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1. INTRODUCTION 

Convective dynamo theory can be regarded as combining two kinds of 

physical problems, each Involving an electrically conducting fluid 

medium, but differing in the role of the magnetic field and in the 

physical processes described. On the one hand, if the fluid is taken 
- * • 

to be permeated by a prescribed magnetic field B, under suitable 
conditions, involving a sufficiently strong flux of heat for example, 

convective motion of the fluid will ensue. On the other hand, kine­

matic dynamo theory insures that a sufficiently complicated fluid 

motion u can sustain or excite a magnetic field. In a convective 

dynamo the origin of the magnetic field is internal and we must regard 

the applied and excited fields as one and the same (Figure 1). In the 

present paper we shall outline some of the current work on such sys­

tems . The research has been motivated primarily by the search for 

tractable models of planetary and solar magnetism, and the focus in 

this paper will be on models of the geodynamo. For simplicity we 

restrict attention to Bousslnesq fluids and emphasize asymptotic solv­

able problems rather than a realistic description of the Earth's core. 

We shall, however, require that the dynamo be essentially convective, 

in that no auxiliary driving forces are needed. (The convective 

process could of course involve any advected, diffusing substance 

which changes the weight of a fluid element.) 

1-?-̂  rotation? 

kinematic induction 
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u 

magnetic convection 
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I 
Figure 1. The Convective Dynamo Cycle. 

The simplest physical system admitting a convective dynamo cycle 

is not obvious (to this author), although in the case of the geodynamo 

it would appear that large-scale rotation of the fluid is sufficient 
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if not essential. In the models discussed below it is precisely the 

combination of bouyancy and Coriolis forces which create the neces­

sary flow structure, so in this respect at least they may be relevant 

to the processes at work in the Earth's core. 

2. BOUNDS AND ESTIMATES 

One way to define dynamo action is simply to require that the mean 

magnetic field of the system, obtained by appropriate integrals over 

space and time, be positive. With this definition we can, in a sense, 

"prove" dynamo action by showing that the convective system with B • 0 

is unstable to magnetic fields; that is, small "seed" fields are 

always amplified. This property can be tested rather easily since the 

two parts of the system depicted in Figure 1 decouple when the magne­

tic field is weak. Now it is an essential feature of our problem that 

the mean magnetic energy of the ultimate state(s) of the dynamo is 

an internal property of the system, although we may assume that 

such a mean energy may be defined and that it will depend upon the 

various parameters, the geometry, etc. This being the case, it is of 

interest to determine, without studying the evolution of the system in 

detail, an a priori upper bound on mean magnetic energy. 

This intriguing question was apparently first studied only recent­

ly by Kennett (1974) in the case of Benard convection between free, 

perfectly conducting plane isothermal boundaries rotating about a 

vertical axis (cf. Section 5 below). We will use the following nota­

tion: y = magnetic permeability, p = density, V - kinematic viscos­

ity, K = thermal diffusivity, n = magnetic diffusivity, a - coeffi­

cient of thermal expansion, all of the above being taken to be 

constant, P = V / K = Prandtl number, P • T\/K, R - Rayleigh number 
1 4 

(based on a temperature gradient y) "= aygL /KV , M - Hartmann number 
1/2 2 4 2 

- BL/(unPv) , Ta = Taylor number - 4ft L /v , where fi is the 
angular speed of the system. If E„ denotes the time and volume mean 

2 
of B , Kennett's result may be written 

EB < 4R3/2BJ;/9TrV, BQ = (unpv)1/2/L . (1) 

This estimate is obtained by equating the mean dissipation to the 

mean work done by the gravitational forces, and involves extensions of 

the familiar power integrals of the Benard problem. 

Although as a general rule analysis of this kind rather severely 

overestimates energies, (1) is interesting as an indication of the 

influence of the various material properties. The parameter 
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P is evidently significant in determining the magnetic energy 

realized by convection at a given Rayleigh number. Incidentally, P 
6 ^ 

has a value of about 10 in the earth's core, but may be as small as 

10 in stars because of radiative cooling, so that ideally we would 

like a dynamo model to retain P as an arbitrary parameter. The fact 

that the bound (1) diverges as T\ •* 0 probably reflects the infinite 

amplification that can be achieved in a perfect conductor by the 

twisting and stretching of field lines. But note that the bound also 
-1/2 diverges like v in the limit of small viscosity. While such a 

divergence might be expected for convection between isothermal bound­

aries in the limit of zero Prandtl number, it seems unlikely for 

systems driven by a fixed rate of heating; in this case E should be 
B 

bounded independently of the viscosity. 

Such a result is in fact implied by the interesting thermodynamic 

arguments of Malkus (1973), and Hewitt, McKenzie, and Weiss (1975). 

Following these authors we consider a spherical region of (current) 

conducting fluid surrounded by a rigid non-conductor. Let the bound­

ary r » L be held at a fixed temperature T. and the interior be 

heated uniformly at the rate q.. We seek a bound for the magnetic 

energy in terms of the material constants, L, and q_. Let E , q. , 
0 B J 

q , and W now denote the time averages of global Bz, joule dissipa­

tion, viscous dissipation, and bouyancy work, respectively, all 

normalized by the volume V of the sphere. Assuming internal energy 

is bounded in time the first law requires 
W - qj + qv , qj i 0, qy > 0 . (2) 

On the other hand, a well-known property of currents in a homogeneous 

spherical conductor is (see e.g. Backus 1958) 

l i 1 nir2EB/yL
2 . (3) 

Then from (2) and (3) 

EB <_ yL2W/nir2 . ( 4 ) 

To estimate W we use the temperature equation in the Boussinesq limit, 

|^ + u-VT - KV2T - q0/Pcp • (5) 

Let, with g«u - urrg0/L, 
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L 

W = (4Trapg0/LV) I r
3 w(r) dr (6) 

0 

so that w is the time average of the spherical mean of u T. If 6 

denotes the same operation on T, (5) yields upon integration the flux 

balance 

r3w - Kr3 |f = A 0 / 3 p c p . (7) 

o 

We may measure 9 in K. Integrating (7) from r - 0 to r - L and 

using 8 ^ 0 we have 

L 

J r3w dr < L5qQ/15pcp + KL
3TQ . (8) 

0 

Combining (4), (6) and (8) there results 

nEB/nL
2q0 < (e/5TT

2)(l + 15KpCpT0/L
2q0) . (9) 

Here @ •= ag.L/c is the ratio of L to the temperature scale height 
0 p 

and is necessarily a small number in the Boussinesq approximation. 

(The inclusion of the dissipation terms on the right of (5) changes 
2 

(9) by terms 0(3 ).) But the left-hand side of (9) should be independent 

of the origin of the temperature scale and, indeed, it can be shown 

that for uniform heat addition (9) holds with T = 0. We therefore have 

TlEB/yL
2q0 <_ B/51T

2 . (10) 

This provides us with a useful (and small) measure of the efficiency 

of a convective dynamo. Other estimates of this kind are contained in 

the references cited above. 

