lemma 3.4 that on the complement of the singular locus of Ui the map f b : Mi

S |Ui →
Mi is an isomorphism. In particular there is a global log structure Mi

C with a map f∗Mi
S → Mi

C ,
whose restriction to Ui is equal to (Mi, f b), and which equals the pullback of id : Mi

S → Mi
S on

any open substack of C which does not meet the singular locus of Ui. Define MS :=
⊕

O∗
S
Mi

S and
MC :=

⊕
O∗

C
Mi

C . Then C → S extends naturally to a special morphism

(C,MC) → (S,MS). (3.6.6)

To complete the proof of the theorem, we therefore fix i and show that there exists a semi-stable
log structure on Ui. To ease the notation, we omit the index i and write simply U (t, etc.) for Ui

(ti, etc.).
As explained in [Ols03b, 3.12] if V → U is étale and

ρ : V → Spec(OS [z,w]/(zw − ti)) (3.6.7)

is an étale morphism, then the ideal J ⊂ OV defined by (z,w) is independent of the choice of ρ,
and hence there is a globally defined sheaf of ideals J ⊂ OU . Let D ⊂ U be the closed substack
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defined by this ideal. Also let Kt ⊂ OS (respectively KU
t ⊂ OU ) be the kernel of multiplication by t.

Since U is flat over S the sheaf KU
t is equal to the pullback of Kt. Also, by the local description

of the stack C in Proposition 2.2, the stack D is isomorphic to BΓ ×Spec(Z) Spec(OS/(t)) for some
finite cyclic group Γ of order invertible in k(s).

Let Z ⊂ U be the closed substack defined by KU
t · J , and define

G := Ker(O∗
U → O∗

Z). (3.6.8)

Also let G2 ⊂ O∗
U be the subsheaf of units u such that ut = t. If u ∈ G is a section, then 1−u ∈ KU

t

so ut = t. In particular, there is a natural inclusion G ⊂ G2. By [Ols03b, 3.18] there is a canonical
obstruction o ∈ H1(U , G2/G) whose vanishing is necessary and sufficient for the existence of a
semi-stable log structure on U .

The obstruction o can be described as follows. Let S̃St be the stack over the étale site of U
which to any étale V → U associates the groupoid of semi-stable log structures on V . As explained
in the proof of [Ols03b, 3.18], the objects of S̃St admit no non-trivial automorphisms. It follows
that the presheaf SSt which to any V associates the isomorphism classes in S̃St is a sheaf on Et(U).

The sheaf G2 is canonically identified with the sheaf of automorphisms of the pullback of MS to
U as follows. Let e ∈ MS be the global section defined by the chart N → MS . Any automorphism
α of MS is by the universal property of the log structure associated to a pre-log structure given by
e �→ λ(u)+ e, where λ : O∗

U ↪→ MS |U is the natural inclusion and u ∈ O∗
U is a unit such that ut = t.

In other words, a section u ∈ G2.
There is an action of G2 on SSt for which a unit u ∈ G2 corresponding to an automorphism

σ of MS |U sends (M, f b) to (M, f b ◦ σ). As explained in the proof of [Ols03b, 3.18] this action
descends to a torsorial action of G2/G on SS t. The obstruction o ∈ H1(U , G2/G) is the class of the
torsor SS t.

To complete the proof of Theorem 3.6, we show that the obstruction o is zero.

Lemma 3.7. The map H1(U , G2/G) → H1(D,O∗
D) induced by the composite of the inclusion

G2 ⊂ O∗
U with the projection O∗

U → O∗
D is injective.

Proof. Let F denote the kernel of the map O∗
D → (OD/KU

t OD)∗. By [Ols03b, 3.19] there is a natural
exact sequence

0 → (KU
t ∩ (t)) ⊗OD → G2/G → F → 0, (3.7.1)

where (t) ⊂ OU denotes the ideal generated by t. Since D is a tame Deligne–Mumford stack with
affine coarse moduli space and (KU

t ∩ (t)) ⊗OD is a quasi-coherent sheaf, we have

H1(D, (KU
t ∩ (t)) ⊗OD) = 0. (3.7.2)

Looking at the long exact sequence of cohomology groups associated to (3.7.1), it follows that the
natural map H1(U , G2/G) → H1(U ,F) is injective. Hence to prove the lemma it suffices to show
that the map H1(U ,F) → H1(D,O∗

D) is injective. Consideration of the exact sequence

0 → F → O∗
D → (OD/KU

t · OD)∗ → 0 (3.7.3)

shows that for this it suffices to show that the natural map

H0(D,O∗
D) → H0(D, (OD/KU

t · OD)∗) (3.7.4)

is surjective. Since OS is a local ring, this map is simply the natural surjection (OS/(t))∗ →
(OS/(Kt, t))∗. This completes the proof of Lemma 3.7.

