
LMS J. Comput. Math. 18 (1) (2015) 713–729 C© 2015 Author

doi:10.1112/S1461157015000236

A parallel root-finding algorithm

M. J. P. Nijmeijer

Abstract

We present a parallel algorithm to calculate a numerical approximation of a single, isolated
root α of a function f : R → R which is sufficiently regular at and around α. The algorithm is
derivative free and performs one function evaluation on each processor per iteration. It requires
at least three processors and can be scaled up to any number of these. The order with which
the generated sequence of approximants converges to α is equal to (n +

√
n2 + 4)/2 for n + 1

processors with n > 2. This assumes that particular combinations of the derivatives of f do not
vanish at α.

1. Introduction

A root-finding algorithm is an iterative calculation scheme to approximate a single, isolated
root of a function f [27]. The root α is a solution of the equation f(α) = 0. We restrict
ourselves to scalar, real-valued functions f : R→ R. Amongst the many different root-finding
algorithms [1, 4, 6, 14, 20, 23–25], derivative-free algorithms do not require the calculation
of a derivative of f . This is a desirable property in those cases where a derivative cannot
be evaluated easily. Two classes of root-finding methods are interval methods and locally
convergent methods. Interval methods [1, 4, 15] such as the bisection method [12] establish,
at each iteration, an interval which must contain α. The length of the interval diminishes
with each iteration and converges to zero. Locally convergent methods such as the secant
method [9, 12, 21, 25] calculate an approximant of α at each iteration. These approximants
converge to α if the starting approximant(s) is (are) close enough to α.

An efficient root-finding algorithm typically is required when the evaluation of f(x) for a
value x is relatively slow. In these cases we want to evaluate f as few times as possible,
while still approximating α with a prescribed accuracy. The primary gauge for an algorithm’s
efficiency is its order of convergence [12, 25] (this assumes that the algorithm has a well-
defined order of convergence, which is usually the case). An algorithm with a higher order
of convergence requires fewer iterations if the required accuracy of the approximation is high
enough. The fastest derivative-free methods with one function evaluation per iteration achieve
orders of convergence asymptotically close to two [5, 17, 24, 27].

Algorithms with multiple function evaluations (so-called ‘multi-point’ algorithms [3, 7,
13, 22, 26, 27]) such as Steffensen’s method [23] achieve orders of convergence two and
higher. However, it takes more time to execute an iteration. To compare algorithms with
different numbers of function evaluations per iteration, one often uses the ‘effective order of
convergence’ [27]. If a method uses m function evaluations per iteration and achieves an order
of convergence φ, the effective order is defined as φ1/m. We are not aware of any derivative-free
algorithm with an effective order of convergence equal to or larger than two [28, 29].

So far we have discussed sequential algorithms, executing on a single processor core. The
availability of multiple cores allows us to evaluate f for different values of x in parallel without
paying a heavy time penalty. If we start with n different approximants xi of α and we can

Received 8 February 2015; revised 15 June 2015.

2010 Mathematics Subject Classification 26A06, 39B22, 65Y05 (primary).

https://doi.org/10.1112/S1461157015000236 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000236

714 m. j. p. nijmeijer

construct n new and better approximants x′i from the calculated f(xi), we have, in principle,
a parallel root-finding algorithm.

Most of the work on parallel root-finding algorithms for a single, scalar root was done in the
seventies. One can easily write down a parallelization scheme for the bisection method. This
was taken further by Gal and Miranker [10] who developed parallel schemes of the interval
type for functions with known bounds on the slope. Work on a locally convergent algorithm
was carried out by Corliss [8]. He developed a three-core algorithm which seeded each core
i with an initial approximant xi, calculated f in parallel for the three values xi and then
carried out a secant step on the combinations (x1, x2), (x1, x3) and (x2, x3) to obtain three
new approximants. He showed that the algorithm converges with order two. He investigated
what happens when this ‘three-core secant method’ is scaled up to an ‘n-core secant method’
but found that the order does not increase further (G. F. Corliss, Personal communication,
2015).

