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Summary

High-throughput gene profiling studies have been extensively conducted, searching for markers associated with
cancer development and progression. In this study, we analyse cancer prognosis studies with right censored
survival responses. With gene expression data, we adopt the weighted gene co-expression network analysis
(WGCNA) to describe the interplay among genes. In network analysis, nodes represent genes. There are subsets
of nodes, called modules, which are tightly connected to each other. Genes within the same modules tend to have
co-regulated biological functions. For cancer prognosis data with gene expression measurements, our goal is to
identify cancer markers, while properly accounting for the network module structure. A two-step sparse
boosting approach, called Network Sparse Boosting (NSBoost), is proposed for marker selection. In the first
step, for each module separately, we use a sparse boosting approach for within-module marker selection and
construct module-level ‘super markers’. In the second step, we use the super markers to represent the effects of
all genes within the same modules and conduct module-level selection using a sparse boosting approach.
Simulation study shows that NSBoost can more accurately identify cancer-associated genes and modules than
alternatives. In the analysis of breast cancer and lymphoma prognosis studies, NSBoost identifies genes with
important biological implications. It outperforms alternatives including the boosting and penalization
approaches by identifying a smaller number of genes/modules and/or having better prediction performance.

1. Introduction

High-throughput gene expression profiling studies
have been extensively conducted, searching for mar-
kers associated with the development and progression
of cancer. In this study, we analyse cancer prognosis
studies, where the outcome variables are progression-
free, overall, or other types of survival. In many can-
cer gene expression studies especially the early ones, it
has been assumed that genes have interchangeable
effects (Knudsen, 2006). Biomedical studies have
shown that there exists inherent coordination among
genes and, essentially, all biological functions of living
cells are carried out through the coordinated effects of
multiple genes. There are multiple ways of describing
the interplay among genes. The most popular ways
are gene pathways and networks (Casci, 2010).

Compared with pathway analysis, network analysis
sometimes can be more informative as it describes not
only whether two genes are connected but also the
strength of connection. In addition, some network
analysis methods can analyse all genes, whereas many
pathway analysis methods focus on the annotated
genes only. On the negative side, unlike with path-
ways, research linking specific network structures with
biological functions remains scarce. In the literature,
there is no definitive evidence on the relative per-
formance of pathway and network analysis methods.
Here, we focus on developing a network analysis
method and refer to other studies for discussions and
comparisons of pathway and network analyses.

In network analysis, nodes represent genes.
Nodes are connected if the corresponding genes
have co-regulated biological functions or correlated
expressions. There are multiple ways of constructing
gene networks. For example, directed, biological
networks can be constructed based on the results
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of knockout experiments. The weighted gene co-
expression network analysis (WGCNA: http://
www.genetics.ucla.edu/labs/horvath/Coexpression
Network/), which is adopted in this study, is based
only on gene expression data and does not demand
additional experiments. There are multiple model-
based approaches, using the Akaike information cri-
terion (AIC), multi-model inference (MMI), Bayesian
model selection and averaging or minimum descrip-
tion length (MDL) as the network construction cri-
teria. Friedman et al. (2008) proposed network
construction using a penalization approach. More
recently, Maathuis et al. (2010) investigated directed
networks when the biological information is partially
available. A sparse singular value decomposition-
based method has also been proposed for network
construction (Jornsten et al., 2011). In addition, mul-
tiple approaches have been proposed to compute the
connectedness measure between pairs of genes. See
for example Langfelder & Horvath (2007), Saris et al.
(2009) and references therein. Published studies have
suggested that the network connectedness measure
may have important implications. For example, hub
genes, which are genes ‘well connected’ with a large
number of genes, tend to have important biological
functions. There are subsets of nodes, called modules,
which are tightly connected to each other. Genes
within the same modules tend to have coordinated
biological functions, whereas genes in different mod-
ules tend to have different, unrelated biological func-
tions.

Statistical methods that can accommodate the high
dimensionality of cancer gene expression data can be
roughly classified as dimension reduction and variable
selectionmethods. Both families of methods have been
employed in network analysis. Dimension reduction
methods search for linear combinations of all genes or
genes within the same modules as cancer markers. In
Ma et al. (2011), principal component analysis is used
for network-based dimension reduction. Such meth-
ods may have satisfactory prediction performance but
often suffer a lack of interpretability. In addition, they
contradict the fact that not all genes are involved in
cancer development and progression. Variable selec-
tion methods search for a subset of genes as markers
and may be more interpretable. A network threshold-
ing regularization method is proposed in Ma et al.
(2010b). Huang et al. (2011a) proposed a penalization
method for network variable selection (see references
therein for more penalization network analyses). In
this article, we focus on the development of a network
variable selection method and refer to other publica-
tions for comprehensive discussions and comparisons
of dimension reduction and variable selection
methods.

The rest of the article is organized as follows. In
Section 2, we first describe the WGCNA. We describe

prognosis using an accelerated failure time (AFT)
model and adopt a weighted least squares estimation
approach. We then develop the NSBoost approach
for gene selection. Simulation study in Section 3
demonstrates satisfactory performance of the pro-
posed approach. Four cancer prognosis studies are
analysed in Section 4. The article concludes with dis-
cussion in Section 5. Some additional analysis results
are provided in Appendices.

2. Methods

(i) Network construction

As described in Section 1, there are multiple ways of
building gene networks. They can be roughly classi-
fied as biological and statistical constructions.
Different statistical construction methods rely on dif-
ferent, usually unverifiable data and model assump-
tions. To the best of our knowledge, in the literature
there is still a lack of definitive evidence on the relative
performance of different network construction meth-
ods. The WGCNA approach is built on the under-
standing that the coordinated co-expressions of genes
encode interacting proteins with closely related bio-
logical functions and cellular processes. Detailed in-
vestigations of WGCNA have been conducted by
Dr Steve Horvath and his group at UCLA. Published
studies suggest that modules in the weighted co-
expression network have important biological im-
plications. Genes with a higher connectivity are more
likely to be involved in important molecular pro-
cesses. In addition, incorporating connectivity in the
detection of differentially expressed genes can lead to
significantly improved reproducibility. For integrity
of this study, we describe the WGCNA algorithm
below and refer to (WGCNA) for more details.

1. Assume that there are d genes. For genes k and
j (=1, …, d), compute cor(k, j), the Pearson corre-
lation coefficient of their expressions. Compute the
similarity measure S(k, j)=|cor(k, j)|.

2. Compute the adjacency function ak,j=Sb(k, j),
where the adjacency parameter b is chosen using
the scale-free topology criterion. In our data
analysis, we find that b=6, which has been sug-
gested in several published studies, lead to satis-
factory results.

3. For gene k, compute its connectivity Ck=g
u
ak, u:

4. For gene k(=1, …, d), compute the topological
overlap-based dissimilarity measure dk,j=1xwk, j,
where wk,j=(lk, j+ak, j)/(min(Ck,Cj)+1xak, j) and
lk, j=g

u
ak, uaj, u. Define the dissimilarity matrix D,

whose (k, j)th element is dk, j.
5. Identify network modules using matrix D and the

hierarchical clustering approach. Apply the dy-
namic tree cut approach (Langfelder et al., 2008) to
cut the clustering tree (dendrogram), and identify
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the resulting branches as modules. DenoteM as the
number of modules and S(m) as the size of module
m(=1, …, M).

Several quantities are defined in the above algorithm.
In the downstream analysis, we use the ‘final pro-
duct ’ – modules constructed in Step 5. As can be seen
from the algorithm, the construction of WGCNA is
computationally simple. A user-friendly R package is
available for implementation (http://cran.r-project.
org/web/packages/WGCNA/index.html). A signifi-
cant advantage of WGCNA is that it is completely
inferred from gene expression measurements of a
single study and hence does not demand a large
amount of biological experiments. On the negative
side, it is built on the estimated covariance matrix. In
a typical cancer gene expression study, with the sam-
ple size significantly smaller than the number of genes,
the uniform consistency of the covariance matrix es-
timation is debatable. Thus, unlike some other ways
of describing gene interplay (e.g. pathways), the
weighted co-expression network structure may vary
across studies with comparable setup.