By Lemma 3.7, to prove Theorem 3.6, it suffices to show that the image of the obstruction o in
H1(D,O∗

D) is zero. This class in H1(D,O∗
D) corresponds to an invertible sheaf L on D which we
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claim is trivial. For this note first of all that it suffices to show that if π : U → U denotes the coarse
moduli space, then the natural map π∗π∗L → L is an isomorphism. For then the invertible sheaf L
is obtained by pullback from an invertible sheaf on Spec(OS/(t)) which is necessarily trivial since
OS is strictly henselian local.

Thus we may work étale locally on the coarse space U , and in particular we may assume that
we can choose an isomorphism

U � [Spec(OS [z,w]/zw = t)/Γ], (3.7.5)

where Γ is a finite cyclic group acting by multiplication by roots of unity on z and w. The stack D
is the closed substack

[Spec(OS/(t))/Γ] ⊂ [Spec(OS [z,w]/zw = t)/Γ], (3.7.6)

and it is shown in [Ols03b, Proof of 3.16] that the invertible sheaf L is isomorphic to the dual of
the rank 1 sheaf with basis z · w. In other words, if γ ∈ Γ is a generator acting by γ(z) = ζ1z and
γ(w) = ζ2w, then L is isomorphic to the rank 1 sheaf on D corresponding to the free OS/(t)-module
on 1-generator e for which γ(e) = (ζ1 ·ζ2)−1e. Since the stack C is balanced by assumption, it follows
that L is trivial. The proof of Theorem 3.6 is now complete.

Remark 3.8. From the proof it follows that the condition of the stack C being balanced is equivalent
to the existence of log structures as in Theorem 3.6.

3.9 In fact the log structures M̃C and MS have a stronger universal property which will be needed
below. Namely, consider two log structures NC and NS on C and S respectively, and a morphism
gb : f∗NS → NC such that the induced morphism of log spaces

(f, gb) : (C,NC) −→ (S,NS) (3.9.1)

is log smooth and integral in the sense of [Kat89, 4.3] and vertical (this last property means that the
cokernel Coker(f∗NS → NC) in the category of sheaves of monoids is a group). Then it is shown in
[Ols03b, 2.7] that there exist unique morphisms of log structures hS : MS → NS and hC : M̃C → NC
such that the diagram

f∗MS
f∗hS−−−−→ f∗NS

fb

� �gb

M̃C
hC−−−−→ NC

(3.9.2)

commutes and is cocartesian.

3.10 If (C,Σi) is an n-pointed twisted curve over some scheme S, we will also consider another
log structure on C. Let M̃C be the log structure on C provided by Theorem 3.6. The ideal Ji

defining Σi on C is an invertible sheaf equipped with a morphism Ji → OC . As explained in [Kat89,
Complement 1] it therefore corresponds to a log structure Ni on C. This log structure can be
described as follows. Étale locally we can choose a generator f ∈ Ji for the ideal and we define Ni

to be the log structure associated to the pre-log structure N → OC sending 1 to f . If f ′ is a second
generator with corresponding log structure N ′

i , then there exists a unique unit u ∈ O∗
C such that

uf ′ = f . This unit defines an isomorphism Ni → N ′
i by sending 1 to λ(u) + 1, where for u ∈ O∗

C we
write λ(u) for the unique element of N ′

i mapping to u. It follows that the log structure constructed
locally from generators of Ji glue to give the desired global log structure Ni. We define MC to be
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the amalgamation

MC := M̃C
⊕
O∗

C

(⊕
i,O∗

C

Ni

)
. (3.10.1)

The map f∗MS → M̃C induces a log smooth morphism of log stacks

(C,MC) → (S,MS). (3.10.2)

3.11 We define the notion of an n-pointed log twisted curve as in Definition 1.8. The set of
n-pointed twisted log curves over a scheme S form a groupoid as follows.