Contrary to the case of a single scalar root, there is an extensive literature on parallel
algorithms to find all the roots of a polynomial [11, 19]. Parallel algorithms for the solution
of systems of non-linear equations have also gained much attention [16].

We present a parallelization scheme which is derivative free and locally convergent. It is
a refinement of the algorithm of Corliss for the case of three processor cores. Its order of
convergence is 1 +

√
2 ≈ 2.41, in this case. In theory, our scheme can be scaled up to any

number of cores with ever-growing order of convergence. In practice, the order of convergence
quickly becomes so large that the root can be calculated to machine precision in a few iterations.

We explain the sequential algorithms that form the basis of our parallelization scheme in
the next section. Section 3 discusses how we obtain n improved approximants from n starting
approximants. This defines our parallel algorithm. Section 4 is of a more mathematical nature
and derives the order of convergence and the asymptotic error term. Some alternatives to our
algorithm are briefly discussed in § 5. Two types of numerical results are shown in this paper:
results from a sequential algorithm which calculates the results of an n-core algorithm with
high-precision arithmetic, and results from a truly parallel Java implementation of the three
core algorithm. Numerical results for the Java implementation are presented in § 6. Concluding
remarks are made in the last section.

2. Sequential algorithms

Suppose we have an open interval I ⊂ R and a function f : I → R. Suppose α ∈ I and f(α) = 0.
Our parallelization scheme is based on any sequential root-finding algorithm which calculates
an approximant am(x1, . . . , xm+2) of the root α from m+2 initial approximants x1, . . . , xm+2.
To calculate am, the function f has to be evaluated at all of the initial approximants xi but
not at any other points. All of the initial approximants are in I and it is assumed that am is
in I as well. The approximant am must have the property

am(x1, . . . , xm+2) = α+

{m+2∏
i=1

(xi − α)

}
Am(x1, . . . , xm+2), (1)

where Am is continuous in the point (x1, . . . , xm+2) = (α, . . . , α) ≡ αm+2 if f ∈ Cm+2(I) and
f (1)(α) 6= 0. The continuity implies

lim
(x1,...,xm+2)→αm+2

Am(x1, . . . , xm+2) = A∞m. (2)

The following are sequential algorithms with these characteristics.
(i) Direct polynomial interpolation. With this method, we fit a polynomial P of degree m+1

to the points {(xi, f(xi))}m+2
i=1 and calculate am as an appropriately selected root of P .

https://doi.org/10.1112/S1461157015000236 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000236

a parallel root-finding algorithm 715

If we denote A∞m for this method as ADP
∞m, then (see [27])

ADP
∞m =

(−1)m+2

(m+ 2)!

f (m+2)(0)

f (1)(0)
. (3)

We denote the ith derivative of the function f at the point x by f (i)(x). See § 4.2 of
Traub [27] for a detailed treatment of both direct and inverse polynomial approximation.

(ii) Inverse polynomial interpolation. With this method, we fit a polynomial P of degree
m + 1 to the points {(f(xi), xi)}m+2

i=1 . That is, we fit a polynomial P to F , the inverse
function of f on I. We calculate am as P(0). If we denote A∞m for this method as AIP

∞m,
then (see [27])

AIP
∞m = − (−1)m+2

(m+ 2)!

F (m+2)(0)

{F (1)(0)}m+2
. (4)

Examples for AIP
∞m are

AIP
∞0 = C2, AIP

∞1 = −C3 + 2C2
2 , AIP

∞2 = C4 − 5C2C3 + 5C3
2 ,

AIP
∞3 = −C5 + 6C2C4 + 3C2

3 − 21C2
2C3 + 14C4

2 ,
(5)

where Cn = f (n)(α)/(n!f (1)(α)).
(iii) The method of improved approximants. With this method, am can be calculated

recursively as in [17]

am(x1, . . . , xm+2) =
am−1(x1, . . . , xm+1)xm+2 − x1am−1(x2, . . . , xm+2)

am−1(x1, . . . , xm+1) + xm+2 − x1 − am−1(x2, . . . , xm+2)
, (6)

where the recursion terminates at the secant step a0: that is

a0(x1, x2) = x1 − f(x1)
x1 − x2

f(x1)− f(x2)
. (7)