(ii) Statistical modelling

Let Ti be the logarithm of survival time and Xi be the
d-dimensional gene expressions for the ith subject in a
random sample of size n. The AFT model assumes
that

Ti=a+Xk
ib+"i, i=1, . . . , n,

where a is the intercept, beRd is the unknown re-
gression coefficient and ei is the random error. Under
right censoring, one observation consists of (Yi, di and
Xi), where Yi=min(Ti, Ci), Ci is the logarithm of
censoring time and di=I(TijCi) is the censoring in-
dicator. In the AFT model, the logarithm transform-
ation can be replaced with another monotone
transformation. The log transformation is the most
commonly adopted in the literature and generates
reasonable results with data analysed in this study.
When the distribution of random error is known, the
parametric likelihood function can be easily con-
structed, and likelihood-based approaches are more
efficient than the one described below. Here, we con-
sider the more flexible case with an unknown random
error distribution.

The AFT model provides a flexible alternative to
the Cox proportional hazards model (Wei, 1992). It
assumes a linear function for the log-transformed
survival time and may provide a more straightfor-
ward description of gene effects on survival than
alternatives (e.g. the Cox model, which describes the
survival hazard). There are multiple approaches for
estimating the AFT model with an unspecified error
distribution. Examples include the Buckley–James

estimator, which adjusts censored observations using
the Kaplan–Meier estimator, and the rank-based es-
timator, which is motivated by the score function of
the partial likelihood function. With high-dimen-
sional gene expression data, those approaches suffer a
high computational cost. A computationally more
feasible approach is the weighted least squares ap-
proach (Stute, 1993). Denote F̂n as the Kaplan–Meier
estimator of F, the distribution function of T. It
can be computed as F̂n(y)=gn

i=1wiI(Y(i)jy): Here,
wi/s are the jumps in the Kaplan–Meier estimator
computed as w1=d(1)=n and wi=(d(i)=(nxi+1))

Qix1
j=1

((nxj)=(nxj+1))d(j) , i=2, . . . , n: wi/s have also been
referred to as the Kaplan–Meier weights (Stute, 1993).
Y(1)j...jY(n) are the order statistics of Yi/s,
d(1), …, d(n) are the associated censoring indicators,
and X(1), …, X(n) are the associated gene expressions.
The weighted least squares loss function is

1

2
g
n

i=1
wi(Y(i)xaxXk

(i)b)
2:

We centre X(i) and Y(i) using their corresponding

wi-weighted means, respectively. Let X̄w=
gn

i=1wiX(i)=g
n

i=1wi and Ȳw=gn

i=1wiY(i)=g
n

i=1wi. De-

note X*
(i)=w

1=2
i (X(i)xX̄w) and Y*

(i)=w
1=2
i (Y(i)xȲw). We

can rewrite the weighted least squares loss function as

l(b)=
1

2
g
n

i=1
(Y*

(i)xX*k
(i)b)

2:

The simple form of this loss function makes it
computationally affordable and suitable for high-
dimensional gene expression data.

(iii) Gene selection with NSBoost

The proposed NSBoost approach belongs to the
family of boosting approaches. Boosting assembles a
strong learner using a set of weak learners (Anjum
et al., 2009; Hastie et al., 2009; Ma et al., 2012;
Schapire & Freund, 2012). It is appropriate for cancer
genomic data as individual genes usually have weak
effects, but combined together, they may have strong
effects. NSBoost is a variable selection approach and
thus can have better interpretability than dimension
reduction approaches. Compared with thresholding
regularization, it has a better defined statistical
framework. Compared with penalization, it may have
lower computational cost.

(a) Rationale

With NSBoost, marker selection is achieved in two
steps. This two-step strategy shares a similar spirit
with that in Ma et al. (2007). With WGCNA, genes
can be separated into non-overlapping modules
(note that the proposed approach is also applicable
to network construction methods with overlapping
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modules). In the first step, each module is analysed
separately. Genes within different modules tend to
have different biological functions. Thus, it is sensible
to analyse each module separately in the sense that
different biological functionalities should be con-
sidered separately. On the other hand, genes within
the same modules never have identical biological
functions. Thus, we propose conducting within-
module selection and search for genes that are
associated with cancer prognosis within a group of
functionally related genes. For a specific module, this
step of selection can not only remove noises but also
lead to the construction of a super marker, which is
a linear combination of selected genes and can rep-
resent effects of all genes within this module. The in-
troduction of super marker shares a similar spirit with
that in Ma et al. (2011). In the second step, we con-
sider the joint effects of all super markers and hence
all modules. In whole-genome studies, it is reasonable
to expect that only a subset of modules is cancer as-
sociated. It is thus necessary to conduct the second
step of selection and discriminate cancer-associated
modules from noises. With the proposed two-
step approach, we may identify which modules are
cancer-associated as well as which genes are cancer-
associated within selected modules.

In both steps, marker selection is achieved using a
sparse boosting approach. In high-dimensional data
analysis, boosting may be preferred because of its
low-computational cost, flexibility and satisfactory
empirical performance. With ordinary boosting, when
the stopping rule is properly chosen, the resulted
strong learner may enjoy a certain degree of sparsity,
and so marker selection can be achieved. This can be
seen from Dettling & Buhlmann (2003) and follow-up
studies as well as our numerical study. However, re-
cent studies (Buhlmann & Yu, 2006; Huang et al.,
2011b) suggest that with high-dimensional data,
ordinary boosting may not be ‘sparse enough’. That
is, it may identify a considerable number of false
positives. The sparse boosting approach adopted here
has been motivated by Buhlmann & Yu (2006). In
particular, the objective function used for boosting
and stopping has two terms. The first term measures
goodness-of-fit, which is the same as ordinary boost-
ing. The second, additional term measures model
complexity. In particular, we adopt a Bayesian infor-
mation criterion (BIC) for model complexity measure.
As ordinary boosting only considers goodness-of-fit,
it may introduce noisy variables (false positives) that
happen to be able to slightly improve goodness-of-fit.
With sparse boosting, the introduction of the model
complexity measure can lead to sparser models and
hence reduce the number of false positives. On the
negative side, sparse boosting can be computationally
more expensive than ordinary boosting as the model
complexity measure and hence the whole objective

function is not differentiable and cannot be minimized
using gradient-based approaches. The sparse boosting
approach adopted in this study differs from those in
Buhlmann & Yu (2006) and Huang et al. (2011b).
Particularly, previous studies focus on continuous
and categorical data, whereas we analyse censored
survival data, which can be more complicated. The
adopted BIC has been more commonly adopted as a
model complexity measure than the MDL. In ad-
dition, by conducting multi-step sparse boosting, the
proposed approach can effectively accommodate the
network module structure. The detailed algorithm is
as follows.

(b) Algorithm

We first rearrange gene expressions so that
b=(b1k, …, bmk)k, where bm is the length S(m) vector of
regression coefficients for all genes within module m.
Denote bm

j as the jth component of bm and X*m
(i) as the

component of X*
(i)that corresponds to bm.

Step I: Within-module boosting. For m=1, …, M, con-
sider the objective function 1

2
gn

i=1(Y
*
(i)xX*m

(i) kb
m)2,

which is l(b) evaluated only on genes within the mth
module. This is equivalent to the objective function
obtained from fitting an AFT model using only the
mth module.

(a) Initialization. Set k=0 and bm[k]=0 (component-
wise).

(b) Fit and update. k=k+1. Compute ŝ=

argmin1jsjS(m) argminc g
n

i=1
1
2
(Y*

(i)xX*m
(i) kb

m[kx1]

xcX*m
(i), s)

2+ log (n)g1jsjS(m)
I(bm[kx1]

s +cl0).