First consider the case when S is connected. Let (C1/S, {σ1
i , a

1
i }n

i=1, �1 : M1
S ↪→ M1′

S ) and
(C1/S, {σ2

i , a
2
i }n

i=1, �2 : M2
S ↪→ M2′

S ) be two n-pointed twisted log curves over S. Since S is connected
the ai are just integers (that is, constant functions). We declare that there are no morphisms between
these two objects unless a1

i = a2
i for every i in which case an isomorphism between them consists of

an isomorphism ρ : (C1/S, {σ1
i }) → (C2/S, {σ2

i }) of pointed curves together with an isomorphism
ε : M1′

S → M2′
S such that the diagram

M1
S

�1−−−−→ M1′
S

ρ∗
� �ε

M2
S

�2−−−−→ M2′
S

(3.11.1)

commutes, where ρ∗ denotes the isomorphism induced by the isomorphism ρ and the uniqueness
statement in Theorem 3.6.

For general S we define a morphism to be the data of a morphism over each connected component
of S.

4. Proof of Theorem 1.9
4.1 First consider a log twisted n-pointed curve (C/S, {σi, ai}, � : MS ↪→ M′

S), and let

(C,MC ) −→ (S,MS) (4.1.1)

be the morphism of log schemes obtained from the pointed curve (C/S, {σi}) as in § 3.10. We
construct a twisted n-pointed curve (C, {Σi})/S from the log twisted curve (C/S, {σi, ai}, � : MS ↪→
M′

S).
Define C to be the fibered category over S which to any h : T → S associates the groupoid of

data consisting of a morphism s : T → C over h together with a commutative diagram of locally
free log structures on T

h∗MS
�−−−−→ h∗M′

S� �τ

s∗MC
k−−−−→ M′

C

(4.1.2)

where the following hold.

4.1(i) The map k is simple, and for every geometric point t̄→ T , the map M′
S,t̄ → M′

C,t̄ is either
an isomorphism, or of the form N

r → N
r+1 sending ei to ei for i < r and er to either er or

er + er+1.

4.1(ii) For every i and geometric point t̄→ T with image under s in σi(S) ⊂ C, the group

Coker(M′gp
S,t̄ ⊕Mgp

C,t̄ −→ M′gp
C,t̄) (4.1.3)

is a cyclic group of order ai(t̄).
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For every i, define Σi ⊂ C to be the substack classifying morphisms s : T → C which factor
through σi(S) ⊂ C and diagrams (4.1.2) such that for every geometric point t̄→ T the image of

(M′
C,t̄ − τ(h∗M′

S,t̄)) → OT,t̄ (4.1.4)

is zero.

We claim that C together with the substacks Σi is a twisted n-pointed curve. Consider the
tautological map C → C, and note that C is evidently a stack over C with respect to the étale
topology. Thus to prove that C is an algebraic stack with the desired properties, we may work étale
locally on C. We consider three cases, in §§ 4.2–4.4.

4.2 The case in which C is smooth and contains no σi

In this case, for every s : T → C as above, the map h∗MS → s∗MC is an isomorphism. It follows
that at every geometric point t̄ → T the rank of M′gp

S is equal to the rank of M′gp
C . This implies

that the map τ is an isomorphism, and hence C � C in this case.

4.3 The case in which C contains no σi but is not smooth

Let p → T be a geometric point mapping to the singular locus of C, and consider the following
diagram.

h−1MS,p
�−−−−→ h−1M′

S,p� �τ

s−1MC,p
k−−−−→ M′

C,p

(4.3.1)

After choosing suitable isomorphisms, this diagram is isomorphic to

N
r (α1,...,αr)−−−−−−→ N

r�κ1

�κ2

N
r+1 (β1,...,βr+1)−−−−−−−→ N

r+1

(4.3.2)

where κ1(ei) = ei if i < r and κ1(er) = er + er+1. From the condition 4.1(i), it follows that αi = βi

for all i < r, and that αr = βr = βr+1. From this and [Ols03a, 5.20] it follows that if we choose an
étale morphism

C −→ Spec(OS [x, y]/xy − t) (4.3.3)

in some neighborhood of the image of p, where t ∈ OS , the stack C is isomorphic to

[Spec(OC [z,w]/zw = t′, zαr = x,wαr = y)/µαr ]. (4.3.4)

Here t′ ∈ OS is a section such that t′αr = t, and a scheme-valued point u ∈ µαr acts by z �→ uz and
w �→ u−1w. Such a function t′ exists étale locally on S since we have the simple morphism �.