If we denote A∞m, in this case, as AIA
∞m, then

AIA
∞m =

(−1)m+1

(m+ 1)!
f (1)(α)

(
∂m+1

∂xm+1

1

f [α, x]

)
x=α

, (8)

where f [α, x] = (f(α)− f(x))/(α− x) is the divided difference of f . Examples for AIA
∞m

are

AIA
∞0 = C2, AIA

∞1 = −C3 + C2
2 , AIA

∞2 = C4 − 2C2C3 + C3
2 ,

AIA
∞3 = −C5 + 2C2C4 + C2

3 − 3C2
2C3 + C4

2 .
(9)

In choosing between the method of direct polynomial interpolation and inverse polynomial
interpolation, we prefer the latter. Inverse polynomial interpolation avoids the need to calculate
the root(s) of a polynomial of a possibly high degree. Our numerical examples, therefore, are
based on inverse polynomial interpolation and the method of improved approximants.

All three methods reduce to the secant method for m = 0.
Because of (1), we expect that higher values of m, in general, yield better approximations

of α. The ratio

am(x1, . . . , xm+2)− α
am−1(x1, . . . , xm+1)− α

= (xm+2 − α)
Am(x1, . . . , xm+2)

Am−1(x1, . . . , xm+1)
(10)

can be made arbitrarily small by taking xm+2 close enough to α provided that Am is bounded
around αm+2 and Am−1 is bounded from below around αm+1. The first condition is guaranteed
if f ∈ Cm+2(I) and f (1)(α) 6= 0. However, the second condition is not guaranteed.

https://doi.org/10.1112/S1461157015000236 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000236

716 m. j. p. nijmeijer

3. The parallel algorithm

Suppose we have n + 2 processor cores at our disposal with n > 1, that is, we have at least
three cores. The parallel algorithm can be described as follows.

(1) Seed each processor i with an initial estimate xi.
(2) Do the following in parallel for all processors i.

(a) Calculate f(xi).
(b) Broadcast f(xi) to all other processors.
(c) Calculate an(x1, . . . , xn+2) on processor 1 as the new x1. Calculate an−1

(x1, . . . , xi−1, xi+1, . . ., xn+2) on processor i as the new xi for i = 2, . . . , n+ 2.
(d) Broadcast xi to all other processors.

(3) Repeat step 2 until x1 is a sufficiently close approximation of α.
This describes the entire algorithm. We make the following remarks.

(i) The an and an−1 are expected to be the most accurate new approximants we can
construct from the starting values x1, . . . , xn+2 (compared with am for m < n− 1).

(ii) We expect an to be a better approximation to α than any of the an−1. Therefore we
expect x1 to be a better approximation than x2, . . . , xn+1 in all iterations. Hence, of the
n+ 2 possible approximants an−1 that we can calculate from the set {x1, . . . , xn+2}, we
pick those n+ 1 that have x1 as one of their arguments.

(iii) If we have only two calculation cores available, the only improved approximant we can
calculate is a0(x1, x2). Since this does not allow us to continue with the next iteration,
we need at least three cores. In the case of three cores, we continue with a1(x1, x2, x3),
a0(x1, x2) and a0(x1, x3).

We carried out numerical computations with a sequential code which simulated the multi-
core case (Tables 1, B1 and B2) and with a truly parallel code. The simulations of the multi-core
case are to obtain high-precision results with which we verify the mathematical predictions of
§ 4. This code is written in the open-source program Sage (www.sagemath.org) which allows
for computations with an arbitrarily high precision.

We have also written a truly parallel program in Java (Tables 2–4). It demonstrates the
feasibility of turning the algorithm into a working parallel program. It also serves to obtain
some idea of its performance, although a true study of the performance characteristics is not
what we are aiming at. The parallel implementation is discussed in § 6.