If we introduce the Rayleigh number 

Rq = a8 0q 0L
5/pcpK

2V • 

then (10) may be rewritten 

EB ± Vo/ 5 i r 2 pn U 1 ) 

1/2 
and thus has the form of (1) reduced by a factor 9/(20 R ) , the 

bound now being independent of the viscosity. 

In the above we have dropped viscous dissipation because of the 
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inequality (3), but if this term is now retained one obtains 

L4q /pvn2 + 1T2ES/Bn < R„/5P
2 (11*) 

in place of (11). If, relative to a rotating frame, the no-slip 

condition is satisfied on the boundary, q can be bounded from 
-2 v 

below by a multiple of pvL E , in which case the terms on the left 

of the inequality would be comparable provided the ratio of kinetic 

to magnetic energy is roughly P /P. It is known (Childress 1969a) 
2 2 

that L E /n must exceed a fixed positive bound for a dynamo effect 
to be possible in a given domain of fluid. Consequently in the 
1/2 1/2 E_ - E plane a convective dynamo must lie within the first B u 

quadrant of an ellipse, and to the right of a vertical line determined 

by the dynamo condition. In reality, of course, the radius of the 

ellipse should be altered to express the existence of a critical 

Rayleigh number, and it would be of interest to extend (11*) to 

account for this shift, perhaps by applying the method used by 

Kennett (1974). 

Since the above arguments completely ignore the dynamical process 

by which the dynamo effect is realized, (11) tells us little about the 

behavior of any given system. Suppose, however, that some dynamics 

allows the bound (11) to be obtained, and take 1 ̂  P > 1. (Through­

out we use the symbol *\< as follows: a ^ b if a = 0(b) and b = 0(a).) 
2 

Then (11) implies M *\« R , which is reminiscent of the relation 
R <v< M (M >> 1) obtained for the critical Rayleigh number for con­

vection between isothermal planes dominated by the magnetic field 

(Chandrasekhar 1961). That is, the "optimal state" of the convective 

dynamo is close to marginal in the context of linear stability theory. 

If the process by which the optimal state were reached involved rapid 

rotation (Ta >> 1), the analogous stability results of Eltayeb and 

Roberts (1970) and Eltayeb (1972) show that if P > .67659, then 

R (M.Ta) is minimized when M -v. Ta , R ^ Ta1'2, which is again 

compatible with (11) when P > 1. (And note that M /Ta is also 

independent of viscosity.) The Eltayeb-Roberts ordering may be loose-
1/2 ly interpreted to imply that magnetic energy with Hartmann number T 

would be acquired by a rapidly rotating body once the Rayleigh number 
1/2 was raised to a value ^ T . But again the argument assumes the 

necessary dynamo action by the convection. In particular there is no 

implied critical rotation rate. 

If both fluid inertia and viscous stresses can be neglected (as 

seems to be the case in the Earth's core outside Ekman layers, cf. 

Roberts and Soward 1972), the dimensionless parameters of the heated 
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convective system may be reduced to a "Raylelgh number" 

R = R /P2Ta1/2 (12) 

1 / 2 2 
t o g e t h e r w i t h P , by t h e c h o i c e o f n / L , (2ftypn) , and q„L / p c n a s 

r\ u p 
units of speed, magnetic field strength, and temperature respectively. 

The dimensionless equations are then 

Vp + n-1nxu + Bx(VxB) = -Sg"1!!, V-u - 0, (13) 

• * 

|1 -V B = Vx(uxl), V-B" - 0 , (14) 

P- + u-VT - P-1V2T - 1 . (15) 
at n 

For given P , R we can seek solutions of (13)-(15) which are compat­

ible with boundary conditions, and from these determine the one 

with maximum E (now dimensionless). By (11) this value cannot 
2 exceed R/57T . Such an operating state, where the mean magnetic energy 

is as large as possible for a given heating rate, may be taken as 

"optimal", since it is presumably stable locally and can only lead 

to smaller energy under a finite perturbation. Of course it is not 

clear that the system admits any nontrivial solutions (B # 0). 

Note that if such a solution existed for some R, and if it were 

known that rotation was essential for a dynamo effect, then it would 

be necessary that solutions terminate for sufficiently small and 

sufficiently large values of R. 

The existing theory of convective dynamos has concentrated on 

cases which are probably far from optimal in the above sense. Viscous 

effects are freely admitted, parameters and geometry chosen to allow 

the convective modes to be determined by considerations at marginal 

stability, and various devices are used to simplify the analysis of 

electromagnetic induction. In the following sections we study various 

aspects of these highly idealized models, but return to some of the 

questions raised above at the end of the paper. 
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3. KINEMATIC INDUCTION 

This aspect of the problem has a large recent literature (see e.g. 

the reviews of Roberts 1971, Weiss 1971, and Gubblns 1974). One of 

the more direct evaluations of the regenerative effect is possible if 

the fields are taken to be periodic in space and time. (The spatially-

periodic case was treated by Childress 1967, 1969b, 1970; the theory 

in its most general setting was developed by G. 0. Roberts 1969, 1970, 

1972.) This situation arises naturally in planar or almost-planar 

models involving simple boundary conditions. The analysis Is facili­

tated (and can be made explicit) if the two dimensionless numbers 

r^ = 10 /T)k, rfe = U/nk, (16) 

where U, k , and 0) are the speed, wavenumber, and frequency charac­

teristic of the velocity field, satisfy 

rfc - o(l), r^ = 0(1). (17) 

That is, the magnetic Reynolds number of a fluid eddy must be small, 

and the time scale of the motion should be of the order of the decay 

time of a magnetic field structure of the same size. With (17) it 

becomes rather easy to demonstrate self-excitation of a magnetic field 

which is slowly-varying relative to the scales k, U). (It is unlikely 

that the first of (17) is satisfied in the Earth's core, but the basic 

inductive mechanism, which goes back to the pioneering paper of 

Parker (1955), can in fact be deduced without such a restriction 

(G. 0. Roberts 1970).) 

We return to the dimensional induction equations, which are 

11 _ nv
2B - Vx(uxB) , (18) 

V-B - 0 . (19) 

Consider the solenoidal velocity field 

u(o) - U(0, sin a, sin (a+((i)) , a = kx + (0t, (20) 

and suppose that B has the decomposition 

B - f + g, g = o(l), f slowly-varying. (21) 
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Using (20) and (21) In (18), (19), one sees that the part g will 

approximately satisfy 

| f - n V 2 | - f-V« . (22) 

so that f k + 

" = -TT7T ^ S + - • > • (23) 

n k +o) 
The slowly-varying component will then satisfy 

->• 

|| - nV2f = Vx(uxg) = V*(A-f), V-f - 0, (24) 

where the overbar denotes the a-average and A is a constant pseudo-

tensor. For (20) the only non-zero component of A is 

A l l * " ( r l k 3 u 2 < s i n < t > ) / ( n 2 k 4 + u 2 ) ) = a . ( 2 5 ) 

This additional contribution to mean electromotive force is usually 

referred to as the "a-effect". The most general a-effect, involving 

arbitrary symmetric A, can be created by suitably combining linearly 

independent modes of the form (20). It is easily seen that, by exam­

ining the case of diagonal A, that (24) can be made to admit exponen­

tially-growing spatially periodic solutions (and note that (17) 

insures that they will be slowly-varying). 