4.4 The case in which C is smooth and contains a single σi

Let p→ T be a geometric point mapping to the marked locus, and consider the following diagram.

h−1MS,p
�−−−−→ h−1M′

S,p� �τ

s−1MC,p
k−−−−→ M′

C,p

(4.4.1)
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After choosing suitable isomorphisms, this diagram is isomorphic to

N
r (α1,...,αr)−−−−−−→ N

r�κ1

�κ2

N
r+1 (β1,...,βr+1)−−−−−−−→ N

r+1

(4.4.2)

where κ1(ei) = ei if i � r. From the condition 4.1(i), it follows that αi = βi for all i � r, and
that the group (4.1.3) is isomorphic to Z/(βr+1). From the condition 4.1(ii) it therefore follows that
βr+1 = ai. Using [Ols03a, 5.20] we conclude that if f ∈ OC denotes a local function defining σi,
then the stack C is isomorphic to

[Spec(OC [T ]/T ai(t̄) − f)/µai(t̄)], (4.4.3)

where µai(t̄) acts by multiplication on T . This also shows that the substack Σi is equal in this local
situation to the closed substack defined by T = 0. In particular, Σi is an étale gerbe over S.

4.5 Constructing log twisted curves from twisted curves
Given an n-pointed twisted curve (C/S,Σi) let

fC : (C,MC) −→ (S,M′
S) (4.5.1)

be the morphism of log spaces constructed in § 3.10 from the pointed stack (C, {Σi}). Let π : C →
C be the coarse moduli space of C, and let

fC : (C,MC) −→ (S,MS) (4.5.2)

denote the canonical morphism of log structures obtained from C. Let σi : S → C be the section
induced by the gerbe Σi, and let ai be the order of the stabilizer group of the gerbe Σi (a locally
constant function on S).

Lemma 4.6. (i) Let π∗M̃C denote the sheaf on Cet obtained by pushing forward the sheaf M̃C
and let β : π∗M̃C → π∗OC � OC (where the last isomorphism follows from [AV02, 2.2.1(5)])
be the morphism of sheaves of monoids induced by the map M̃C → OC . Then (π∗M̃C , β) is a
fine log structure on C, and if gb : f∗CM′

S → π∗M̃C denotes the morphism induced by the map
f b
C : f∗CM′

S → M̃C , then the morphism of log spaces

(fC , g
b) : (C, π∗M̃C) −→ (S,M′

S) (4.6.1)

is log smooth, integral, and vertical (i.e. the conditions in § 3.9 hold).

(ii) For i = 1, . . . , r, let NC,i (respectively NC,i) denote the log structure on C (respectively C) de-
fined by the gerbe Σi (respectively the section σi) as in § 3.10. Then there is a canonical isomorphism
π∗NC,i � NC,i of log structures on C.

Proof. We may without loss of generality assume that S is connected.
For case (i), we first compute the stalk of π∗M̃C at a geometric point s̄ → C. We consider the

two cases of Proposition 2.2(i) and 2.2(ii) separately.
In case (i), the log structure M̃C is isomorphic to the pullback of M′

S and hence there exist
an integer r and a morphism β : N

r → OC,s̄ such that M̃C is the log structure obtained from the
induced morphism N

r → OC,s̄[z]/zr = π. It follows that π∗M̃C,s̄ is isomorphic to the Γ-invariants
in (OC,s̄[z]/zr = π)∗ ⊕ N

r which is just the stalk f∗CM′
S,s̄.