Compute ĉ= argminc g
n

i=1
1
2
(Y*

(i)xX*m
(i) kb

m[kx1]x

cX*m
(i), ŝ )

2: Update bm[k]
s =bm[kx1]

s for sl ŝ and

bm[k]
ŝ =bm[kx1]

ŝ +vĉ, where v is the step size. As
suggested in Buhlmann & Yu (2006) and refer-
ences therein, the choice of v is not critical as long
as it is small. In our numerical study, we set
v=0.1. In numerical study, we have experimented
with a few other step size values and reached al-
most identical results.

(c) Iteration. Repeat step (b) for K iterations.
(d) Stopping. At iteration k, compute the objective

function Fm(k)=gn

i=1
1
2
(Y*

(i) xX*mk
(i) b

m[k])2+ log (n)

g1jsjS(m)
I(bm[k]

s l0): Estimate the stopping iter-

ation by ~kkm= argmin1jkjK F
m(k): For subject i,

define its module m ‘ super marker ’ as Zm
(i)=

X*mkbm [~kkm]
(i) :

Step II: Module-wise boosting. Consider the objective
function 1

2
gn

i=1(Y
*
(i)xZk(i)t)

2, where Z(i)=(Z1
(i), . . . ,

ZM
(i) )k and t=(t1, …, tM)k is the unknown regression
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coefficient. That is, in the least squares objective
function, we use the super markers, which represent
the effects of all genes within the same modules, to
replace the original gene expressions.

(a) Initialization. Set k=0 and t[k]=0 (component-
wise).

(b) Fit and update k=k+1. Compute ŝ=arg

min1jsjMarg mincg
n

i=1
1
2
(Y*

(i)xZ(i)kt[kx1]xcZ(i), s)
2

+ log (n)g1jsjM
I(t[kx1]

s +cl0). Compute ĉ=

arg mincg
n

i=1
1
2
(Y*

(i)xZ(i)kt[kx1]xcZ(i), ŝ )
2. Update

t[k]s =t[kx1]
s for sl ŝ and t[k]ŝ =t[kx1]

ŝ +vĉ where
v=0.1 is the step size.

(c) Iteration. Repeat Step (b) for K iterations.
(d) Stopping. At iteration k, compute the objective

function F(k)=gn

i=1(Y
*
(i)xZk(i)t[k])

2+log(n)
g1jsjM

I(t[k]s l0). Estimate the stopping iteration

by k̂=arg min1jkjKF(k):

gM

m=1t
k̂
mZ

m
(i)=gM

m=1t
k̂
m{X

*m
(i) kb

m[~kkm]} is the resulted

strong learner for Y*
(i). Genes and modules with non-

zero regression coefficients in the strong learner are
identified as associated with cancer.

(c) Parameter path

Parameter path, which is the graphical presentation
of the estimates as a function of number of itera-
tions, may provide further insights into NSBoost.
Consider the simulation setting corresponding to
row 1 of Table 1. For a better view, we simplify
the simulation setting and consider four modules
with four genes per module. The first two modules
are cancer associated, within which there are two
cancer-associated genes. Thus, among the 16 simu-
lated genes, four are associated with cancer. For
comparison, we also study Network Boosting
(NBoost, details described in Section 3). For a
randomly generated dataset, the parameter paths
are shown in Figs 1 (NSBoost) and 2 (NBoost),
respectively.

Within each module, the parameter paths of
NSBoost are similar to those of other regularized
variable selection approaches (Hastie et al., 2009).
By considering model complexity in boosting, the
NSBoost parameter paths are ‘smoother’ than their
NBoost counterparts. NBoost does not consider
model complexity in boosting and thus may have a

Table 1. Simulation study: median (SD) of the number of identified genes (T) and true positives (TP) computed
over 200 replicates. Under each scenario, the first (second) row contains the summary statistics for gene (module)
identification. Correlation structure: auto-regressive (auto), banded, and compound symmetry (comp)

Corr. Rho

Enet Boost SBoost NBoost NSBoost

T TP T TP T TP T TP T TP

True positives : 4 modules, 20 genes
Auto 0.3 32 (5.3) 20 (0) 37 (8.1) 20 (0) 32 (2.4) 19 (0.6) 98 (12.5) 15 (1.7) 24 (3.8) 20 (1.7)

7 (1.2) 4 (0) 8 (2.0) 4 (0) 8 (2.3) 4 (0) 6 (1.6) 3 (1.1) 5 (0.6) 4 (0)
0.7 22 (2.7) 20 (0) 36 (4.6) 20 (0) 23 (1.6) 17 (1.2) 84 (7.9) 14 (1.8) 24 (3.8) 20 (1.2)

5 (0.7) 4 (0) 6 (1.2) 4 (0) 5 (0.9) 4 (1.3) 7 (2.6) 4 (1.6) 4 (0.9) 4 (0)

Banded 0.2 23 (1.7) 20 (0) 34 (4.9) 20 (0.3) 22 (2.3) 16 (2.6) 76 (8.6) 11 (1.8) 22 (3.4) 19 (0.9)
5 (0.9) 4 (0) 6 (1.3) 4 (0) 5 (0.7) 4 (1.2) 7 (2.0) 3 (1.2) 4 (0.7) 4 (0)

0.33 25 (3.2) 20 (0) 37 (5.6) 20 (0) 24 (2.2) 16 (1.9) 86 (10.8) 16 (1.9) 23 (5.4) 20 (1.3)
5 (1.7) 4 (0) 7 (1.4) 4 (0) 5 (1.0) 4 (0.9) 9 (2.1) 4 (1.1) 4 (0.6) 4 (0)

Comp 0.3 33 (5.5) 20 (0) 47 (6.9) 20 (0.3) 26 (2.3) 15 (1.7) 96 (8.3) 14 (1.9) 29 (5.1) 20 (1.6)
7 (1.4) 4 (0) 9 (2.4) 4 (0) 6 (1.2) 3 (1.1) 11 (2.9) 3 (1.3) 5 (1.1) 4 (0)

0.7 35 (4.6) 20 (0) 44 (5.2) 20 (0.9) 18 (2.8) 11 (3.8) 80 (8.0) 11 (2.2) 22 (2.7) 17 (1.2)
7 (1.9) 4 (0) 8 (2.2) 4 ( 0) 6 (1.9) 3 (1.0) 10 (2.7) 3 (0.9) 4 (1.6) 4 (0)

True positives : 2 modules, 10 genes
Auto 0.3 18 (2.4) 10 (0) 20 (3.9) 10 (0) 17 (1.4) 10 (0.4) 44 (5.1) 7 (1.0) 14 (1.6) 10 (0.7)

4 (0.8) 2 (0) 4 (0.9) 2 (0) 4 (1.0) 2 (0) 4 (1.0) 2 (0.7) 3 (0.4) 2 (0)
0.7 13 (1.5) 10 (0) 20 (2.2) 10 (0) 13 (0.9) 9 (0.9) 39 (4.2) 7 (1.0) 13 (1.5) 10 (0.8)

3 (0.4) 2 (0) 3 (0.6) 2 (0) 3 (0.6) 2 (0.8) 4 (1.4) 2 (0.6) 2 (0.5) 2 (0)

Banded 0.2 13 (1.0) 10 (0) 16 (2.6) 10 (0.2) 13 (1.2) 9 (1.1) 41 (3.9) 8 (0.8) 14 (1.8) 9 (0.4)
3 (0.6) 2 (0) 3 (0.9) 2 (0) 3 (0.6) 2 (0.4) 5 (0.9) 2 (0.5) 2 (0.3) 2 (0)

0.33 16 (1.4) 10 (0) 21 (3.0) 10 (0) 16 (1.6) 5 (1.0) 38 (4.9) 8 (1.0) 15 (2.3) 10 (0.5)
3 (1.0) 2 (0) 4 (0.8) 2 (0) 3 (0.6) 2 (0.3) 4 (1.2) 2 (0.5) 2 (0.3) 2 (0)

