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Abstract

In this note it is shown that a result of Champion and De Pascale [‘Asymptotic behavior of nonlinear
eigenvalue problems involving p-Laplacian type operators’, Proc. Roy. Soc. Edinburgh Sect. A 137
(2007), 1179–1195] implies that the variational eigenvalues of the p-Laplacian are continuous with
respect to p.
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1. Introduction

Let�⊂ Rn be a bounded domain with Lipschitz boundary. We consider the following
boundary value problem: {

−1pu = λ|u|p−2u in �,
u = 0 on ∂�,

where 1< p <+∞, λ ∈ R and 1pu := div(|∇u|p−2
∇u) is the p-Laplacian. A

number λ ∈ R is called an eigenvalue if there exists a function u ∈W 1,p
0 (�) \ {0}

(called an eigenfunction) such that∫
�

|∇u|p−2
∇u∇v = λ

∫
�

|u|p−2uv

for every v ∈W 1,p
0 (�). One can prove (see [3]) the existence of a sequence of

eigenvalues {λk(p;�)}
+∞

k=1 such that

0< λ1(p;�) < λ2(p;�)≤ · · · ≤ λk(p;�)→+∞

as k→+∞. These eigenvalues are characterized by (2.1) below and are often referred
to as variational eigenvalues. In the literature one can find investigations of the
behaviour of the variational eigenvalues for varying p; the asymptotic behaviour for
p→ 1 was studied in [7, 9], while the case p→+∞ was considered in [5, 6].
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[2] Continuity of the variational eigenvalues of the p-Laplacian with respect to p 377

In this note we consider the issue of the continuity of the variational eigenvalues
with respect to p. In [4] it was shown that λ1(p;�) and λ2(p;�) depend continuously
on p, but the continuity of the remaining eigenvalues was stated as an open problem.
As we will see in Section 3, this can actually be shown by means of the more general
results of [2].

2. Definitions and preliminary results

2.1. Variational eigenvalues. Let A ⊂W 1,p
0 (�). The Krasnoselskii genus of A is

defined as

γ (A) :=min{m ∈ N | ∃ϕ : A→ Rm
\ {0}, ϕ continuous and odd}.

For k ∈ N we define

0k := {A ⊂W 1,p
0 (�) ∩ {‖v‖p = 1} | A symmetric, compact in W 1,p

0 (�),

nonempty, γ (A)≥ k}.

Then, the numbers

λk(p;�) := inf
A∈0k

sup
v∈A

∫
�

|∇v|p (2.1)

are eigenvalues of the p-Laplacian satisfying

0< λ1(p;�) < λ2(p;�)≤ · · · ≤ λk(p;�)→+∞

as k→+∞ (see for instance [8, Corollary 3.1]). It is not known whether other
eigenvalues exist, unless p = 2 or n = 1 where the answer is negative; in any case,
there does not exist any eigenvalue between λ1(p;�) and λ2(p;�) (see [1]).

2.2. 0-convergence. Let X be a metric space. We say that a sequence of functionals
F j : X→ [−∞,+∞] 0-converges to F∞ : X→ [−∞,+∞] for j→∞ if for every
x ∈ X we have the following.

(i) (liminf inequality) For every sequence {x j }
∞

j=1 converging to x we have

F∞(x)≤ lim inf
j→+∞

F j (x j ).

(ii) (limsup inequality) There exists a sequence {x j }
∞

j=1 converging to x (called a
recovery sequence) such that

F∞(x)≥ lim sup
j→+∞

F j (x j ).

The function F∞ is called the 0-limit of {F j }, and we write

F∞ = 0 − lim
j→+∞

F j .

A family {Fε}ε>0 of functionals 0-converges to a functional F0 for ε→ 0 if

F0 = 0 − lim
j→+∞

Fε j

for every subsequence ε j → 0.
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2.3. A convergence result. For the sake of completeness, we recall here the main
results of [2]. Let {Fε}ε>0 be a family of functionals Fε : L1(�)→ [0,+∞] such that
the following hold.

(i) For every ε > 0, Fε is convex and 1-homogeneous.
(ii) There exist β > α > 0 such that for every ε > 0 there exists pε ∈ [1,+∞] for

which {
α‖∇v‖pε ≤ Fε(v)≤ β‖∇v‖pε if v ∈W 1,pε

0 (�),

Fε(v)=+∞ otherwise.

(iii) The family {pε}ε>0 converges to some p0 ∈ [1,+∞], and the family {Fε}ε>0
0-converges in L p0(�) to some functional F0.

Under these hypotheses, one has from [2, Theorem 3.3, Corollary 3.6] that the numbers

λk
ε := inf

A∈0k
sup
v∈A

Fε(v),

defined for ε ≥ 0, satisfy

λk
ε→ λk

0

as ε→ 0.
We define now for q > 1

Fq(u) :=

{
‖∇u‖q for u ∈W 1,q

0 (�),

+∞ for u ∈ L1(�) \W 1,q
0 (�).

(2.2)

It is clear that the family {Fq} satisfies conditions (i) and (ii) above, and that

λk
q := inf

A∈0k
sup
v∈A

Fq(v)= λk(q;�)
1/q .

If we manage to prove that the functionals Fq 0-converge in L p(�) to Fp for q→ p,
which means that also condition (iii) is satisfied, then it would follow that λk(p;�)
is continuous with respect to p because λk

q → λk
p as q→ p (see Theorem 3.2). The

0-convergence of Fq to Fp for q→ p is in fact the content of Proposition 3.1.

3. Main results

PROPOSITION 3.1. Let �⊂ Rn be a bounded domain with Lipschitz boundary. Let
p, q ∈ (1,+∞). Define

Fq(u) :=

{
‖∇u‖q for u ∈W 1,q

0 (�),

+∞ for u ∈ L1(�) \W 1,q
0 (�).