Table 1. Comparison of the convergence of the secant algorithm with the three-core parallel algorithm
for the function f . The parallel algorithm uses the method of improved approximants. The secant
sequence develops as xp = a0(xp−1, xp−2) with starting values x−1 = −0.1 and x0 = 0.1. The
development of the three sequences generated by the parallel algorithm is described in § 3. Starting
values for the parallel algorithm are x0,1 = −0.1, x0,2 = 0.1 and x0,3 = 0.2.

f(x) =
x(x2 + x− 1)

x+ 1

Secant algorithm Parallel algorithm
p xp xp,1 xp,2 xp,3

−1 −0.1
0 0.1 −0.1 0.1 0.2
1 1.99× 10−2 −9.33× 10−3 4.66× 10−2 1.99× 10−2

2 −4.88× 10−3 −2.87× 10−5 3.77× 10−4 9.22× 10−4

3 1.99× 10−4 −3.00× 10−11 5.30× 10−8 2.17× 10−8

4 1.92× 10−6 −1.03× 10−25 1.30× 10−18 3.18× 10−18

5 −7.65× 10−10 −1.28× 10−60 6.57× 10−43 2.68× 10−43

https://doi.org/10.1112/S1461157015000236 Published online by Cambridge University Press

www.sagemath.org
https://doi.org/10.1112/S1461157015000236

a parallel root-finding algorithm 717

Table 1 compares the secant algorithm with the three-core parallel algorithm. The function
f used in this example is shown in the table header. It has the root α = 0. The table shows the
sequence of approximants generated by the secant algorithm, together with the three sequences
{xp,i} generated by core i, for the first five iterations. The method of improved approximants
was used for the parallel algorithm. The sequences of the parallel algorithm develop as xp,1 =
a1(xp−1,1, xp−1,2, xp−1,3), xp,2 = a0(xp−1,1, xp−1,3) and xp,3 = a0(xp−1,1, xp−1,2). The table
shows that xp,1 is a much better approximation of the root than xp,2 or xp,3. After five
iterations, the parallel algorithm approximates the root with an error of ∼10−60 whereas the
secant algorithm ‘only’ comes to within ∼10−10.

The difference in convergence speed is a manifestation of the larger order of convergence of
the parallel algorithm. The secant algorithm has an order of convergence (1 +

√
5)/2 ≈ 1.62

(assuming that particular conditions on f are met, which is the case for the function in Table 1).
The order of convergence of the parallel algorithm will be calculated in the next section.
We will see that the sequence {xp,1} of the three-core parallel algorithm converges with order
1 +
√

2 ≈ 2.41.

4. Convergence properties

4.1. Basic convergence

Call xp,i the approximant calculated on core i in iteration p. We have n + 2 cores. The set
{xp,1, . . . , xp,n+2} develops as

xp,1 = an(xp−1,1, . . . , xp−1,n+2)

xp,i = an−1(xp−1,1, . . . , xp−1,i−1, xp−1,i+1, . . . , xp−1,n+2) i = 2, . . . , n+ 2
(11)

for p = 1, 2, 3, . . . with starting values {x0,1, . . . , x0,n+2}.
One conveniently describes the development in the coordinate frame Y in which all distances

are measured with respect to α: y = x − α, fY (y) = f(x), and aY n(y1, . . . , yn+2) =
an(x1, . . . , xn+2)− α. The root is at y = 0 in this coordinate frame: fY (0) = 0.

From (1)

yp,1 =

{n+2∏
j=1

yp−1,j

}
AY p,1,

yp,i =

{n+2∏
j=1

j 6=i

yp−1,j

}
AY p,i, i = 2, . . . , n+ 2

(12)

with

AY p,1 = AY n(yp−1,1, . . . , yp−1,n+2)

AY p,i = AY n−1(yp−1,1, . . . , yp−1,i−1, yp−1,i+1, . . . , yp−1,n+2).
(13)

The starting values are {y0,1, . . . , y0,n+2}. This allows us to establish the basic convergence
properties in the following lemma.

