A THEOREM IN THE PARTITION CALCULUS CORRIGENDUM

BY P. ERDÖS AND E. C. MILNER

We are grateful to Dr. A. Kruse for drawing our attention to some misprints in [1], and also to a technical error in our deduction of (19) which we remedy below.

Misprints. 1. Page 502, last line. Replace ω^{12} by ω^{11} . 2. Page 505, equation (17). This should read:

(17)
$$g_i(g_{i+1}(\cdots(g_{j-1}(\gamma_i))\cdots)) = \gamma_i \qquad (i < j < \omega).$$

3. Page 505, line 3. Replace (12) by (14).

4. Page 505, line 4. The displayed formula should read

$$\rho = g_i(g_{i+1}(\cdots g_{j-1}(\gamma_j))\cdots).$$

In order to make (19) correct we define x_n , $S^{(n)}(n < \omega)$ a little more carefully and replace lines 21-31 on Page 504 by the following:

Let $n < \omega$ and suppose that we have already chosen elements $x_i \in S$ (i < n)and a subset

(12)
$$S^{(n)} = \bigcup (v \in B) A_v^{(n)}(<)$$

of S of order type $\alpha\beta$ such that $S^{(n)} \subset K_1(\{x_i:i < n\})$. If $\alpha \ge \alpha + \alpha$, then choose sets $A, A' \subset A_{\gamma_n}^{(n)}$ such that A < A'; if on the other hand $\alpha \ge \alpha + \alpha$, then put $A = A' = A_{\gamma_n}^{(n)}$. In either case it is true that if $x \in A$ and $A'_1 \subset A'$, then there is $A'_2 \subset$ A_1 such that $\{x\} < A'_2$. With this remark in mind, it now follows from (10) that there are $x_n \in A$, a strictly increasing map $g_n: B \to B$ and sets $A_v^{(n+1)}$ $(v \in B)$ such that

(13)
$$g_n(\gamma_i) = \gamma_i \quad (i \le n),$$

(14)
$$A_{v}^{(n+1)} \subseteq K_{1}(x_{n}) \cap A_{g_{n}(v)}^{(n)} \quad (v \in B),$$

(16)
$$\{x_n\} < A_{\gamma_n}^{(n+1)} \subset A'.$$

From the definition of A, we also have

(15)
$$x_n \in A_{y_n}^{(n)} \subset S^{(n)}.$$

Reference

1. P. Erdös and E. C. Milner, A theorem in the partition calculus, The Canadian Mathematical Bulletin, 15 (1972), 501-505.