Then the functionals Fq 0-converge in L p(�) to the functional Fp for q→ p.

PROOF. We distinguish two cases: the case q→ p+ and the case q→ p−.
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The case q→ p+. liminf inequality. Let uq → u in L p(�) for q→ p+; if
lim infq→p+ Fq(uq)=+∞ there is nothing to prove. If lim infq→p+ Fq(uq)= c <

+∞ then the uq are uniformly bounded in W 1,p
0 (�) by Hölder’s inequality; hence

there exists a sequence uqk such that qk→ p+ as k→+∞, limk→+∞ Fqk (uqk )= c

and uqk ⇀ u weakly in W 1,p
0 (�). From the weak lower semicontinuity of the norm it

follows that ∫
�

|∇u|p ≤ lim inf
k→+∞

∫
�

|∇uqk |
p

≤ lim inf
k→+∞

(∫
�

|∇uqk |
qk

)p/qk

|�|(qk−p)/qk

≤ lim inf
k→+∞

(∫
�

|∇uqk |
qk

)p/qk

· lim sup
k→+∞

|�|(qk−p)/qk

= lim inf
k→+∞

(∫
�

|∇uqk |
qk

)p/qk

so that
Fp(u)≤ lim inf

k→+∞
Fqk (uqk )= lim inf

q→p+
Fq(uq).

limsup inequality. Let {qk}
+∞

k=1 be an arbitrary sequence such that qk→ p+ as

k→+∞. If u /∈W 1,p
0 (�), there is nothing to prove. Let us suppose u ∈W 1,p

0 (�); if
u = 0, simply take uk = 0. If u 6= 0, we can find a sequence of functions uk in C∞c (�)
(and hence in W 1,∞

0 (�)) such that uk→ u in the W 1,p-norm. It follows that(∫
�

|∇u|p
)1/p

= lim
k→+∞

(∫
�

|∇uk |
p
)1/p

= lim
k→+∞

‖∇uk‖∞

(∫
�

|∇uk |
p

‖∇uk‖
p
∞

)1/p

≥ lim sup
k→+∞

‖∇uk‖∞

(∫
�

|∇uk |
qk

‖∇uk‖
qk
∞

)1/p

≥ lim sup
k→+∞

(‖∇uk‖∞)
(p−qk)/p

(∫
�

|∇uk |
qk

)1/p

≥ lim inf
k→+∞

(‖∇uk‖∞)
(p−qk)/p

· lim sup
k→+∞

(∫
�

|∇uk |
qk

)1/p

.

If lim infk→+∞ ‖∇uk‖∞ = c > 0, we obtain(∫
�

|∇u|p
)1/p

≥ lim sup
k→+∞

(∫
�

|∇uk |
qk

)1/p

= lim sup
k→+∞

(∫
�

|∇uk |
qk

)1/qk
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which is the claim. If lim infk→+∞ ‖∇uk‖∞ = 0, we would have, by the liminf
inequality,(∫

�

|∇u|p
)1/p

≤ lim inf
k→+∞

(∫
�

|∇uk |
qk

)1/qk

≤ lim inf
k→+∞

‖∇uk‖∞ · |�|
1/qk = 0

and thus u = 0, a case which we ruled out.

The case q→ p−. liminf inequality. Let uq → u in L p(�) for q→ p−

and fix ε > 0; if lim infq→p− Fq(uq)=+∞ there is nothing to prove. If

lim infq→p− Fq(uq)= c <+∞ then the uq are uniformly bounded in W 1,p−ε
0 (�) by

Hölder’s inequality; hence there exists a sequence uqk such that qk→ p− as k→+∞,

limk→+∞ Fqk (uqk )= c and uqk ⇀ u weakly in W 1,p−ε
0 (�). From the weak lower

semicontinuity of the norm it follows that∫
�

|∇u|p−ε ≤ lim inf
k→+∞

∫
�

|∇uqk |
p−ε

≤ lim inf
k→+∞

(∫
�

|∇uqk |
qk

)(p−ε)/qk

|�|(qk−p+ε)/qk

≤ lim inf
k→+∞

(∫
�

|∇uqk |
qk

)(p−ε)/qk

· lim sup
k→+∞

|�|(qk−p+ε)/qk

= |�|ε/p lim inf
k→+∞

(∫
�

|∇uqk |
qk

)(p−ε)/qk

so that

Fp−ε(u)≤ |�|
ε/p(p−ε) lim inf

k→+∞
Fqk (uqk )= |�|

ε/p(p−ε) lim inf
q→p−

Fq(uq).

Notice that the value lim infq→p− Fq(uq) depends neither on the choice of the
particular subsequence, nor on the choice of ε. Letting ε tend to 0, we obtain

Fp(u)≤ lim inf
q→p−

Fq(uq).

limsup inequality. Set qk→ p−. If u /∈W 1,p
0 (�), there is nothing to prove. If

u ∈W 1,p
0 (�), then it belongs in particular to W 1,qk

0 (�) for every k and so we can
simply consider the constant sequence uk := u for every k; then of course

Fp(u)= lim
k→+∞

Fqk (uk).

This concludes the proof. 2

THEOREM 3.2. The variational eigenvalues λk(p;�) are continuous functions with
respect to p.
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PROOF. By Proposition 3.1 the functionals Fq defined in (2.2) satisfy conditions (i),
(ii) and (iii) in Section 2.3 with ε = |q − p|, α = β = 1, pε = q and p0 = p. Define

λk
q := inf

A∈0k
sup
v∈A

Fq(v).

It is clear that λk
q = λk(q;�)1/q . From [2, Theorem 3.3] we obtain

λk
q → λk

p

as q→ p, and hence the claim. 2
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