Let us look more closely at the underlying inductive mechanism 

when <)> - TT/2. From (22) it is clear that the source of small-scale 

magnetic structure is proportional to the x-derivative of u, i.e. to 

the shear of the flow. Now trigonometric spatial modes of the diffus­

ion equation decay without change of shape, but there is a phase shift 

between the solution and moving sources. Combining this shift with 

that Introduced by differentiation, we see that g Is proportional to 

u(a + rji) where Tik /a) " tan IJJ. As a varies, u and g rotate In the yz 

plane while maintaining this phase difference, so the induced current, 

obtained as a cross product, is independent of 0 and proportional to 

sin t|i. 

For a given mode (20) the corresponding entry in A is maximized 

when <j> » i|) = TT/2, I.e. the motion is both quasi-steady and Beltrami 

(vorticity and velocity everywhere parallel). This maximizes 

the mean helioity (Moffatt 1968), defined as the volume average of 

U'V*u, for a given mean kinetic energy. Note that the mean helicity 

is opposite in sign to a for these elementary Beltrami modes. 

To summarize, time-independent velocity modes having the property 
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that the velocity is orthogonal to the wavenumber vector and the 

two orthogonal components are 90° out of phase, provides a basic 

element of a particularly efficient kinematic dynamo process, charac­

terized by a constant mean helicity. A variety of other, less effici­

ent dynamo mechanisms (involving an A which either vanishes or has 

rank 1, see e.g. case IV in G. 0. Roberts 1972) can be studied by a 

refinement of these procedures, but In the present context it is 

rather a slightly different point of view which is needed, since the 

relevant convective modes cannot be regarded as exclusively small-

scale. We accordingly consider next the dynamo mechanisms which are 

compatible with the dynamics of convection. 

4. DYNAMICS 

The efficient kinematic dynamos considered above are very special 

in that the helicity of the flow may be averaged over space and time 

to obtain a non-zero pseudo-scalar H. It appears to be difficult, 

however, to find physical systems which will exhibit this property. 

For example, owing to disslpative processes we expect a rotating 

sphere of heated fluid to settle down so that H can be defined indepen 

dently of the initial conditions. Now restart the system but with 

initial conditions T(-r,0), -u(-r,0). If the magnetic field is zero 

the Boussinesq equations are invariant under this reflection (recall 

g - gnr), so the system will evolve toward a mean helicity -H = H, 

implying H - 0. To argue this in a different way, the mean state of 

the system should depend only upon the mean heating rate and various 

material parameters (all scalars) and the pseudo-vector ft, from which 

it is impossible to construct a pseudo-scalar. If the system is 

endowed with a magnetic field having mean dipole moment m (a vector), 

H could be expressed as an odd function of m-fi, but the record of 

magnetic reversals suggests that for the Earth there is no preferred 

polarity and therefore m - 0! 

If, nevertheless, rotation is to be regarded as essential to the 

convective dynamo, its action must be not to create mean helicity, 

but rather to "polarize" helicity in space (or time) in such a way 

that the resulting pattern of induced currents can be self-excited. 

This self-excitation is difficult to visualize and compute when the 

length and time scales are unique (as in the system (13)-(15)) since 

the induced currents resulting from the polarization are bound up 

closely with the "eddy" currents which dissipate the field. For the 

purpose of analysis of the effect it is therefore fortunate that 

sufficiently rapid rotation of the fluid introduces two spatial scales 
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Into the marginal stability problem, at least for sufficiently weak 

magnetic fields (Chandrasekhar 1961) , so that large-scale induction 

and small-scale dissipation can be clearly distinguished. 

To take a concrete example of a zero mean helicity dynamo, con­

sider the solenoidal field 

•*• a 

u = (- — sin kx cos az, sin kx cos az, cos kx sin az). (26) 

If k >> a the induction problem can be solved approximately as in 

Section 3, with similar results except that now there is an additional 

factor -j sin 2z in A. But note that (26) can also be written 

u - (0,|,i) sin(kx+az) + (0,i,-|) sin(kx-az) + 0(|) , (27) 

that is, as a sum of two 0(1) rapidly-varying fields, each having com­

ponents in •phase, so that each fails as an "efficient" dynamo of the 

kind considered above. An analogous calculation can be carried out 

for the standing wave 

•+• 2 

u • (0, sin kx cos at, cos kx sin at), a << r\V. (28) 

to obtain helicity varying as sin 2at, and (28) can be expressed as 

a sum of two progressive waves, moving in opposite directions with 

phase speed a/k. 

More generally, let 

u » v i s i n a + y'sina', o • k-r + ait , (29) 

and assume |k - k' | << k, |<D - a>' | <<r)k . One then finds, using the 

notation of Section 3, 

A - 1*' sin(a-a') ( M ) o k - (30) 

n k + a) 

The operation k ->• k' can be thought of as a reflection across a 

plane normal to k - k', and if ID - u' the dispersion relation for 

the modes must be Invariant under this reflection; in addition, from 

(30) it is clear that the two corresponding amplitudes must not be 

parallel. The special case k = k' , to' = -to, which could arise in 

a conservative system, gives the time-periodic induction. 

These properties pertain to infinite fields having the proper 

structure. In contained rotating fluids helicity can also be polarl-
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lzed as a result of "Ekman pumping" Into a quasl-geostrophlc flow. If 

the latter has wavenumber k, the secondary flow set up by the Ekman 

layer is of magnitude ^ Ta kL, L being the length scale for the 

container, and the resulting helicity may or may not be comparable to 

that introduced by other processes, depending upon the magnitudes of 

k and Ta. Under certain conditions it can be demonstrated that the 

Ekman layers are essential to a convective dynamo effect (see Roberts 

and Soward 1972), but in certain idealized models (Section 5) they 

definitely are not. 

The polarity of the resulting helicity is fixed by the direction 

of rotation and is easily computed. At a point on the boundary with 
-•• -»• • + 

outer normal n, the nearby helicity has the sign of -Q-n. For the 

rapidly rotating Benard layer (case I below), the polarity is the same 

as that introduced globally by the convection mode for free boundar­

ies, but the distribution is different and (as just noted) it is 
-1/12 smaller, by a factor Ta 

We turn now to the situation in rotating convection. We have in 

mind, of course, convection in a heated sphere or spherical annulus, 

but to get a qualitative picture it is helpful to consider several 

planar "approximations" to parts of a spherical annulus, which we 

indicate in Figure 2. 

8. Y 

Figure 2. Planar "approximations". The heavy lines indicate isother­
mal boundaries to be represented by tangent planes. In IV the 
included angle is made small. The polarization of helicity Is indi­
cated for rotation in the direction shown at the top. In a homogene­
ous sphere,region I can be regarded as extending from top to bottom. 
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We consider these regions in turn. Letting g and y be parallel and 
2 

constant, and choosing units of length, time, and speed to be L, L /v 

and K / L , we find the dimensionless linearized equations to be 

|r + Vp + Ta 1 / 2 i0*u - V
2u - -Ri T', V-u - 0 (31) 

P |^- + u-i - V 2 T ' - 0 (32) 

ot g 

where i and i~ are unit vectors, T is the temperature perturba­

tion, and we take Ta >> 1. 