In case (ii), the stalk of M̃C at the geometric point s̃ of OS,s̄[z,w]/zw = t′ defined by (ms̄, z, w)
is isomorphic to O∗

C,s̃ ⊕ N
r−1 ⊕ N

2 → OC,s̃, where the map sends N
r−1 to some elements of OS,s̄

and the standard generators of N
2 are sent to the images of z and w. The log structure f∗CM′

S is
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the log structure associated to the map N
r → N

r−1 ⊕ N
2 which is the identity on the first r − 1

components and the diagonal on the last factor. Let P ⊂ N
r−1 ⊕ N

2 be the submonoid generated
by N

r−1, the diagonal of N
2 and the elements n · ei, where ei (i = 1, 2) denote the generators of N

2

and n is the order of the stabilizer group Γ of the closed point. Then it follows that the stalk of
π∗M̃C at s̄ is equal to O∗

C,s̄ ⊕ P . It follows from these computations of stalks that étale locally on
C the log structure π∗M̃C is isomorphic to the pushout of the following diagram.

f∗CMS −−−−→ f∗CM′
S�

MC

(4.6.2)

From this part (i) follows since this shows that π∗M̃C is a fine log structure, and all of the other
properties in part (i) can be verified on stalks using the above local calculations.

For case (ii), note first that there is a canonical map ψi : π∗NC,i → NC,i of log structures on C.
Locally this map is obtained as follows. The choice of a function f ∈ OC defining the section σi

induces a map N → OC by sending 1 to f , and this map is a chart for NC,i. Similarly, étale locally
on C we can choose a function g ∈ OC such that Σi ⊂ C is defined by the ideal (g) and gai = f ,
and in this case the log structure NC,i is the log structure associated to the chart N → OC sending
1 to g. The map ψi : π∗NC,i → NC,i is the map induced by sending 1 ∈ N to ai ∈ N. If g′ is a
second generator of the ideal of Σi in C then g′ = ug for some u ∈ O∗

C . It follows that the induced
map ψ′

i : π∗NC,i → NC,i sends 1 ∈ N to ψi(1) + λ(uai). In particular, if we further require that
g′ai = f then ψi = ψ′

i. It follows that the map ψi is independent of the choices and hence is defined
globally. By adjunction, the map ψi induces a map NC,i → π∗NC,i of log structures on C which
we claim is an isomorphism. For this it suffices to show that it becomes an isomorphism on stalks
at every geometric point s̄ → C. Again we consider the two cases (i) and (ii) in Proposition 2.2.
In case (ii) the map is trivially an isomorphism since both log structures are isomorphic to the
trivial log structures O∗

C . In case (i), note that the stalk of NC,i at the closed point of OC [z]/zai = π
is equal to (OC [z]/zai = π)∗ ⊕ N and the action of a generator of the cyclic group Γ sends (0, 1) to
(ζ, 1) for some aith root of unity ζ. This implies case (ii).

Corollary 4.7. There exist canonical morphisms of log structures πb : π∗MC → MC and � :
MS ↪→ M′

S such that the diagram of log spaces

(C,MC)
(π,πb)−−−−→ (C,MC)

fC

� �fC

(S,M′
S)

(id,�)−−−−→ (S,MS)

(4.7.1)

commutes. Moreover, � : MS ↪→ M′
S is a simple extension.

Proof. By Lemma 5.3(i) and the universal property in § 3.9, there are canonical morphisms � :
MS → M′

S and s : M̃C → π∗M̃C such that the diagram

f∗CMS
�−−−−→ f∗CM′

S� �
M̃C

s−−−−→ π∗M̃C

(4.7.2)

commutes. Let t : MC → π∗MC be the composite

MC � M̃C

⊕
O∗

C

(⊕
O∗

C

NC,i

)
s×(4.6(ii))−−−−−−→ π∗M̃C

⊕
O∗

C

(⊕
O∗

C

π∗NC,i

)
can−−→ π∗MC , (4.7.3)

489

https://doi.org/10.1112/S0010437X06002442 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X06002442


M. C. Olsson

where ‘can’ denotes the map induced by the isomorphism MC � M̃C
⊕

O∗
C
(
⊕

O∗
C
NC,i). Define πb to

be the map induced by t by adjunction. The commutativity of (4.7.2) implies that (4.7.1) commutes.
That � is a simple extension follows from the construction of � in [Ols03b, Proof of 2.7].