Lemma 1. Let I be an open interval of real values and f a function f : I → R with
f ∈ Cn+2(I). Let α ∈ I, f(α) = 0 and f (1)(α) 6= 0. Then there exists an ε > 0 such that the
sequences {xp,1}∞p=0, . . . , {xp,n+2}∞p=0 generated by the parallel algorithm on n + 2 processor
cores all converge to α if the starting values x0,1, . . . , x0,n+2 are all within a distance ε of α.

https://doi.org/10.1112/S1461157015000236 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000236

718 m. j. p. nijmeijer

Proof. Under the conditions of the lemma, there is an ε′ > 0 such that the AY p,i are bounded
by A for all i = 1, . . . , n + 2 if |yp−1,i| < ε′ for all i. This follows from the properties of Am
mentioned in § 2.

Take ε < min(ε′, A
−1/n

, A
−1/(n+1)

) and |yp−1,i| < ε for all i = 1, . . . , n+ 2. Then

|yp,1| = |yp−1,1|
{n+2∏
j=2

|yp−1,j |
}
|Ap,1| < |yp−1,1|εn+1A < |yp−1,1| (14)

and

|yp,i| =
{n+2∏
j=1

j 6=i

|yp−1,j |
}
|Ap,i| < εn+1A = εεnA < ε (15)

for i = 2, . . . , n + 2. Hence |yp,i| < ε for all i = 1, . . . , n + 2 and |yp,1| < |yp−1,1|. We can
continue the argument recursively and see that the sequence {|yp,1|} is decreasing and therefore
converges.

To show that the sequence converges to zero, reason as follows. Suppose limp→∞ |yp,1| =
a > 0. Then from (14),

lim
p→∞

{n+2∏
j=2

|yp−1,j |
}
|Ap,1| = 1.

Since
∏n+2
j=2 |yp−1,j | < εn+1, there must be a pmin such that |Ap,1| > ε−(n+1) for p > pmin. This

implies that ε−(n+1) < A, from which follows ε > A
−1/(n+1)

. This contradicts our choice of ε,
and therefore we conclude that limp→∞ |yp,1| = 0.

Having shown that |yp,1| converges to zero, we easily see that the other sequences also
converge to zero from

|yp,i| = |yp,1|
{n+2∏
j=2

j 6=i

|yp−1,j |
}
|Ap,i| < |yp,1|εnA.

This concludes our proof.

Lemma 3 in [17] states that instead of the condition f ∈ Cn+2(I), the two conditions f ∈
Cn+1(I) and f (n+1) being Lipschitz continuous on I will already guarantee the boundedness
of An in the case of the method of improved approximants. Hence we can weaken the condition
f ∈ Cn+2(I) in Lemma 1 to these two conditions in the case where the parallel algorithm is
implemented with improved approximants. The same is possibly true for an implementation
with direct or inverse polynomial interpolation, but this has not been investigated.

4.2. Order of convergence

Having established the basic convergence of the algorithm, the theorem below states our most
detailed result on the convergence properties.

Theorem 1. Let I be an open interval of real values and f a function f : I → R with
f ∈ Cn+2(I). Let α ∈ I, f(α) = 0, and f (1)(α) 6= 0. Let A∞n 6= 0 and A∞n−1 6= 0. Then there
exists an ε > 0 such that the sequence {xp,1}∞p=0 generated by the parallel algorithm on n+ 2

processor cores converges to α with order φ = (n+ 1 +
√

(n+ 1)2 + 4)/2: that is

lim
p→∞

|xp,1 − α|
|xp−1,1 − α|φ

= |A∞n|−(φ
2−2φ−1)/(φ+1)|A∞n−1|φ−1

if the starting values x0,1, . . . , x0,n+2 are all within a distance ε of α.

https://doi.org/10.1112/S1461157015000236 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000236

a parallel root-finding algorithm 719

The combination φ2 − 2φ− 1 is equal to (n− 1)φ. The limit

|A∞n|−(φ
2−2φ−1)/(φ+1)|A∞n−1|φ−1

is called the asymptotic error [12].

Proof. The recursive development of the approximants as prescribed by (12) implies that
the approximants take the form

yp,i =

{n+2∏
j=1

y
kp,i,j
0,j

}
Ap,i, i = 1, . . . , n+ 2. (16)

Substituting these forms into (12) gives recursion relations for the powers kp,i,j and the
coefficients Ap,i. The recursions for the powers can be written in matrix form as


kp,1,j
kp,2,j

...
kp,n+2,j

 =
~~M


kp−1,1,j
kp−1,2,j

...
kp−1,n+2,j

 ,
~~M =


1 1 1 . . . 1
1 0 1 . . . 1
1 1 0 . . . 1
...