Case I. This classical problem is treated by Chandrasekhar 

(1961). In the limit Ta •* «>, provided P exceeds about 0.68, convec­

tion ensues as a small-scale pattern. The critical wavenumber vectors 

(L is now the layer thickness) are almost perpendicular to i_, the 

motion is quasi-geostrophic, and under reflection across the plane of 

the layer the vertical velocity component changes sign. There is 

accordingly polarization of the helicity along the axis of rotation, 

in a manner similar to that obtained for the motion (26). The criti­

cal parameters are 

R = 3(ir2/2)2/3Ta2/3, k = (ir2Ta/2)1/ 6, (33) 
c c 

Using the term "roll" to denote the convection field corresponding to 

a given wavenumber vector k in the plane of the layer, and setting 

ifi = (0,0,1), a single roll has, in the case of free boundaries, the 

form 

u = IT s i n irz cos k*r i , + (it l a /k ) i->xk cos irz s i n k - r (34) 

Each such roll contributes an entry in the upper left 2 * 2 submatrix 

of A, which is a negative multiple of sin 2irz. The corresponding 

helicity has the polarity shown in Figure 2. For rigid boundaries the 

results are similar over the interior, the secondary Ekman flow being 

smaller by a factor k Ta ^ Ta according to (33). 

From the point of view of dynamo action, the essential feature of 

this case is the high degeneracy of the geostrophic flow, allowing 

rolls of arbitrary direction. The fact that A can be made to have 

rank 2 implies a relatively efficient dynamo process based exclusively 

on small scale motions (see Section 5). This realizes in a simple 
2 

planar geometry the so-called "a " kinematic dynamo (Roberts 1971). 

On the other hand region I can hardly be regarded as typical of the 

sphere as a whole, especially since, strictly speaking, the geostro-
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phic contours have this degeneracy only at the poles! 

Case II. Here gravity and 1- = (0,0,1) are orthogonal, and the 

choice of geostrophic velocity u = Vxijj(x,y)i, reduces the problem 

to classical Benard convection without rotation. There is no dynamo 

effect from these rolls since particle paths lie in planes. (Indeed 

from (18) it follows that B, decays, and the resulting two-dimension­

al non-dynamo can be regarded as a special instance of Cowling's 

theorem, cf. Roberts 1967.) 

However, these special solutions completely neglect the presence 

of "sidewalls" which might represent the effect of the sloping 

spherical boundary. As Busse (1970) has emphasized, the sidewall 

constraint drastically upsets the geostrophic balance and the near-

equatorial region is best approached through case IV below. 

Case III. We let i - (0,0,-1), i0 = (sin i/),0,cos i|>) . For 
g " 

steady convection the Rayleigh number is given by 

R = [k6 + Ta(k1sin * + k3cos ifi)
2] / (k^+k^ ) 

where k is now an arbitrary vector. To make this expression an even 

function of k_ and therefore obtain modes of the kind needed to 

satisfy conditions at the plane boundaries, it is seen that k.. must 

vanish, in which case the problem reduces to case I above but with Ta 
2 

replaced by Ta cos \\i. The effect of the obliqueness is therefore to 
reduce the critical Rayleigh number somewhat, and to restrict the 
locally horizontal wavenumber vector to be nearly perpendicular to 

• * • • • • 2 

the plane of ft and g. Thus the a dynamo of Case I is reduced to an 

incomplete or near incomplete a-effect, strongly biased toward induc­

ing i„ current from i. field. In kinematic dynamo theory this induc­

tion is nevertheless essential to the success of the "aw" dynamo 

(Roberts 1971), as originally envisaged by Parker (1955). In the 

aw mechanism the a-effect is supplemented by large-scale shear, which 

here replenishes the i field. Thus case III, which might be taken to 

be typical of a large fraction of spherical annulus, suggests a 

natural mechanism for obtaining "one-half" of the dynamo effect from 

convection. 

Case IV. Here one seeks to represent the effect of the sloping 

sidewalls. A class of such models was studied by Busse (1970) and 

subsequently used in a convective cycle (Busse 1975, see Section 6 

below). The model has the advantage of describing rather closely, in 

a simple geometry, the essential physics of the convective instability 

in a rapidly rotating, heated homogeneous sphere (Busse 1970). 

The sidewalls upset geostrophy through Ekman pumping as well 
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as by their inclination to the axis of rotation, but the latter 

effect can be made to dominate. In this case Busse's results can be 

obtained rather easily by inverting a device of the oceanographer and 

replacing a slow decrease of the depth by a slow increase of ft. Let 

I = (-1,0,0), i0 = (0,0,1), and replace T a 1 / 2 by Ta1 / 2(1 + Xx) in 

(31). Letting 

u - V x ij/(x,y,t)i3 , p - -(1 +Xx)Ta1 / 2 * + p' 

and eliminating p' by cross-differentiation we obtain 

("tf7 " V 2 ) V 2 * " ty" (ATal/2* + RT'> • <35) 

P M l _ V2T, , 11 v 2 = _ i ! + _ 3 ^ (36) 
* 3 t W 2 L 3y ' V2 . 2 + . 2 • KJ0' 

1 3x dy 
If we look for modes proportional to exp(iu)t + lax + iby) we have 

(Piu + c2)(iwc2 + c4 + iaXTa1/2) - Ra2 , (37) 

2 2 2 
where c = a + b . Thus 

ID = -(aXTa1/2)/(P + l)c2 , a2R = c6 + (P/(P+l))2a2XTa/c2 

and the conditions for marginal stability become 

,2/3 
a 
c 

- 2 1 / 6(XP/(l+P)l 1 / 3Ta 1 / 6, b - 0, R - 3(XP/(l+P))4/3(Ta/2)2 

v ' c c 

(38) 

If X is regarded as small, the perturbation is on the strict geostro-

phic equilibrium of case II, but it is a singular perturbation with 

strong roll selection. If X is regarded as i> 1, the ordering (38) is 

in accord with that of cases I and III, although the mode in the 

present case has some features of a Rossby wave. In Busse's formula­

tion X is a typical sidewall slope and should be taken as positive, 

so the phase speed given by (38) is "eastward". (If one regards the 

observed "westward drift" of the non-dipole geomagnetic field as a 

phase speed of a flow field associated with the a-effect, this result 

is disappointing. However, as Busse notes the group velocity is west­

ward, and this raises the question of whether sufficiently super­

critical convection in this system might not take the form of inter­

mittent wave packets.) 

As we have noted the model can be interpreted as an appropriate 

local section of a sphere, parametrized by the latitude of the inter-
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section with the boundary and,if this Is done, reasonable agreement Is 

obtained with the stability analysis of a rapidly rotating heated 

sphere (Roberts 1968, Busse 1970). Roberts found that convection 

begins on a cylindrical annulus oriented parallel to the axis of rota­

tion, with radius about half that of the sphere, and consists of 

vertical rolls of dimension i> Ta along the aximuth, the radial 
-1/9 thickness of the convection zone being ^ Ta , both relative to the 

radius of the sphere. It would appear that in the planar model the 

radial structure is lost, or rather reflected only in the vanishing 

of b in (38). Certainly the spherical case should have a local 

approximation with radial structure, which could be incorporated Into 

a dynamo model. Soward's remarks at this meeting concerning his 

current calculations of the localized a-effect point toward such a 

possibility, which would in effect open the way to an asymptotic 

analysis of the spherical dynamo. 