4.8 We therefore obtain an n-pointed log twisted curve (C/S, {σi, ai}, � : MS ↪→ M′
S). Let C′ → C

be the pointed twisted curve obtained from this data and the construction in §§ 4.1–4.4. The stack
C′ is defined as the classifying stack of diagrams of log structures as in (4.1.2). The morphisms of log
structures πb and � in Corollary 4.7 and the commutativity of (4.7.1) therefore define a canonical
map C → C′ over S. That this map is an isomorphism follows from the local description of the stack
C′ in §§ 4.2–4.4.

Finally if we start with an n-pointed log twisted curve (C/S, {σi, ai}, � : MS ↪→ M′
S) and let

(C, {Σi}) denote the twisted pointed curve obtained from §§ 4.1–4.4, then the log structures MS′

and MC are simply the tautological data defined by the modular definition of C. In particular, the
simple extension � : MS → M′

S is canonically isomorphic to that obtained from Corollary 4.7.
We conclude that the preceding two constructions define quasi-inverse functors between the two
categories in Theorem 1.9.

This completes the proof of Theorem 1.9.

5. Proof of Theorem 1.10

Fix integers g and n and let Sg,n denote the fibered category over Z which to any scheme S associates
the groupoid of all (not necessarily stable) n-pointed nodal curves C/T .

Lemma 5.1. The fibered category Sg,n is an algebraic stack locally of finite type over Z. There
is a natural open substack S0

g,n ⊂ Sg,n classifying smooth n-marked curves, and the complement
Sg,n − S0

g,n is a divisor with normal crossings.

Proof. Note first that the forgetful map Sg,n → Sg identifies Sg,n with an open subset of the smooth
locus of the n-fold fiber product of the universal curve over Sg := Sg,0. Hence it suffices to prove the
theorem for Sg (observe that S0

g,n = Sg,n ×Sg S0
g, and that Sg,n → Sg is smooth).

Note also that for each integer m � 0, there is a natural map

Mg,m −→ Sg, (5.1.1)

where Mg,m denotes the Deligne–Mumford–Knudsen compactification of the moduli space of
m-pointed smooth curves. This map is relatively representable and of finite type: for any T → Sg

corresponding to a nodal curve C → T , the fiber product Mg,m ×Sg T is isomorphic to an open
subscheme of the smooth locus of the m-fold fiber product C×T · · ·×T C. Furthermore, the disjoint
union ∐

m

Mg,m −→ Sg (5.1.2)

is smooth and surjective and

S0
g ×Sg

∐
m

Mg,m �
∐
m

Mg,m, (5.1.3)

where Mg,m ⊂ Mg,m denotes the open substack classifying smooth m-pointed curves. Hence to
prove the lemma it remains only to see that if C1 and C2 are objects in S(T ) for some scheme T ,
then the functor I over T which to any T ′/T associates the set of isomorphisms C1,T ′ → C2,T ′ is
representable by a quasi-compact algebraic space. For this we may work étale locally on T , and
hence can assume that T is an affine scheme and that C1 and C2 are projective over T . Choose
ample line bundles L1 and L2 on C1 and C2 so that L := pr∗1L1 ⊗ pr∗2L2 is ample on C1 ×T C2
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(see [DG61, II.4.6.13(iv)]). An isomorphism C1,T ′ → C2,T ′ is determined by a closed subscheme
Γ ⊂ C1,T ′ ×T ′ C2,T ′ such that the projections Γ → Ci,T ′ are isomorphisms. If γ : C1 → C2 is an
isomorphism given by Γ ⊂ C1 × C2, then for any point t ∈ T the Hilbert polynomial of the fiber
Γt with respect to L|C1,t×C2,t is equal to the Hilbert polynomial of C1,t with respect to the ample
sheaf L1,t ⊗ γ∗L2,t. By Riemann–Roch this depends only on the degrees of L1,t and L2,t. It follows
that there exists a finite set of polynomials S such that I is isomorphic to an open subfunctor of
the Hilbert functor HilbS(C1 ×T C2) classifying subschemes of the projective scheme (C1 ×T C2, L)
with Hilbert polynomial in S. By [Gro62, IV.3.2] it follows that I is representable by a quasi-
projective scheme and so the lemma follows.

In particular, by [Kat89, 3.7(1)] there is a natural log structure MSg,n on Sg,n defined by Sg,n −
S0

g,n (see [Ols03a, 5.1] for a discussion of log structures on stacks).