...
...

. . .
...

1 1 1 . . . 0

 (17)

with starting values k0,i,j = δi,j , where δi,j is the Kronecker delta. The matrix
~~M has n + 2

rows and n+ 2 columns.
The coefficients Ap,i satisfy the recursions

Ap,1 =

{n+2∏
j=1

Ap−1,j
}
AY p,1,

Ap,i =

{n+2∏
j=1

j 6=i

Ap−1,j
}
AY p,i, i = 2, . . . , n+ 2,

(18)

for p = 1, 2, 3, . . . with start values A0,i = 1 for all i = 1, . . . , n + 2. The coefficients take the
form

Ap,1 =

p∏
j=1

A
βp−j
Y j,1

n+2∏
k=2

A
θp−j
Y j,k,

Ap,i =

p∏
j=1

A
βp−j
Y j,1A

ϑp−j
Y j,i

n+2∏
k=2
k 6=i

A
θp−j
Y j,k .

(19)

Substitution of this form into (18) results in the recursion relations and start values for the
powers: that is (

βp

βp

)
=

(
1 n+ 1
1 n

)(
βp−1

βp−1

)
,

(
β0

β0

)
=

(
1
0

)
,ϑpθp

θp

 =

0 1 n

1 1 n

1 1 n− 1


ϑp−1θp−1

θp−1

 ,

ϑ0θ0
θ0

 =

1
0
0

 .

(20)

https://doi.org/10.1112/S1461157015000236 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000236

720 m. j. p. nijmeijer

Solution of the recursion relations. We study the recursion relations (17) and (20). The
solution of (17) is 

kp,1,j
kp,2,j

...
kp,n+2,j

 = (
~~M)p


δ1,j
δ2,j

...
δn+2,j

 . (21)

To take the matrix to the power p, we have to diagonalize it. Its characteristic equation is

(λ+ 1)n(λ2 − (n+ 1)λ− 1) = 0.

Its eigenvalues are therefore

λ1 = 1
2{n+ 1 +

√
(n+ 1)2 + 4},

λ2 = λ3 = . . . = λn+1 = −1,

λn+2 = 1
2{n+ 1−

√
(n+ 1)2 + 4}.

(22)

It is easy to see that λ1 > 1 for n > 1. With λ1λn+2 = −1, this gives −1 < λn+2 < 0. An
orthogonal set of eigenvectors is

~vi =

(
λi + 1

λi
, 1, . . . , 1︸ ︷︷ ︸
n+1 times

)
, i = 1, n+ 2,

~vi =

(
0,

1

i− 1
, . . . ,

1

i− 1︸ ︷︷ ︸
i−1 times

,−1, 0, . . . , 0︸ ︷︷ ︸
n−i+1 times

)
, i = 2, . . . , n+ 1,

(23)

where ~vi is the eigenvector corresponding to eigenvalue λi. With the eigenvalues and

eigenvectors, it is possible to diagonalize the matrix
~~M and calculate the kp,i,j : that is

kp,i,j = (−1)pδi,j +
1

~v1 · ~v1
{λp1 + (−1)p+1}(~v1)i(~v1)j

+
1

~vn+2 · ~vn+2
{λpn+2 + (−1)p+1}(~vn+2)i(~vn+2)j , (24)

where (~v)i is the ith element of vector ~v, and

~vi · ~vi =
(λi + 1)2

λ2i
+ n+ 1 =

(λi + 1)(λ2i + 1)

λ2i
, i = 1, n+ 2. (25)

Diagonalization of the matrices in (20) is straightforward. We obtain

βp =
1

λ1 − λn+2
{(λ1 + 1)λp−11 − (λn+2 + 1)λp−1n+2},

βp =
1

λ1 − λn+2
{λp1 − λ

p
n+2},

ϑp = (−1)p +
1

λ1 + λn+2

{
(−1)p+1 +

1

λ1 − λn+2
((λ1 − 1)λp1 − (λn+2 − 1)λpn+2)

}
,

θp =
1

λ1 − λn+2
{λp1 − λ

p
n+2},

θp =
1

λ1 + λn+2

{
(−1)p+1 +

1

λ1 − λn+2
((λ1 − 1)λp1 − (λn+2 − 1)λpn+2)

}
.