5. BiNARD-TYPE MODELS 

We consider in this section two examples of a convective dynamo 

cycle based upon a classical Benard layer. Busse (1973) considers 

Benard convection without rotation. It is assumed that only one set 

of rolls is present, so helicity is created by adding a shear flow 

along the axis of the rolls. Such a flow is somewhat artificial for 

a Benard layer, but it can in principle be driven by a modification 

of the mean temperature profile. Moreover, such distortions might 

well arise in a different geometry through convective heat transport 

oblique to the direction of gravity. To effect a scale separation it 

is assumed that the (spatial) mean magnetic field is dominated by a 

component orthogonal to the roll axis and slowly-varying along it. 

In this model the mean helicity vanishes, since the unidirectional 

shear flow passes down rolls of alternating sign. The kinematic 

dynamo effect is therefore not the first order a-effect of Section 3, 

but rather a higher-order mechanism involving the spatial derivatives 

of the mean magnetic field. (In the terminology of Roberts 1971 the 

dynamo is of "Bio" type.) Busse uses a numerical method to study the 

equilibration of the system and the partitioning of internal energy. 

While his approach, being essentially quasi-steady, does not deal with 

the dynamics of equilibration, it does reveal an interesting balance, 

similar to that suggested by (11*), which is perhaps typical of near-

critical convective dynamos. Namely, if R - R > 0 is sufficiently 

small, one finds that aE + bE„ = constant, where a and be are posi-
u B ft 

tive constants, but that E must exceed a critical value E in order 
u u 
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to have a dynamo effect. The conclusion is that for E > E* the 
u u 

field energy will increase as the kinetic energy falls, while for 
E < E the kinetic energy will rise as the field decays. Ultimately 
u u 

the magnetic field will be sustained at the maximum energy compatible 

with the above dynamic constraint as well as stationary dynamo action. 

The second model, put forward by Childress and Soward (1973) and 

worked out by Soward (1974) for equilibrium at minimum field energy, 

is based upon the rotating Benard layer considered as case I in Sec­

tion 4. This model utilizes the rotation of the fluid to effect the 

scale separation, in a manner which permits the dynamics of equilibra­

tion to be followed in detail. We take P ^ 1. 

n 

The "weak-field" case studied by Soward (1974) as sumes that the 

Hartmann number of the induced field is ^ 1. This a priori hypothesis 

on field intensity is then justified by exhibiting consistent, appar­

ently stable,operating states. The rolls have the form (34) with k an 

arbitrary vector in the plane of the layer. The length L is here the 

thickness of the layer, so that for regeneration of the field we must 

have (cf. (25) with 0) = 0) 

R2 % k -v T a 1 / 6 , 
m c 

where Rm « UL/TI is a magnetic Reynolds number based on roll ampli-
1/12 

tude U. Thus Rm % Ta 
•1/12, 

g 1 Ta ~' "" f. 
-1/12 

and the small-scale field satisfies 

This ordering generates a series solution in powers 
^i /i 9 

of Ta 

The mean field equations are easily obtained for a discrete or 

continuous distribution of rolls, and in the former case, with 

f" = ( B ( z , t ) ,B ( z , t ) , o ) , t a k e t h e fo rm 

SB, 
•r-r- + 2TTA — [ s i n 2irz M , , ( t ) B , ] 
o t dz i J J 

32B, 
= 0 

3z 
(39) 

where, in terms of the A in (24), 

-A 
M = 21 

hi 
22 

42 
(40) 

Here the unit of time is L /r\. Note that, since we have in mind that 

roll structure is to be determined by auxiliary equations of evolution, 

the discreteness or continuity of the roll pattern is determined by 

the initial conditions. In (39) and (40) the normalization is such 

that A.. + A„, = 2 so that A(t) is a parameter proportional to 

the kinetic energy of the flow. 

For the weak-field solutions, it turns out that near marginal 
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instability A is fixed by the quantity (R - R )/R . Thus the dynamics 

of the model reduces to the study of how the magnetic field deter­

mines the partitioning of a fixed constant kinetic energy among the 

various rolls. Soward was able to show that the roll structure indeed 

evolves on the same time scale as the field. If q(t,K) denotes the 

kinetic energy in 

q takes the form 

kinetic energy in a given roll, where K = k/Ta , the equation for 

Jj - 2 I Q(K.K') q(t,K) q(t.K') 
K' 

- [B(t,K) - | I B(t.K') q(t,K')] q(t,K) = 0 , (41) 

K' 
- * • ->- - * • 

where Q(K,K') and 3(t,K) are given explicitly, the former being skew 

in its arguments. The magnetic field is contained in the quantity g, 

which takes the form 

3 = f(K) + g(K) I K.K. ^ ( B , . B J , (42) (K) + g(K) I K K £f(B B ) , 
1 ±,i 3 J 

^ ( f ) = I (Tr2cos2TTz - K 2 s in 2 i r z ) f dz 

0 

Finally, the matrix A in (40) is obtained from the q's by 

K K 
A,, = I - ^ q(t,K) (43) 

J •* K K 

where we may set K = K . 
c 

The weak-field model is then given by (39)-(43) with A as para­

meter. Soward examines 2 and 3-roll solutions of this system, as well 

as an interesting continuous-roll solution, and finds a tendency for 

the kinetic energy to localize itself at any one time in rolls near 

a single direction, but the direction itself changes with time. In 

fact, as the number of admitted discrete rolls is increased, the solu­

tions tend increasingly to resemble a single rotating roll, a property 

then explicitly exhibited in the continuous roll example, where energy 

is dispersed about an orientation which rotates with uniform speed. 

Physically, the magnetic field, at each instant, favors rolls with a 

certain orientation (determined by the term 3 in (41)). From (39) one 

sees that the oc-effect then feeds energy into the component of the 

field parallel to the preferred roll axis. If the field were indepen­

dent of z, the analysis of Eltayeb (1972) would apply and it could be 

concluded that rolls with axis orthogonal to the field are most 

unstable. Thus both field and roll axis rotate, as the ot-effect keeps 
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up with the destabilizing effect of the field. This argument would 

imply that rotation is opposite to the large-scale rotation of the 

layer (cf. M in (39) when A is diagonal), a property that was always 

obtained in Soward's calculations. 

The continuous-roll solution consists of at least two branches 

when E„ is plotted as a function of A, with subcritical bifurcation 
a 

occurring from E = 0 , A = 1.5974, and it seems likely from the 2 

and 3-roll calculations that some of these are stable on the time 

scale of the model. (Soward establishes dynamic stability on the 

relevant short time scale.) On the other hand, it is by no means 

obvious that these solutions are stable to finite increases of 

initial field energy, and Indeed the Eltayeb-Roberts ordering men­

tioned in Section 2 would suggest that they are not. 