Comp 0.3 18 (2.5) 10 (0) 23 (4.0) 10 (0.1) 13 (1.4) 8 (1.1) 50 (4.4) 6 (1.0) 17 (2.0) 10 (0.8)
4 (0.8) 2 (0) 5 (1.1) 2 (0) 3 (0.7) 2 (0.6) 6 (1.5) 2 (0.8) 3 (0.6) 2 (0)

0.7 17 (2.3) 10 (0) 24 (2.6) 10 (0.6) 10 (1.5) 6 (1.4) 41 (4.2) 7 (1.2) 13 (1.7) 8 (0.8)
4 (1.3) 2 (0) 4 (1.5) 2 (0) 3 (1.1) 2 (0.6) 6 (1.2) 2 (0.4) 2 (0.6) 2 (0)
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risk of false positives. For example, in the top right
panel of Fig. 2a, NBoost has one false positive, while
NSBoost does not. Our limited numerical study
suggests that, in the within-module boosting step,
NSBoost may identify ‘signals ’ even with purely

noisy modules. Thus, the module-level boosting is
conducted, which can effectively remove noisy mod-
ules as a whole (Fig. 1b). With a combination of the
two boosting steps, NSBoost can be sparser than
NBoost at both within-module level and module

(a)

(b)

Fig. 1. Parameter path of NSBoost : estimates as a function of number of iterations. (a) The four panels correspond to
four modules in Step 1 of boosting. (b) The panel corresponds to four super markers in Step 2 of boosting. Vertical lines
correspond to the selected number of iterations.
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level. We note that the parameter paths are presented
for a small dataset and are only meant to provide a
graphical presentation. More meaningful compar-
isons with larger datasets are presented in Sections 3
and 4.

3. Simulation

We conduct simulation to better gauge properties of
the proposed approach. In each simulated dataset,
there are 100 subjects. We simulate 50 gene clusters

(a)

(b)

Fig. 2. Parameter path of NBoost : estimates as a function of number of iterations. (a) The four panels correspond to four
modules in Step 1 of boosting. (b) The panel corresponds to four super markers in Step 2 of boosting. Vertical lines
correspond to the selected number of iterations.
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with 20 genes in each cluster. Gene expressions have
marginally standard normal distributions. Genes
within different clusters have independent expres-
sions. For genes within the same clusters, their ex-
pressions have the following correlation structures :
(1) auto-regressive correlation, where expressions of
genes j and k have correlation coefficient r|jxk|. r=0.3
or 0.7, corresponding to weak and strong correla-
tions ; (2) banded correlation, where expressions
of genes j and k have correlation coefficient
max(0,1x|jxk|r). r=0.2 or 0.33; and (3) compound
symmetry, where expressions of genes j and k have
correlation coefficient r when jlk, r=0.3 or 0.7.
With each simulated dataset, we generate network
modules using WGCNA. We find that when the
within-cluster correlation is strong, the resulted
modules tend to be correlated with the simulated
clusters. On the other hand, when the within-cluster
correlation is weak, there are considerable dis-
crepancies between the WGCNA modules and simu-
lated clusters. We consider two scenarios for the
prognosis-associated genes. Within each of the first
four (or two) modules, the first five genes are asso-
ciated with survival. There are thus a total of 20 (or
10) cancer-associated genes, and the rest are noises.
For cancer-associated genes, we generate their re-
gression coefficients from Unif[0.5, 1.5]. Thus, some
genes have large effects, and others have moderate to
small effects. For a subject, we generate the logarithm
of survival time from the AFT model with intercept
equal to zero. The logarithm of censoring time is in-
dependently generated from a normal distribution
with variance one. We adjust the mean of the censor-
ing distribution by trial and error so that the average
censoring rate is about 40%. To better gauge per-
formance of the proposed approach, we also consider
the following alternatives:

1. Enet (elastic net) (Zou & Hastie, 2005), which is a
penalization approach and has been extensively
used in the analysis of gene expression data.

2. Boost, which is an ordinary boosting approach and
takes goodness-of-fit as the only criterion for
choosing weaker learners. A BIC similar to that
with NSBoost is adopted for stopping.

3. SBoost, which is a sparse boosting approach and
considers goodness-of-fit as well as model com-
plexity measured using a BIC in boosting and
stopping.

4. NBoost, which is a network boosting approach
and has a two-step algorithm similar to that with
the proposed approach. The difference is that in
boosting only goodness-of-fit is considered when
choosing weaker learners.

Among the four alternative approaches, the first
three ignore the network structure and treat all gene
effects as interchangeable. The NBoost approach re-
spects the network structure, however, puts less em-
phasis on sparsity. We are aware that a large number
of approaches can be used to analyse the simulated
data. The above four approaches are chosen for
comparison, as Enet is one of the most extensively
used penalization approaches and particularly in-
cludes Lasso and ridge penalization as special cases
and, as the Boost, SBoost and NBoost approaches
have boosting frameworks closest to that of NSBoost.

Summary statistics, including medians and stan-
dard deviations, based on 200 replicates are presented
in Table 1. We can see that the Enet and Boost
approaches can identify all of the true positives.
However, under some scenarios, they may identify a
considerable number of false positives. SBoost, which
considers model complexity in boosting but ignores
the network structure, is ‘overly sparse ’ by having a
considerable number of false negatives. Without ac-
counting for model complexity in boosting, NBoost
identifies a large number of false positives. Under all
simulated scenarios, NSBoost has the best perform-
ance in terms of module and gene identification ac-
curacy. It is capable of identifying the majority or all
of the true positives while having a small number of
false positives. We have also experimented with a few
other simulation settings and reached similar conclu-
sions.

4. Data analysis

We collect four cancer prognosis studies with gene
expression measurements. Brief descriptions are pro-
vided in Table 2 and below. We refer to the original
publications for more details.

D1. Breast cancer is the second leading cause of
cancer death among women in the United States.
Sorlie et al. (2001) conducted a gene expression
profiling study, investigating whether it was feasible
to classify breast carcinomas based on gene ex-
pression patterns. cDNA profiling of 85 samples was

Table 2. Description of datasets. Gene: number of genes profiled

Data Disease Platform Gene Sample

D1: Sorlie et al. (2001) Breast cancer cDNA 8102 58
D2: Huang et al. (2003) Breast cancer Affymetrix 12 625 71
D3: Rosenwald et al. (2002) DLBCL cDNA 7399 240
D4: Rosenwald et al. (2003) MCL cDNA 8810 92
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conducted, showing that breast cancer could be
classified into a basal epithelial-like group, an
ERBB2-overexpressing group, and a normal breast-
like group. Among the 85 samples, 58 had survival
information available and will be analysed in this
study.

D2.Despite major progress in treatment, the ability
to predict metastasis of breast tumours remains lim-
ited. Huang et al. (2003) reported a study investigat-
ing metastatic states and relapses in breast cancer
patients. Affymetrix genechips were used for the pro-
filing of 71 samples. Both D1 and D2 are on breast
cancer prognosis. However, as suggested in multiple
publications great heterogeneity may exist across
studies, we choose to analyse D1 and D2 separately.

D3. Diffuse large B-cell lymphoma (DLBCL) is a
cancer of the B-cell. It accounts for y40% of all
non-Hodgkin lymphoma (NHL) cases. A DLBCL
gene expression study was reported in Rosenwald et
al. (2002). This study retrospectively collected tumour
biopsy specimens and clinical data for 240 patients
with untreated DLBCL. The median follow up was
2.8 years, with 138 observed deaths. Lymphochip
cDNA microarray was used to measure the expres-
sions of 7399 genes.

D4. Mantle cell lymphoma (MCL) accounts for
y8% of all NHLs. Rosenwald et al. (2003) reported a
gene expression study of MCL survival. Among 101
untreated patients with no history of previous
lymphoma, 92 were classified as having MCL based
on morphologic and immunophenotypic criteria.
Survival times of 64 patients were available, and the
rest were censored. The median survival time was 2.8
years. Lymphochip DNA microarrays were used to
quantify mRNA expressions in the lymphoma sam-
ples. Gene expression data on 8810 cDNA elements
were available.