(26)

https://doi.org/10.1112/S1461157015000236 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000236

a parallel root-finding algorithm 721

Properties of the sequence {yp,1}. We use the results for the various powers to study the
convergence of the sequence {yp,1}∞p=0. We focus on the sequence for yp,1 because it is a closer
approximant of the root than yp,i with i > 1. Using (16) we write

|yp,1| = Fp|Ap,1|, Fp =

n+2∏
j=1

|y0,j |kp,1,j . (27)

We first study Fp. To simplify the full form (24), we write

kp,1,j = (−1)pδ1j + cj{λp1 + (−1)p+1}+ dj{λpn+2 + (−1)p+1}, (28)

with

cj =
1

~v1 · ~v1
λ1 + 1

λ1
(~v1)j =


λ1 + 1

λ21 + 1
if j = 1,

λ1
λ21 + 1

if j = 2, . . . , n+ 2,

(29)

and the same expressions for dj but with λ1 replaced by λn+2. The simplified form (28) gives,
for Fp,

Fp = |y0,1|(−1)
p
n+2∏
j=1

|y0,j |cj{λ
p
1+(−1)p+1}+dj{λpn+2+(−1)p+1}, (30)

and

Fp

Fλ1
p−1

= |y0,1|(−1)
p−λ1(−1)p−1

×
n+2∏
j=1

|y0,j |cj{(−1)
p+1−λ1(−1)p}+dj{(λn+2−λ1)λ

p−1
n+2+(−1)p+1−λ1(−1)p}. (31)

With c1 + d1 = 1 and cj + dj = 0 for j = 2, . . . , n+ 2, this reduces to

Fp

Fλ1
p−1

=

n+2∏
j=1

|y0,j |dj(λn+2−λ1)λ
p−1
n+2 , (32)

giving

lim
p→∞

Fp

Fλ1
p−1

= 1. (33)

We now turn our attention to Ap,1 in (27). From (19) in combination with the identities

βp − λ1βp−1 = (λn+2 + 1)λp−2n+2, θp − λ1θp−1 = λp−1n+2, β1 − λ1β0 = 1− λ1, and θ1 − λ1θ0 = 1,

|Ap,1|
|Ap−1,1|λ1

= |AY p,1||AY p−1,1|1−λ1

{n+2∏
k=2

|AY p−1,k|
}
Qp−2, (34)

with

Qp =

p∏
j=1

|AY j,1|(1+λn+2)λ
p−j
n+2

{n+2∏
k=2

|AY j,k|
}λp−j+1

n+2

. (35)

Under the conditions of the theorem we know that all sequences {yp,i}∞p=0 generated by the
algorithm converge to zero (cf. Lemma 1). We also know that AY n is continuous in the point
0n+2, while AY n−1 is continuous in the point 0n+1 (cf. (2)). Hence limp→∞AY p,1 = A∞n and

https://doi.org/10.1112/S1461157015000236 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000236

722 m. j. p. nijmeijer

limp→∞AY p,k = A∞n−1 for all k = 2, . . . , n + 2. Assuming that both limits are not equal to
zero, we write

AY j,1 = A∞n(1 + δj,1), AY j,k = A∞n−1(1 + δj,k), (36)

for k = 2, . . . , n+ 2. We have limp→∞ δp,i = 0 for all i = 1, . . . , n+ 2. If we choose the starting
values y0,1, . . . , y0,n+2 close enough to the root zero, we have |δj,i| < 1 for all j > 1 and
i = 1, . . . , n+ 2. Substituting (36) into (35), Qp takes the form