Preliminary attempts by the author to test the stability of the 

dynamo by starting it with magnetic energy corresponding to a Hartmann 
1/12 number ^ Ta (the intermediate-field regime) have in fact uncovered 

several kinds of instability, and recent unpublished calculations of 

Yves Fautrell in the strong-field regime Ta < 0(M) < Ta also 

indicate instability under certain conditions. It is not definitely 

known at this time whether or not there are regimes other than that of 

weak field where local stability is obtained. It is possible that 
1/4 stability is regained only at the "very strong field" level M ^ Ta , 

but there the multiple-scale procedure is ineffective since k ^ 1. 

At the intermediate level one finds, first, that dynamic stability 
2 —1/12 

on the fast time scale, shorter than L /n by a factor Ta , is 

upset. Examination of some two-roll solutions show that this 

instability represents collapse onto a single roll (without the dis­

persion of energy about a preferred direction which characterized the 

weak-field continuous-roll solution). Single-roll solutions are 

dynamically stable on the fast time scale at the intermediate level. 

Single-roll solutions are found to be unstable, however, on the time 
2 

scale L /n ! To see how this happens we write out the equation for q 
at the intermediate-field level: 

Ta"1/6 |£ = q[Cl + c26(t) + c3^.(B-K)
2)] , (44) 

where the c's are positive constants. Here 6Ta is an amplitude of 

the perturbation of the mean temperature,satisfying 

f + c40 - - c5A , (45) 

where again the c's are positive constants. In particular, at the 
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intermediate level A must be retained as a function of time even at 

fixed Rayleigh number. Let us assume that the system (39), (44), (45) 

is started "most stably" by adjusting the roll angle and 0 to make the 

right-hand side of (44) take on its maximum value, and that this value 

is zero. Assuming that this configuration (stable on short time scales) 

is maintained, we may neglect the left-hand side of (44), solve for 0, 

and use this expression in (45) to obtain an expression for A in terms 

of B, which expression can then be used in (39) to obtain an equation 

for B.(This procedure also fixes the roll angle as a function of B.) 

Numerical studies clearly show that in general this system allows solu­

tions which diverge in a finite time, owing to the quadratic dependence 

of A upon B, and quite apart from the dynamo or non-dynamo property of 

a single roll. In effect it appears that the field has destabilized 

the convection to the extent that divergent behavior of the field is 

caused by the rapid increase of the kinetic energy and heat flux, rather 

than by dynamo action. 

One reason for these difficulties may lie in the degeneracy allowing 

multiple-roll solutions. Indeed, if a single roll direction could be 

fixed by other considerations (as in Cases III and IV in Section 4 ) , 

the component of the field which is amplified by dynamo action is ortho­

gonal to K, and so does not enter into (44). So long as more than one 

roll direction is permitted, however, the quadratic growth of A with B 

would probably have the instability of the rotating roll. 

It can also be asked whether the instability is not an indirect result 

of the isothermal boundary condition, which more realistically should be 

replaced by a condition of constant mean heat ££ux. Some tentative work 

at the intermediate level did not indicate a stabilizing effect, but the 

question remains undecided at the higher field levels. 

6. THE ANNULUS MODEL 

As an outgrowth of his quasi-planar analysis of convection in case IV 

above, Busse (1975) has considered a corresponding convective dynamo model 

His approach, as in the stability analysis, is to consider a simultaneous 

expansion for large Ta and small XD, where X is a typical boundary slope 

and D >> 1 is the width to height ratio to the annulus. The geometry is 

summarized in Figure 3. 
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T = T„ 

(D/2,0,0) 

Figure 3. Busse's annulus model; lengths are in units of the 
mean height. The almost horizontal boundaries are given by 
2z = + exp(-Ax). 

The top boundaries are treated as rigid interfaces between conductor 

and non-conductor, and on the vertical ones the temperature perturba­

tion as well as the x-component of velocity vanish. 

The latter conditions are particularly important, since they 

enforce a fixed roll structure on the convection, effectively remov­

ing the degeneracy of case I. Indeed, from the analysis of Section 4, 

we see that an and R again have the asymptotic expressions (38), 

but now b = TT/D, SO the most unstable velocity mode has the form 

1/2 a ATa (sin(Trx/D + ir/2) s i n a y , c c 

( n / a D) cos(irx/D + it/2) cos a y , 0) . c c 

(46) 

Of course, once R exceeds R a band of wavenumbers with continuously 
* c 

varying b will grow, but rather than introduce a Fourier transform we 

follow Busse and take (46) , which can be expressed as a sum of two 

rolls with wavenumber vectors a ± ir/D, as typical of the convec-

tive mode. 

The helicity corresponding to (46) vanishes identically, so the 

kinematic dynamo action rests on the combined effects of Ekman pumping 

and sidewall slope. For suitable parameter values the former effect 

can be made to predominate, and an o-effect is achieved, but one which 

is strongly biased, the induced current associated with a y-component 
2 2 of the mean field being (a /b ) = 1/e times that associated with a c c 
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comparable x-component. The steady-state mean field is thus found to 

satisfy an equation obtainable from (39) by replacing sin 2TTZ by z, 

and M by 

0 

1/e 
(47) 

where 

m = [ ( A 2 a 5 T a 3 / 4 ) / 8 / 2 (io2 + a 4 P 2 / P 2 ] (ir/D) . 
C C C T) 

(48) 

These expressions can be derived using the familiar results for the 
2 -1 

flow induced by the Ekman layer, together with (25) . Since w /a "v-P 
c c 

we see from (47) and (48) that the quantity 

T = P2A2a Ta3/4/D(l+P2) 
c T\' 

(49) 

must exceed a positive number of order unity if we are to have a 

dynamo effect. 

A second condition is imposed by the two-scale expansion. The 

small-scale magnetic field can be estimated from (22) as follows: 
1/2 

The dimenslonless velocity amplitude is a A Ta , and since the 

x-component of the field predominates (see below), the relevant shear 

is 1/D times this amplitude. Thus 

g/f -v- a A T a 1 / 2 D - 1 (O)2 + P2 / p 2 a 4 ) " 1 / 2 « 1 

c c n c 

is a condition on the expansion. Combining (50) with the condition on 

T and using (38) we have 

Ta1^4XD >> 1 , (50) 

and this inequality is easily met by the assumed ordering. On the 

basis of his solution of the kinematic dynamo problem Busse concludes 

that if 

i b /P Ta1^4 >> 1 

c c n 
(51) 

(the inequality following equation (5.3) of Busse 1975), the expan­

sion is consistent. This adds a much stronger condition, which can 

only be met, with a given by (38) and b *v» 1/D, by making P small. 

Since it is Important to retain P as a large parameter in a geodynamo 

model, it will be of interest to know if (51) can be relaxed while 
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maintaining a consistent expansion, or if (50) by itself might be 

sufficient. 

The equilibration of the system Is studied using an equilibrium 

calculation as for the non-rotating layer model of Section 5, with 

similar results: For slightly supercritical convection the magnetic 

and kinetic energies are linearly related and the system equilibrates 

as the dynamo effect becomes stationary. 

The model has a number of advantages over those of Benard type, 

the foremost being that it is constructed to represent the convection 

within a region of a homogeneous rotating sphere. Roll structure is 

independently fixed by the boundary conditions, rather than evolving 

in response to the mean magnetic field. The ot-effect is of a new 

type, induced by the response of the domain to a Rossby-like wave. 