5.2 Let S be a scheme, r > 0 an integer, and MS the log structure on S induced by a map
c : N

r → OS . Let F → S be the stack which to any t : T → S associates the groupoid of simple
extensions t∗MS ↪→ M′

S . For any collection of integers α = (α1, . . . , αr), let F(α) denote the
substack of F consisting of simple extensions t∗MS ↪→ M′

S such that for every geometric point
t̄→ T there exists a morphism β : N

r → M′
S,t̄ such that the diagram

N
r (α1,...,αr)−−−−−−→ N

r

c

� �β

MS,t̄ −−−−→ M′
S,t̄

(5.2.1)

commutes.

Lemma 5.3. We have the following.

(i) The inclusion F(α) ⊂ F is representable by open immersions.

(ii) The stack F(α) is isomorphic to

[SpecS(OS [t1, . . . , tr]/(tαi
i = c(ei)))/µ], (5.3.1)

where ei denote the standard generators of N
r and µ denotes the group scheme µα1 × · · ·×µαr

acting by (ζ1, . . . , ζr) · ti = ζiti. In particular, F(α) and hence also F is algebraic.

Proof. To see part (i), note that by [Ols03a, 3.5(ii)] the sheaves MS and M′
S are constructible, so

it suffices to show that if ζ is a generization of a point t ∈ T for which there exists a commutative
diagram as in (5.2.1), then there also exists such a commutative diagram for ζ̄. But this is clear
because we have the following commutative diagram of cospecialization maps.

MS,t̄
cosp−−−−→ MS,ζ̄� �

M′
S,t̄

cosp−−−−→ M′
S,ζ̄

(5.3.2)

As for (ii), note that if MS ↪→ M′
S is an object in F(α)(T ), then there is a unique morphism

β : N
r → M′

S such that the following diagram commutes.

N
r (α1,...,αr)−−−−−−→ N

r

c

� �β

MS −−−−→ M′
S

(5.3.3)
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By a standard limit argument the map β exists locally, and since it is unique it exists globally.
Part (ii) then follows from [Ols03a, 5.20].

5.4 Turning to the proof of Theorem 1.10, we can by Theorem 1.9 view Mtw
g,n as the stack

over Z which to any scheme S associates the groupoid of n-marked genus g log twisted curves
(C/S, {σi, ai}, � : MS ↪→ M′

S). For a sequence of natural numbers b = {b1, . . . , bn}, let Mtw
g,n(b) be

the substack of Mtw
g,n classifying log twisted curves (C/S, {σi, ai}, � : MS ↪→ M′

S) with ai = bi for
all i. There is a natural decomposition

Mtw
g,n =

∐
b

Mtw
g,n(b), (5.4.1)

so it suffices to prove the theorem for each of the Mtw
g,n(b).

Now the stack Mtw
g,n(b) is simply the stack over Sg,n which to any s : S → Sg,n associates

the groupoid of simple extensions � : s∗MSg,n ↪→ M′
S such that for every geometric point s̄→ S the

order of the group
Coker(Mgp

Sg,n,s̄ −→ M′gp
S,s̄) (5.4.2)

is invertible in k(s̄). Since the log structure MSg,n is locally in the smooth topology obtained from a
smooth map to Spec(Z[Nr]) for some r, Theorem 1.10 follows from Lemma 5.3(ii). The log structure
on Mtw

g,n(b) is the tautological log structure provided by the interpretation of Mtw
g,n(b) as a moduli

space for log structures above. The statement that (1.10.2) is log étale follows from [Kat89, 3.4].
This completes the proof of Theorem 1.10.

6. Proof of Theorem 1.14

By standard limit considerations, we may assume that S is the spectrum of the strict henselization
at some point of a finite type Z-algebra. Let C/S be the coarse moduli space of C. After marking
some more points (with multiplicity 1) in the non-special locus of C, we may assume that (C, {σi})
is obtained from a morphism S → Mg,n. Let X → Mg,n be the stack classifying simple morphisms
of log structures � : MMg,n

↪→ M. To prove the theorem, it suffices by the proof of Theorem 1.10
to consider the universal twisted curve over an étale cover of X , and hence we are reduced to the
case when S is a smooth quasi-projective scheme over Spec(Z), and the log structure M′

S is defined
by a divisor with normal crossings on S.