Among the four studies, one used Affymetrix and
three used cDNA for profiling. We process the data-
sets as follows. We conduct normalization using the
lowess approach for cDNA data and the robust multi-
array (RMA) approach for Affymetrix data. Missing
measurements are imputed using the K-nearest
neighbours approach. Affymetrix gene expression
measurements are log 2 transformed. We select the
500 genes with the largest variances for downstream
analysis. Here, the pre-screening may serve multiple
purposes. First in cancer gene expression studies,
usually genes with higher variations are of more in-
terest. Second, it is expected that the number of cancer
prognosis-associated genes is far smaller than 500.
Pre-screening may remove genes that are highly un-
likely to be cancer-associated and significantly reduce
computational cost. More importantly, as described
above, the WGCNA approach involves estimating
covariance matrices. Pre-screening may significantly
reduce the dimensionality of such matrices and

improve estimation accuracy. Note that the number
of screened genes can be somewhat subjective. In the
pre-screening literature, there is still a lack of guide-
line on how many genes should be screened. With the
selected genes, we normalize their expressions to have
median zero and variance one.

With datasets D1–D4, the WGCNA approach
constructs 5, 4, 6 and 6 modules, respectively. For
dataset D4, we show the module construction result
in Fig. A.1 (Appendix I). Results for other datasets
are available with the authors.

We apply the NSBoost approach. The identified
genes and corresponding estimates are provided in
Appendix II. Searching PubMed suggests that some
of the identified genes have been suggested as cancer
markers in published studies. Detailed interpretations
of the identified genes are provided in Appendix III.
Note that here we investigate the implications of
identified genes individually. With the proposed ap-
proach, we conduct selection at the module level as
well as the individual gene level. Thus, gene level in-
terpretation is meaningful. In addition, research that
links network modules to specific biological
functions is extremely limited. As there is no strong
correspondence between network modules and path-
ways, pathway analysis may not be very sensible.
Evaluation of the biological implications deserves
more investigation in future research.

(i) Analysis with alternative approaches

We apply the four alternative approaches described in
the Simulation section. Summary analysis results for
all approaches are presented in Table 3. By conduct-
ing the module-level sparse boosting and hence en-
couraging sparsity at the module level, NSBoost
identifies the smallest number of modules, which may
lead to more focused hypotheses for downstream
analysis. Genes identified by NSBoost differ signifi-
cantly from those identified using Enet, Boost and
SBoost. For example for dataset D1, the numbers of
overlapped genes are 4, 5 and 3, respectively. The sets
of genes identified by NBoost and NSBoost are more
similar, which is as expected, as both approaches
use boosting for marker selection and account for the
module structure. For example for dataset D1, the
number of overlapped genes is 23. Although discus-
sions in Appendix III show that the NSBoost ident-
ified genes are biologically meaningful, with our
limited understanding of cancer genomics, we are
unable to determine whether they are ‘more mean-
ingful ’ than the other sets of identified genes. As an
alternative, we examine the prediction performance of
different approaches, which proceeds as follows:
(1) randomly split data into a training set and a testing
set with sizes 3 : 1; (2) analyse the training data and
identify markers. A natural by-product of the
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proposed approach is a prediction model ; (3) make
prediction for subjects in the testing set. The predic-
tive model can lead to a predicted risk score Xkb for
each subject. Dichotomize the risk scores at the me-
dian and create two risk groups. Compute the logrank
statistic, which measures the survival difference
between the two groups; (4) to avoid an extreme
partition, repeat steps (1)–(3) 100 times, and compute
the average logrank statistic. Table 3 shows that with
the four analysed datasets, NSBoost has the largest
logrank statistics and hence the best performance in
separating subjects into groups with different survival
risks.

5. Discussion

In cancer genomic studies, an important goal is to
identify markers associated with prognosis. There
exists inherent coordination among genes, and net-
work provides an effective way of describing such
coordination. In this study, we adopt the weighted
gene co-expression network and develop a two-step
sparse boosting approach to account for the network
structure in cancer marker selection. The proposed
approach is intuitively reasonable. Simulation and
data analysis demonstrate its satisfactory perform-
ance.

As shown in multiple published studies, network
modules may have important biological implica-
tions. The proposed approach respects the network
module structure and can be more informative

than alternatives that ignore such structure. Another
advantage of the proposed approach is its compu-
tational affordability. As can be seen from the
algorithm, only simple calculations are involved. In
the within-module boosting, the number of genes
per module can be much smaller than the total
number of genes. In addition, this step can be car-
ried out in a parallel manner. Thus, the first step of
boosting has computational cost much smaller than
that of ordinary boosting with all genes. With
WGCNA, the number of modules (and hence super
markers) is usually not large. Numerical studies
in Ma et al. (2010b, 2011) suggest less than 20.
Thus, the computational cost of the second step of
boosting is almost negligible. The proposed ap-
proach also has the advantage that its applicability
is relatively ‘ independent’ of the model setup and
network construction procedure. It is applicable to
other survival models and other types of data, for
example diagnosis studies with categorical response
variables and generalized linear models, with very
minor modifications.

As described in Section 1, there are multiple ways
of describing the interplay among genes. To the best
of our knowledge, there is a lack of definitive evi-
dence on the relative performance of different net-
work construction procedures. Our analysis shows
that with WGCNA, the proposed NSBoost may
improve cancer marker selection. It is possible that
in practical data analysis, adopting other network
construction methods can further improve predic-
tion and selection. As the focus of this study is on
the development of NSBoost, a more comprehen-
sive examination of its performance under different
networks is beyond our scope. We adopt the AFT
model to describe gene effects on survival.
Compared with alternatives such as the Cox model,
this model may have more lucid interpretations and
lower computational cost. Model diagnostics is not
conducted, as there is a lack of diagnostic tools for
survival analysis with high-dimensional gene ex-
pression data. The satisfactory prediction perform-
ance may partly support the validity of this model.
NSBoost can effectively account for the ‘module-
gene’ two-level hierarchical structure, which is not
the complete information contained in a network.
WGCNA and other networks contain other infor-
mation, for example the connectedness measure be-
tween any two genes within the same modules. It
may be possible to extend the proposed approach
and accommodate the connectedness measure in
marker selection. However, as discussed above, with
n=d, the uniform estimation consistency of d(dx1)/
2 connectedness measures is questionable. In con-
trast, the module structure can be much more re-
liable. Thus, we focus on the module structure in
our research. The simulation settings considered

Table 3. Data analysis results

D1 D2 D3 D4

Enet Gene 29 39 82 60
Overlap 2 3 6 0
Module 4 3 5 2
Logrank 0.089 8.931 3.405 5.629

Boost Gene 70 74 17 12
Overlap 5 4 1 0
Module 4 4 3 4
Logrank 1.704 2.478 1.642 7.976

SBoost Gene 31 26 22 12
Overlap 3 1 1 0
Module 3 2 4 2
Logrank 0.063 0.128 5.961 6.662

NBoost Gene 102 91 44 35
Overlap 23 21 13 14
Module 3 2 5 2
Logrank 0.266 0.318 8.996 17.015

NSBoost Gene 31 30 21 22
Module 2 1 1 1
Logrank 2.863 11.504 15.613 18.937

Gene, number of genes identified; Overlap, number of genes
overlapped with NSBoost ; Module, number of modules
identified; logrank, prediction logrank statistic.

S. Ma et al. 214

https://doi.org/10.1017/S0016672312000419 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672312000419


in this study are simpler than what is encountered
in practical data analysis. We intentionally choose
such settings as they may favour simple approaches
such as Enet and Boost. In data analysis, we con-
clude that NSBoost may be preferred as it identifies
a smaller number of modules and genes and has
better prediction performance. Analysis of indepen-
dent validation studies may be needed to fully

confirm performance of NSBoost and identified
markers.

We thank the editor and referees for careful review and in-
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Appendix I

Appendix II. Details on the identified genes and their estimates for dataset D1–D4.