As Busse notes, the rather stringent conditions on the parameters 

can probably be considerably relaxed without affecting the qualitative 

features of the model. Moreover, the behavior of the system as a weak 
2 

a -type dynamo is probably of secondary importance compared to the 

insight it gives into the possible origin of the a-effect in a sphere. 

In this connection it should be mentioned that the effect of the 

boundary (absent in the realization of the case IV considered In Sec-
2 

tion 4) enters into a as 0(X ) , and thus is a reflection of boundary 

curvature. This boundary contribution is independent of viscosity and 

can be made to predominate over that due to Ekman pumping, although 

Busse does not investigate the full dynamo cycle in that case. 

On the other hand, certain features of the solution, imposed by 

its asymptotic form, should be noted. First, the a-effect is such 
_2 

that B "V. e B. , and since B here represents the "meridional" 

component of the field, the dynamo Is characterized by a small 

"toroidal" component. As Busse notes, the implication is, if one 

accepts the model when e ^ 1, that the two components are comparable, 

but it is disturbing that this state is approached through an 

asymptotic ordering that is usually regarded as improbable in the 

Earth's core. A second point concerns the possibility of subcritlcal 

instabilities. We have seen in the case of the rotating Benard model 

that the locally stable weak-field case may not be stable to finite-

amplitude perturbations in the magnetic field, and the question arises 

as to whether or not a similar state of affairs prevails here. If one 

examines the stability in case IV with an applied uniform magnetic 

field of the form B(i + e J), it can be seen that (37) is replaced by 

2 2 4 2 2 1/2 2 
(iP(0 + c )(iwc + c + M b + iaXTa ' ) - Ra (52) 
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where M Is the Hartmann number based on B. From (52) it is easily 
1/2 seen that convection at Rayleigh numbers *v XTa can be realized 

2 1/2 
provided that a "X. b >v< 1 and that M <\. XTa . This is fully 

analogous to the Eltayeb-Roberts ordering mentioned earlier, and we 

suggest that there may be similar implications for the present model 

at higher field energies. 

7. MODAL EXPANSIONS 

Numerical calculations utilizing truncated expansions in funda­

mental modes have played a prominent role in the kinematic dynamo 

theory (we mention In particular the pioneering paper of Bullard and 

Gellman (1954) and the recent study of Gubblns (1973)) as well as in 

the simulation of thermal convection (Gough, Spiegel, and Toomre 1975). 

It is natural to consider the application of these methods to the 

convective dynamo. 

One immediate difficulty is the choice of appropriate "fundamental 

modes", capable of representing the system at a rather low level of 

truncation. The asymptotic models of the kind discussed above, which 

have something of a "modal" character near the critical Rayleigh 

number, can be helpful here. The practical problem is, of course, 

that if the asymptotic solution were to represent a globally stable 

state, its finite-amplitude modal counterpart offers a modest and 

perhaps unnecessary extension. On the other hand, the value of the 

modal approach lies in simulation of the dynamo, and there the struc­

ture of the asymptotic solutions may be misleading. To take a speci­

fic example, in rapidly rotating non-magnetic Benard convection the 

roll structure is given by (34). As we have seen, however, the 

appropriate horizontal scale of the convection may increase dramati-
2 1/2 cally once a magnetic field is developed and M "\< Ta . Generally 

the horizontal scales of the modes are prescribed at the outset and 

it is not obvious, a priori,what value should be used. 

In a rotating Benard layer, the fundamental modes for velocity or 

magnetic field will generally consist of a "poloidal" part 

? - Fz(z,t)Vf(x,y) - F(z,t)V
2f(x,y)i3 

and a "toroidal" part 

f = G(z,t)I3 x Vg(x,y) 
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where f and g are functions chosen to represent the horizontal struc­

ture. The fields are built up from a finite number of such terms, 
2 2 each corresponding to a choice of a,b in the equations V f + a f •* 0, 

2 2 
V g + b g - 0. 

This approach has been applied by Baker (1973) to a Benard-type 

convective dynamo. Baker focuses on a "2-mode" closure (the number of 

distinct F and G) and specifically on square convection cells generat­

ed by the choice f = cos(ax) • cos(ay). If the system does not 

rotate, the model can be further reduced to "1-1/2 modes" by express­

ing the magnetic field in terms of one pololdal and one toroidal 

component, and the velocity field in terms of two pololdal modes. One 

then obtains six equations, second order in z and first order in t, 

for the undetermined functions. The full 2-mode system includes 

additional toroidal parts of the velocity field and takes account of 

the influence of the Coriolis force, so it would appear to be the 

simplest modal realization of a rotating dynamo. 

In the 1-1/2-mode closure dynamo action was found to occur over 

a range of parameter values and for various boundary conditions. 

In Figure 4 we show the energies developed in one of the oscillatory 

dynamos. In this example the mean magnetic energy is about 2.5 times 

the mean kinetic energy, and the tendency for the peaks to be out of 

phase is consistent with Busse's quasi-equilibrium analysis at margi-

TIME 

Figure 4. An oscillatory dynamo with 1 1/2 modes, for perfectly 
conducting rigid walls, E = 105, P = 0.1, P - 1, a - 3.1 (from 
Baker 1973)). n 
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nal stability (Section 5). The effect of rotation was not studied in 

the same detail, but in some preliminary computations with 2-mode 

closure the rotation was found to enhance the dynamo effect. Perhaps 

most interesting is the fact that the calculations suggest the exis­

tence of a convective dynamo effect in a Benard layer without rota­

tion, for square cells whose horizontal dimension is comparable to 

the thickness of the layer. Unfortunately, Baker notes a rather poor 

convergence in going from 1-1/2 to 2 modes, so it must be regarded as 

possible that the dynamo effect is illusory at this low level of 

truncation. 

Probably the simplest model of Benard convection involves single 

modes for velocity, perturbed temperature, and mean temperature, and 

a further projection of the vertical structure onto a mode of the form 

exp(imirz). The resulting system of three first-order ordinary differ­

ential equations in time is known as the Lorenz-Howard-Malkus or "ABC" 

convection model (Lorenz 1963, Malkus 1972). Recently Kennett (1976) 

has extended this system to encompass magnetohydrodynamic convection, 

by the addition of terms representing the poloidal and toroidal field 

components. The resulting "ABCDE" model can be thought of as a pro­

jection of the vertical structure of Baker's 1-1/2 mode system, and 

is simpler by one equation because of the absence of one poloidal mode 

in the velocity. Indeed it is probably the minimal modal system for 

a non-rotating convective dynamo. An interesting aspect of the form­

ulation is that it should allow systematic study of periodic and 

aperiodic behavior; the latter is known to occur in the ABC model 

(Lorenz 1963) as well as in other third-order systems (Baker, Moore, 

and Spiegel 1971). The "CBE" part of the system, moreover, bears a 

certain resemblance to the shunted disk-dynamo model studied by 

Robbins (1975). 