Observe that in this case the composite C → S → Spec(Z) is smooth. Indeed since (C,MC) →
(S,M′

S) is essentially semi-stable in the sense of Definition 3.3 and M′
S is defined by a divisor with

normal crossings relative to Z, there exists by Lemma 3.4 étale locally on S and C a commutative
diagram

C a−−−−→ Spec(Z[t, z, w]/(zw − t))� �
S

b−−−−→ Spec(Z[t])

(6.0.3)

where the morphism b is smooth and also the induced map

a′ : C → S ×Spec(Z[t]) Spec(Z[t, z, w]/(zw − t)) (6.0.4)

is smooth.
Let s ∈ S be a point and let ζ ∈ Spec(Z) be the image of s. Let Sζ , Cζ etc. denote the fibers

over ζ. The approach is using [KV03, Proof of 2.1]. Consider the bundle Ω1
C/Spec(Z), and set

A := V(Ω1
C/Spec(Z)) → C. (6.0.5)
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We claim that there exists a dense open subset U ⊂ A which is representable by an algebraic space
such that the map U → C is surjective. To see this, we may work étale locally on the coarse moduli
space C of C and consider each of the two cases in Proposition 2.2 separately.

In an étale neighborhood of a marked point, the stack C is by Proposition 2.2(i) isomorphic to

[Spec(Z[1/n][t, t1, . . . , tr, z])/Γ], (6.0.6)

where r is an integer and Γ is a cyclic group of some order n acting by multiplication on z. In this
case the module Ω1

C/Z is the free module on generators dt, {dti}, and dz. The subspace U ⊂ A where
Γ acts non-trivially is the open substack which to any ring R associates the set of maps Ω1

C/Z → R
sending dz to an element of R∗. In particular, the map U → C is surjective.

In an étale neighborhood of a node, the stack C is by Proposition 2.2(ii) étale locally isomorphic
to the stack

[Spec(Z[t, z, w]/(t − zw))/Γ] ×Spec(Z[t]),a S, (6.0.7)

where a : S → Spec(Z[t]) is a smooth map defined by a smooth divisor, and Γ is a finite cyclic
group acting as in Proposition 2.2. In this local situation, the module Ω1

C/Spec(Z) corresponds to the
locally free module over

Spec(Z[t, z, w]/(t − zw)) ×Spec(Z[t]) S (6.0.8)

obtained from the direct sum of Ω1
S/Z[t] and the free module with basis dz and dw. The action of γ ∈ Γ

is trivial on Ω1
S/Z[t] and γ(dz) = dγ(z) and γ(dw) = dγ(w). It follows that if ρ : Ω1

C/Spec(Z) → R is a
map corresponding to an R-valued point of A, then ρ is Γ-invariant if and only if ρ(dz) = ρ(dw) = 0.
This proves in particular the existence of the dense open subset U ⊂ A.

In fact, the space U is a quasi-projective scheme since it is a subspace of the coarse moduli space
of A which is projective over S. Let P → C denote P(Ω1

C/Spec(Z) ⊕ OC), and view U as an open
substack of P . Let S = P − U and for t > 0 set P t := P ×C × · · · ×C P and St = S ×C · · · ×C S
(t copies). Choose t0 sufficiently big so that the dimension of St0

ζ is less than all the fiber dimensions
of the morphism P t0

ζ → Cζ , and set P = P t0 , Q = P − St0 . Furthermore, choose an embedding
Q ↪→ P

N
Z

for some N .

The proof of [KV03, 2.1] now shows that after making an étale base change Z → O, there exist
hypersurfaces H1, . . . ,Hr ⊂ P

N
O such that if Z = Q ∩ H1 ∩ · · · ∩ Hr then the map Zζ → Pζ is a

closed immersion, Zζ → ζ is smooth and Zζ → Cζ is finite and flat. We can also without loss of
generality assume that Z is smooth over Spec(O). It follows from the fiber-by-fiber criterion for
flatness [Gro71, IV.5.9] that the map Z → C is flat at every point lying over s ∈ S. Furthermore,
since Z and C are proper, we can after replacing S by a Zariski neighborhood of s assume that
Z → C is flat everywhere. Since this map is also proper, it follows that if S is connected then all
the fibers have dimension 0 and Z → C is therefore the desired finite flat cover.

This completes the proof of Theorem 1.14.
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