Data D1

Gene ID Gene Name Module Estimate

Hs.154387 Tetratricopeptide repeat domain 35 (TTC35) 1 0.055
Hs.169330 Transgelin 3 (TAGLN3) 1 x0.160
Hs.180946 Family with sequence similarity 69, member A (FAM69A) 1 x0.332
Hs.24734 Oxysterol binding protein (OSBP) 1 0.458
Hs.25351 Iroquois homeobox 5 (IRX5) 1 x0.125
Hs.267632 TATA element modulatory factor 1 (TMF1) 1 x0.147
Hs.2719 WAP four-disulfide core domain 2 (WFDC2) 1 x0.028
Hs.27916 Transcribed locus 1 x0.954
Hs.30743 Preferentially expressed antigen in melanoma (PRAME) 1 0.114
Hs.418506 Insulin-like 4 (placenta) (INSL4) 1 x0.086
Hs.45743 Adenosine A2b receptor (ADORA2B) 1 x0.345
Hs.5344 Adaptor-related protein complex 1, gamma 1 subunit (AP1G1) 1 x0.051
Hs.621 Lectin, galactoside-binding, soluble, 3 (LGALS3) 1 x0.538
Hs.687 Cytochrome P450, family 4, subfamily B, polypeptide 1 (CYP4B1) 1 x0.034
Hs.73793 Vascular endothelial growth factor A (VEGFA) 1 0.057
Hs.74592 SATB homeobox 1 (SATB1) 1 x0.240
Hs.75206 Protein phosphatase 3, catalytic subunit, gamma isozyme (PPP3CC) 1 0.114
Hs.75400 Family with sequence similarity 168, member A (FAM168A) 1 0.481
Hs.78452 Solute carrier family 20 (phosphate transporter), member 1 (SLC20A1) 1 0.340

Fig. A.1. Module construction result for dataset D4.
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Data D1 (Cont.)

Gene ID Gene Name Module Estimate

Hs.80642 Signal transducer and activator of transcription 4 (STAT4) 1 x0.300
Hs.82921 Chromosome 6 open reading frame 165 (C6orf165) 1 0.508
Hs.83347 Angio-associated, migratory cell protein (AAMP) 1 x0.521
Hs.89582 Glutamate receptor, ionotropic, AMPA 2 (GRIA2) 1 0.508
Hs.93913 Interleukin 6 (interferon, beta 2) (IL-6) 1 x0.596
Hs.96063 Insulin receptor substrate 1 (IRS1) 1 x0.287
Hs.166994 FAT tumour suppressor homologue 1 (Drosophila) (FAT1) 2 x0.059
Hs.2256 Matrix metallopeptidase 7 (matrilysin, uterine) (MMP7) 2 x0.117
Hs.296634 Ceruloplasmin (ferroxidase) (CP) 2 x0.164
Hs.5716 SEC16 homologue A (Saccharomyces cerevisiae) (SEC16A) 2 x0.203
Hs.75275 Ubiquitination factor E4A (UFD2 homologue, yeast) (UBE4A) 2 0.141
Hs.75737 Pericentriolar material 1 (PCM1) 2 0.124

Data D2

Gene ID Gene name Estimate

Hs.13321 Rearranged L-myc fusion (RLF) x1.740
Hs.177584 3-oxoacid CoA transferase 1 (OXCT1) x0.089
Hs.180610 Splicing factor proline/glutamine-rich (SFPQ) x0.531
Hs.182626 Transmembrane protein 184B (TMEM184B) x0.263
Hs.184693 Transcription elongation factor B (SIII), polypeptide 1 (15 kDa,

elongin C) (TCEB1)
x0.134

Hs.21595 A kinase (PRKA) anchor protein 17A (AKAP17A) x1.065
Hs.24594 Ubiquitination factor E4B (UBE4B) x0.613
Hs.2488 Lymphocyte cytosolic protein 2 (SH2 domain containing leukocyte

protein of 76 kDa) (LCP2)
0.197

Hs.25363 Presenilin 2 (Alzheimer disease 4) (PSEN2) 1.032
Hs.2706 Glutathione peroxidase 4 (phospholipid hydroperoxidase) (GPX4) x0.276
Hs.282975 Carboxylesterase 2 (CES2) 0.088
Hs.284244 Fibroblast growth factor 2 (basic) (FGF2) x0.567
Hs.28914 Adenine phosphoribosyltransferase (APRT) x1.699
Hs.290070 Gelsolin (GSN) x0.909
Hs.297681 Serpin peptidase inhibitor, clade A (alpha-1 antiproteinase,

antitrypsin), member 1 (SERPINA1)
x1.176

Hs.30954 Phosphomevalonate kinase (PMVK) x0.079
Hs.343586 Zinc finger protein 36, C3H type, homologue (mouse) (ZFP36) x0.069
Hs.348935 Immunoglobulin lambda-like polypeptide 1 (IGLL1) x0.586
Hs.406186 Splicing factor 3b, subunit 4, 49 kDa (SF3B4) 0.397
Hs.4980 LIM domain binding 2 (LDB2) x1.418
Hs.5716 SEC16 homolog A (S. cerevisiae) (SEC16A) x0.076
Hs.75643 Nuclear factor (erythroid-derived 2), 45 kDa (NFE2) x0.327
Hs.76780 Protein phosphatase 1, regulatory (inhibitor) subunit 1A (PPP1R1A) 0.218
Hs.7912 Neuronal cell adhesion molecule (NRCAM) x1.076
Hs.79391 Huntingtin (HTT) x0.307
Hs.84746 Regulator of chromosome condensation 1 (RCC1) x1.377
Hs.8769 Transmembrane protein 47 (TMEM47) x0.310
Hs.93183 Vasodilator-stimulated phosphoprotein (VASP) x1.558
Hs.95821 Osteoclast stimulating factor 1 (OSTF1) x0.074
Hs.98938 Protocadherin alpha cluster, complex locus (PCDHA) x0.753

Data D3

Gene name Estimate

CASP2 and RIPK1 domain containing adaptor with death domain (CRADD) 0.011
Diacylglycerol kinase, delta (130 kDa) (DGKD) x0.017
Topoisomerase (DNA) II binding protein (TOPBP1) x0.012
ESTs x0.017
Surfeit 1 0.021
CDC7 cell division cycle 7-like 1 (S. cerevisiae) x0.042
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Data D3 (Cont.)

Gene name Estimate

Hypothetical protein FLJ10509 x0.014
Bromodomain adjacent to zinc finger domain, 1B (BAZ1B) 0.017
Septin 6 (SEPT6) x0.01
Complement component (3b/4b) receptor 1, including Knops blood group system (CR1) 0.01
Alanyl (membrane) aminopeptidase (ANPEP) 0.016
GRAMD1A GRAM domain containing 1A x0.054
Osteoblast specific factor 2 (fasciclin I-like) (POSTN) 0.014
Suppression of tumourigenicity 13 (colon carcinoma) (Hsp70 interacting
protein) (ST13P4)

x0.019

T-cell receptor delta locus (TRA) 0.01
Myosin, light polypeptide 2, regulatory, cardiac, slow (MYL2) 0.008
Ankyrin 1, erythrocytic (ANK1) 0.014
ESTs x0.009
LCOR ligand-dependent nuclear receptor corepressor x0.009
Immunoglobulin superfamily receptor translocation associated 1 (FCRL4) 0.035
Immunoglobulin superfamily receptor translocation associated 1 (FCRL4) 0.011