Kennett shows that the system admits equilibrium solutions with 

non-zero magnetic field provided that 

R > ci + pnc2 

where the c's are constants determined by the form of the horizontal 

modes. For a range of parameter values these equilibria are unstable, 

however, and by applying the method of averaging it is shown that 

there exist in that case, in the limit of large time, nearby linearly 

stable periodic solutions with non-zero magnetic field. 

Because of their relative simplicity these systems are very useful 

and deserve further study. It would be interesting to know, for 

example, what insight could be gained concerning the role of rotation 
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in the dynamo process, through the addition of a toroidal velocity 

mode. Also, it is to be hoped that as our understanding of the pro­

cess deepens, a mode structure can be devised which converges rapidly 

with the truncation level. 

8. TOWARDS SIMULATION OF THE GEODYNAMO 

We have not dealt in this paper with the well known solution of 

the kinematic dynamo problem discovered by Braglnskil (see the review 

of this work in Roberts 1971), since this approach was not exploited 

in the convective dynamos discussed above. The Braglnskil dynamo has 

the advantage of making no special assumptions regarding the distri­

bution of spatial scales. Rather, a simplification is achieved by 

requiring the magnetic Reynolds number of the velocity eddies to be 

large. This enforces a certain symmetry on the fields (near axial 

symmetry in a spherical core), which are then dominated by their 

symmetric toroidal parts. 

Recently Braglnskil has initiated a study of the corresponding 

spherical convective dynamo (Braglnskil 1975) . In this first paper 

the fluctuating component is assumed given, so the problem reduces to 

equations for the symmetric components of the fields. The questions 

raised by the multi-scale convective dynamos, concerning the origin 

of an a-effect and mean Lorentz force from the small-scale convection, 

are thereby avoided, and the dynamic balance for the symmetric fields 

can be studied at energies believed realistic for the geodynamo. 

Braglnskil proposes a solution in which the meridional magnetic field 

within the core is predominantly parallel to the rotation axis. The 

field is matched with its mantle counterpart through a magnetic boun­

dary layer at the core-mantle interface. Since the dynamo is of 

"OHO" type, the azimuthal velocity which provides the "u-effect" must 

be determined from the dynamics of the symmetric fields. As Roberts 

and Stewartson (1974) have emphasized, this is a crucial step in the 

construction once M ^ Ta . Braginskii's model, which determines 

the azimuthal flow by a process involving electromagnetic coupling of 

core and mantle, thus confronts a problem not faced in the idealized 

layer systems. (For a different approach to this question, devised 
2 

for a -dynamics, see Malleus and Proctor 1975.) It is probably fair 

to say that the convective origin of the a-effect is only one-half, 

and perhaps the easier one-half, of the dynamical problem, and we 

await with considerable interest the further development of this 

approach to the spherical convective dynamo. 
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We conclude with a few general observations. For the sake of 

argument we adopt a conservative attitude, as will be clear from the 

following list of postulates for the geodynamo: 

(1) The field is maintained by heating at a uniform rate in a 

region of size L, fixed within the core relative to the rota­

tion axis. 

(2) Within this region, core motions are irregular (In particular 

poloidal and toroidal components are comparable) and can be 

characterized by a speed U and length scale L. 

(3) Within this region the magnetic field is also irregular, with 

field strength B > 0 and length scale L. 

(4) Within this region the Coriolis, Lorentz, and buoyancy forces 

acting on a fluid element are comparable. 

(5) The system varies on a time scale of magnetic diffusion. 

Given that heating is uniform and the system is Boussinesq, these 

hypotheses are close to the "worst possible" if the aim is a pertur-

bational analysis. Indeed from (2) and the existence of a dynamo 

effect it follows that R - HL/n <\» 1, so that kinematic dynamo 
m 

problem is without a small parameter. Balancing the Coriolis and 

2 1/2 

Lorentz force we then have M *v< Ta , an ordering already encounter­

ed in Section 2. With (5) the units are fixed and, if it is addi­

tionally postulated that viscous and inertial forces are negligible, 

the system reverts to the dlmensionless form (13)-(15) (for example). 

It is plausible that (with the possible exception of Ekman layer 

effects and core-mantle coupling) the resulting equations contain the 

relevant physics and the important matter is the ordering of terms. 

In each perturbational model one or more of the above postulates is 

relaxed. 

A crucial question is the appropriate magnetic Reynolds number of 

velocity eddies. Estimates range from 1 to 10 (Gubbins 1974). How­

ever, In view of the uncertainty over the possible size and location 

of a convecting region in the Earth's core (cf. Busse 1975) a value 

in the range 10-100 is not unreasonable. This would tend to favor 

Braginskii's ordering of the kinematic dynamo, but there is a 

Possible alternative, namely that the symmetry of the field with 

respect to the rotation axis is a result of the location of the con-

vective region and the nature of the dynamo effect within it. In that 

case (2) and (3) might reflect irregular motion with moderate concen­

trations of magnetic flux (Weiss 1966). 

Regarding the induction problem, It is tempting to add a postulate 

to our list, namely that the dynamo is of "aio" type, even though if 

Rm "V 1 the a and co-effects are difficult to separate. We suggest that 
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the a-effect could be realized as In Busse's annulus model, or as in 

case 111 ofSectlon 4. Busse's model Is especially attractive, since 

it also suggests how the corresponding to-effect could be developed. 

Suppose we alter the direction of gravity to reflect the Inclination 

which occurs over most of the cylindrical annulus of rolls In the 

marginally convectlve heated sphere. The convectlve heat transport 

is then oblique to gravity, so the mean temperature field is distorted, 

in such a way that the a)-effect arises from the "thermal wind". One 

can check that if the distortion Is of the order of the equilibrium 

mean temperature profile, the magnetic Reynolds number of the thermal 

wind is indeed <v> 1 provided M and R are ordered as above. These 
q 

estimates are likely to be modified somewhat if the convectlve zone is 

only a small fraction of the electrically conducting region. 

The geometry of the convecting zone relevant to the a-effect may be 

significantly altered if, as Kennedy and Higgins (1973) suggest, 

convection in the Earth's core occurs only near the inner core. In 

that case the appropriate annulus model may involve a depth which 

increases with distance from the rotation axis, implying an a-effect 

from westward-moving waves. 

Equations (13)-(15) indicate that P is a significant parameter In 

our problem, a point that has been emphasized by Roberts and 

Stewartson (1974) in their study of dissipative M.A.C. waves arising 

in rotating magnetoconvection (cf. Roberts and Soward (1972)). It is 

not clear whether ultimately the most profitable course will be to 

take P ^ 1, or rather to use the singular limit process P_* °° (pre­

sumably leading to localized convective heat transport and a reorder­

ing of the variables) as intrinsic to the geodynamo. 

One aspect of the problem which would appear to deserve further 

study is the possibility of obtaining more refined estimates of solu­

tions along the lines of the calculation of Kennett (1974) , perhaps 

with a view to maximizing magnetic energy in a system driven by 

internal heating. It is likely that the geodynamo operates in a 

state which is "optimal" in the realized mean magnetic energy (cf. 

Section 2), and once the nature of this state is determined we can 

expect, on the basis of the considerable advances made over the last 

decade, that it will then not be too difficult to secure a dynamical 

model of the process. 
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