Data D4

Gene ID Gene name Estimate

15870 Interferon-induced protein with tetratricopeptide repeats 1 (IFIT1B) 0.02
15977 SHC (Src homology 2 domain containing) transforming protein 1 (SHC1) x0.032
16847 Special AT-rich sequence binding protein 1 (binds to nuclear matrix/

scaffold-associating
DNAs) (SATB1)

x0.023

17312 Neuroblastoma RAS viral (v-ras) oncogene homologue (NRAS) x0.03
19261 Inhibitor of DNA binding 2, dominant negative helix-loop-helix protein (ID2) 0.026
24473 Similar to Williams–Beuren syndrome critical region protein 19 (LOC442608) x0.026
24635 Meningioma expressed antigen 5 (hyaluronidase) (MGEA5) 0.026
26475 Chemokine (C–C motif) ligand 3 (CCL19) x0.032
27108 CD24 antigen (small cell lung carcinoma cluster 4 antigen) 0.064
27199 Prostaglandin-endoperoxide synthase 1 (prostaglandin G/H synthase

and cyclooxygenase) (PTGS2)
0.024

28027 Activating transcription factor 2 0.066
28973 Tissue inhibitor of metalloproteinase 3 (Sorsby fundus dystrophy,

pseudoinflammatory)
x0.026

29286 Haematopoietically expressed homeobox (HHEX) x0.009
30596 Immunoglobulin superfamily receptor translocation associated 1 0.017
31298 Zinc finger protein 592 0.059
31543 SH3-domain kinase binding protein 1 (SH3KBP1) 0.041
31702 Hypothetical protein FLJ90709 0.022
31731 CDNA FLJ41270 fis, clone BRAMY2036387 0.036
31979 Kelch-like 14 (Drosophila) (KLHL14) 0.039
32902 MRNA full-length insert cDNA clone EUROIMAGE 1534000 x0.027
33017 Chromosome 3 open reading frame 14 (C3orf14) 0.045
33424 Chromosome 3 open reading frame 1 0.017

Appendix III. Biological implications of the identified

genes

D1. Among the identified genes, gene TTC35 is one
of the identified breast cancer markers according
to G2SBC (http://www.itb.cnr.it/breastcancer/php/
browse.php). Gene FAM69A encodes a member of
the FAM69 family of cysteine-rich type II trans-
membrane proteins. It has been implied in the devel-
opment of multiple sclerosis and ovarian cancer,

suggesting that it may play an essential role in cancer
development. It is also involved in the development of
mental disorders. Gene IRX5 encodes a member of
the iroquois homeobox gene family, which are in-
volved in several embryonic developmental processes.
Studies with knockout mice lacking this gene show
that it is required for retinal cone bipolar cell differ-
entiation, and that it negatively regulates potassium
channel gene expression in the heart to ensure
coordinated cardiac repolarization. Gene WFDC2
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encodes a protein that is a member of the WFDC
domain family. This gene is expressed in pulmonary
epithelial cells and is also found to be expressed in
ovarian cancer, which shares multiple genetic markers
with breast cancer. Gene PRAME encodes an antigen
that is predominantly expressed in multiple cancer
tissues such as melanomas and that is recognized by
cytolytic T-lymphocytes. It is not expressed in normal
tissues, except testis. Gene INSL4 encodes the insulin-
like 4 (INSL4) protein, a member of the insulin su-
perfamily. Its involvement in breast cancer develop-
ment is proposed in Burger et al. (2005). Gene
Adenosine A2b receptor (ADORA2B) is over-
expressed in cancer tissues under a hypoxic state,
promoting cancer cell growth (Ma et al., 2010a).
Gene LGALS3 encodes a member of the galectin
family of carbohydrate binding proteins. This protein
plays a role in numerous cellular functions including
apoptosis, innate immunity, cell adhesion and T-cell
regulation. Gene CYP4B1 encodes a member of the
cytochrome P450 superfamily of enzymes. In rodents,
the homologous protein has been shown to metabo-
lize certain carcinogens. Gene VEGFA is a member of
the PDGF/VEGF growth factor family and encodes a
protein that is often found as a disulphide-linked
homodimer. This protein is a glycosylated mitogen
that specifically acts on endothelial cells and has
various effects, including mediating increased vascu-
lar permeability, inducing angiogenesis, vasculogen-
esis and endothelial cell growth, promoting cell
migration and inhibiting apoptosis. Published studies
have suggested gene SATB1 as a marker for breast
cancer, gastric cancer and non-small cell lung cancer.
The protein encoded by gene SLC20A1 is a sodium-
phosphate symporter that absorbs phosphate from
interstitial fluid for use in cellular functions such as
metabolism, signal transduction and nucleic acid and
lipid synthesis. The encoded protein is also a retro-
viral receptor, causing human cells to be susceptible to
infection by gibbon ape leukaemia virus, simian sar-
coma-associated virus, feline leukaemia virus sub-
group B, and 10A1 murine leukaemia virus. The
protein encoded by gene STAT4 is a member of the
STAT family of transcription factors. In response to
cytokines and growth factors, STAT family members
are phosphorylated by the receptor-associated ki-
nases, and then form homo- or heterodimers that
translocate to the cell nucleus where they act as tran-
scription activators. Gene angio-associated migratory
cell protein (AAMP) is found to be expressed strongly
in endothelial cells, cytotrophoblasts and poorly dif-
ferentiated colon adenocarcinoma cells found in
lymphatics. Gene IL-6 encodes a cytokine that func-
tions in inflammation and the maturation of B-cells.
The functioning of this gene is implicated in a wide
variety of inflammation-associated disease states,
including susceptibility to diabetes mellitus and

systemic juvenile rheumatoid arthritis. Gene FAT1 is
an orthologue of the Drosophila fat gene, which en-
codes a tumour suppressor essential for controlling
cell proliferation. Its product functions as an adhesion
molecule and/or signalling receptor, and is likely to be
important in developmental processes and cell com-
munication. Proteins of the matrix metalloproteinase
(MMP) family are involved in the breakdown of ex-
tracellular matrix (ECM) in normal physiological
processes, such as embryonic development, repro-
duction and tissue remodelling, as well as in disease
processes, such as arthritis and metastasis. The pro-
tein encoded by gene CP is a metalloprotein that
binds most of the copper in plasma and is involved
in the peroxidation of Fe(II)transferrin to Fe(III)
transferrin. Mutations in this gene cause acer-
uloplasminemia, which results in iron accumulation
and tissue damage. The protein encoded by gene
PCM1 is a component of centriolar satellites, which
are electron dense granules scattered around centro-
somes. Chromosomal aberrations involving this gene
are associated with papillary thyroid carcinomas and
a variety of haematological malignancies, including
atypical chronic myeloid leukaemia and T-cell lym-
phoma, suggesting that this gene plays an essential
role in cancer development.

D2. Gene RLF is widely expressed in foetal and
adult tissues, suggesting that it has a general role in
transcriptional regulation. It encodes a Zn-15 related
zinc finger protein and plays a role in deregulating the
tightly controlled expression of the L-myc oncogene.
Gene OXCT1 encodes a member of the 3-oxoacid
CoA-transferase gene family. The encoded protein is
a homodimeric mitochondrial matrix enzyme that
plays a central role in extrahepatic ketone body ca-
tabolism by catalysing the reversible transfer of
coenzyme A from succinyl-CoA to acetoacetate. Gene
TMEM184B is one of the breast cancer markers
identified by Bonnefoi et al. (2007). Gene TCEB1 en-
codes the protein elongin C, which is a subunit of the
transcription factor B (SIII) complex. It belongs to
the KEGG pathway in cancer, organism-specific bio-
system. The modification of proteins with ubiquitin is
an important cellular mechanism for targeting ab-
normal or short-lived proteins for degradation. Gene
UBE4B is the strongest candidate in the neuroblas-
toma tumour suppressor genes. Gene PSEN2 is one of
the confirmed Alzheimer’s disease (AD) susceptibility
genes. A negative correlation between the occurrence
of AD and cancer has been observed. Gene CES2
encodes a member of the carboxylesterase large fam-
ily. The protein encoded by this gene is the major in-
testinal enzyme and functions in intestine drug
clearance. It has been identified as a cancer marker in
Cai et al. (2009). The protein encoded by gene FGF2
is a member of the fibroblast growth factor (FGF)
family. FGF family members bind heparin and
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possess broad mitogenic and angiogenic activities.
This protein has been implicated in diverse biological
processes, such as limb and nervous system develop-
ment, wound healing, and tumour growth. The GSN
encoded calcium-regulated protein functions in both
assembly and disassembly of actin filaments. Defects
in this gene are a cause of familial amyloidosis Finnish
type (FAF). The protein encoded by gene SERPINA1
is secreted and is a serine protease inhibitor whose
targets include elastase, plasmin, thrombin, trypsin,
chymotrypsin and plasminogen activator. Defects of
this gene are associated with the development of
breast cancer and lung cancer. Gene ZFP36 has been
implied in the development of colon cancer, head and
neck squamous cell carcinoma, tissue inflammation,
cervical cancer and colorectal cancer, indicating its
generic role in cancer development. The protein en-
coded by the LDB2 gene is capable of binding to a
variety of transcription factors and is likely to func-
tion at enhancers to bring together diverse transcrip-
tion factors and form higher order activation
complexes or to block formation of such complexes
(Jurata & Gill, 1997). The fact that LIM domain-
binding factors are likely to be involved in the coor-
dination of the transcriptional activity of many
diverse factors may implicate them in human pheno-
types characterized by multiple affected sites. Cell
adhesion molecules (CAMs) are members of the
mmunoglobulin superfamily. This gene encodes a
neuronal CAM with multiple immunoglobulin-like
C2-type domains and fibronectin type-III domains.
This ankyrin-binding protein is involved in neu-
ron–neuron adhesion and promotes directional sig-
nalling during axonal cone growth. This gene is also
expressed in non-neural tissues and may play a gen-
eral role in cell–cell communication via signalling
from its intracellular domain to the actin cytoskeleton
during directional cell migration. Vasodilator-
stimulated phosphoprotein (VASP) is associated with
filamentous actin formation and likely plays a wide-
spread role in cell adhesion and motility. VASP may
also be involved in the intracellular signalling
pathways that regulate integrin-ECM interactions.
VASP is regulated by the cyclic nucleotide-dependent
kinases PKA and PKG. The protocadherin
alpha gene cluster is one of three related clusters
tandemly linked on chromosome five. These neural
adhesion proteins most likely play a critical role in
the establishment and function of specific cell–cell
connections.

D3. The protein encoded by gene CRADD is a
death domain (CARD/DD)-containing protein and
has been shown to induce cell apoptosis. Through its
CARD domain, this protein interacts with, and thus
recruits, caspase 2/ICH1 to the cell death signal
transduction complex that includes tumour necrosis
factor receptor 1 (TNFR1A), RIPK1/RIP kinase and

numbers of other CARD domain-containing proteins.
Gene DGKD encodes a cytoplasmic enzyme that
phosphorylates diacylglycerol to produce phosphati-
dic acid. Diacylglycerol and phosphatidic acid are two
lipids that act as second messengers in signalling cas-
cades. Their cellular concentrations are regulated by
the encoded protein, and so it is thought to play an
important role in cellular signal transduction. The
TopBP1 protein includes eight BRCT domains (orig-
inally identified in BRCA1) and has homology with
BRCA1 over the carboxyl terminal half of the protein.
Gene CDC7 encodes a cell division cycle protein with
kinase activity that is critical for the G1/S transition.
The yeast homologue is also essential for initiation
of DNA replication as cell division occurs.
Overexpression of this gene product may be associated
with neoplastic transformation for some tumours.
Gene BAZ1B encodes a member of the bromodomain
protein family. It is expressed in multiple tumour tis-
sues, including adrenal tumour, breast tumour, cervi-
cal tumour, chondrosarcoma, head and neck tumour,
leukaemia, lymphoma, prostate cancer and several
others. Gene CR1 is a member of the receptors of
complement activation (RCA) family and is located in
the ‘cluster RCA’ region of chromosome 1. The gene
encodes a monomeric single-pass type I membrane
glycoprotein. The protein mediates cellular binding to
particles and immune complexes that have activated
complement. Decreases in expression of this protein
and/or mutations in its gene have been associated with
gallbladder carcinomas, mesangiocapillary glomer-
ulonephritis, systemic lupus erythematosus and sar-
coidosis. Gene ANPEP has been identified as a marker
for lung cancer and prostate cancer. In the small in-
testine aminopeptidase N plays a role in the final di-
gestion of peptides generated from hydrolysis of
proteins by gastric and pancreatic proteases. Gene
POSTN is involved in the development of gastric
cancer and pancreatic cancer. Gene MYL2 encodes
the regulatory light chain associated with cardiac
myosin beta (or slow) heavy chain. Ca+ triggers the
phosphorylation of regulatory light chain that in turn
triggers contraction. Ankyrins are a family of proteins
that link the integral membrane proteins to the
underlying spectrin-actin cytoskeleton and play key
roles in activities such as cell motility, activation,
proliferation, contact and the maintenance of specia-
lized membrane domains. Gene FCRL4 encodes a
member of the immunoglobulin receptor superfamily
and is one of several Fc receptor-like glycoproteins
clustered on the long arm of chromosome 1. This
protein may play a role in the function of memory B-
cells in the epithelia. Aberrations in the chromosomal
region encoding this gene are associated with non-
Hodgkin lymphoma and multiple myeloma.

D4. Gene IFIT1B is identified as a lymphoma sus-
ceptibility marker in Gaiser et al. (2002). Gene SHC1

Network-based prognosis analysis 219

https://doi.org/10.1017/S0016672312000419 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672312000419


encodes three main isoforms that differ in activities
and subcellular location. Although all three are
adapter proteins in signal transduction pathways, the
longest (p66Shc) may be involved in regulating life
span and the effects of reactive oxygen species. The
other two isoforms, p52Shc and p46Shc, link acti-
vated receptor tyrosine kinases to the Ras pathway by
recruitment of the GRB2/SOS complex. Gene SATB1
has been identified as a marker for breast cancer,
gastric cancer and non-small cell lung cancer, sug-
gesting its fundamental role in cancer development.
Gene NRAS is an N-ras oncogene encoding a mem-
brane protein that shuttles between the Golgi appar-
atus and the plasma membrane. Mutations in this
gene have been associated with somatic rectal cancer,
follicular thyroid cancer, autoimmune lymphoproli-
ferative syndrome, Noonan syndrome and juvenile
myelomonocytic leukaemia. The protein encoded by
gene ID2 belongs to the inhibitor of DNA binding
family, members of which are transcriptional reg-
ulators that contain a helix-loop-helix (HLH) domain
but not a basic domain. This protein may play a role
in negatively regulating cell differentiation. Gene
CCL19 is one of several CC cytokine genes clustered
on the p-arm of chromosome 9. Cytokines are a
family of secreted proteins involved in im-
munoregulatory and inflammatory processes. The CC
cytokines are proteins characterized by two adjacent
cysteines. The cytokine encoded by this gene may play
a role in normal lymphocyte recirculation and hom-
ing. It also plays an important role in trafficking of T-
cells in thymus, and in T-cell and B-cell migration to
secondary lymphoid organs. Gene PTGS2 encodes
the inducible isozyme. It is regulated by specific sti-
mulatory events, suggesting that it is responsible for
the prostanoid biosynthesis involved in inflammation
and mitogenesis. Gene TIMP3 belongs to the TIMP
gene family. The proteins encoded by this gene family
are inhibitors of the MMPs, a group of peptidases
involved in degradation of the ECM. It has been
implied in the development of multiple cancers,
including for example colorectal cancer, head and
neck cancer and breast cancer. Gene HHEX encodes
a member of the homeobox family of transcription
factors, many of which are involved in developmental
processes. Gene ZNF592 plays a role in a complex
developmental pathway and the regulation of genes
involved in cerebellar development. Gene SH3KBP1
encodes an adapter protein that contains three N-
terminal Src homology domains, a proline-rich region
and a C-terminal coiled-coil domain. The encoded
protein facilitates protein–protein interactions and
has been implicated in numerous cellular processes
including apoptosis, cytoskeletal rearrangement, cell
adhesion and in the regulation of clathrin-dependent
endocytosis.
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