Qp = |A∞n|(1+λn+2)(1−λpn+2)/(1−λn+2)|A∞n−1|−(1+λn+2)(1−λpn+2)Rp, (37)

with

Rp =

p∏
j=1

|1 + δj,1|(1+λn+2)λ
p−j
n+2

{n+2∏
k=2

|1 + δj,k|
}λp−j+1

n+2

=

p∏
j=1

τ
λp−jn+2

j ,

τj = |1 + δj,1|(1+λn+2)

{n+2∏
k=2

|1 + δj,k|
}λn+2

(38)

where τj > 0 for all j, and limj→∞ τj = 1. Note that Rp satisfies the recursion relation Rp =

τpRλ2
p−1 with R0 = 1. Based on this recursion, we prove in Appendix A that limp→∞Rp = 1,

from which follows

lim
p→∞

Qp = |A∞n|(1+λn+2)/(1−λn+2)|A∞n−1|−(1+λn+2), (39)

and

lim
p→∞

|Ap,1|
|Ap−1,1|λ1

= |A∞n|−(λ
2
1−2λ1−1)/(λ1+1)|A∞n−1|λ1−1. (40)

Combining this result with (27) and (33) proves the theorem.

Numerical illustrations of Theorem 1 are given in Appendix B.

5. Alternatives

A disadvantage of our algorithm is that xp,1 in iteration p is calculated differently from
the xp,i for i > 1. We did so to calculate xp,1 as the most accurate approximant possible
from the set {xp−1,1, . . . , xp−1,n+2}. If it is preferred to calculate xp,i in the same way on all
processors i (for example, to enable parallelization on a SIMD architecture) one can calculate
xp,1 as an−1(xp−1,2, . . . , xp−1,n+2). A partial calculation suggests that, as a result, the order of
convergence drops to exactly n+ 1 when using n+ 2 processors. This corresponds to an order
φ = 2 for the ‘three-core secant method’ of Corliss.

One can potentially increase the order of convergence by calculating xp,1 as the most
accurate approximant we can obtain with inverse interpolation and xp,2 as the most
accurate approximant we obtain with approved approximants. Call aIPm the approximant
calculated with inverse polynomial interpolation and aIAm the approximant calculated with
the method of improved approximants. Then xp,1 = aIPn (xp−1,1, . . . , xp−1,n+2), xp,2 =
aIAn (xp−1,1, . . . , xp−1,n+2), while the remaining xp,i for i = 3, . . . , n+ 2 are calculated as an−1

https://doi.org/10.1112/S1461157015000236 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000236

a parallel root-finding algorithm 723

by either inverse interpolation or by improved approximants, as described in § 3. A partial
calculation indicates that the order of convergence increases to (n + 1 +

√
(n+ 1)2 + 8)/2

when using n + 2 processors. In the case of three processor cores, it would mean that the
order increases from 1 +

√
2 ≈ 2.41 (for the algorithm described in § 3) to 1 +

√
3 ≈ 2.73 at

the expense of a more complicated, and possibly less efficient, algorithm. The lesser efficiency
would be caused by a larger calculation time difference between aIPn and aIAn than between an
and an−1 with either inverse interpolation or improved approximants.

So far we have considered algorithms without memory: the approximants at iteration p are
calculated from the approximants at iteration p − 1. Variations with memory can also be
considered, for example xp,i = an+1(xp−1,1, . . . , xp−1,n+2, xp−2,i). We have not investigated
this any further.

6. A parallel implementation

So far, our numerical results were obtained with a code that simulates the presence of multiple
cores. This allowed us to demonstrate the convergence properties of the algorithm with high
precision. We have also implemented the algorithm in a truly parallel Java program. It codes
for the case of three cores. The three function evaluations are carried out on three separate
threads in each iteration. Together with the main thread, the program requires four threads.
The calculation of the approximants is carried out in the main thread. Because this calculation
turned out to be fast (a few milliseconds at most), we felt no need to parallelize it.

Table 2 shows the same information as Table 1 but with the secant algorithm and the parallel
algorithm implemented in Java. Round-off errors cause the approximation of α to become equal
to α at the fifth iteration.

Table 2. As Table 1 but with the secant algorithm and the parallel algorithm implemented in Java.
The figures in blue are affected by round-off errors. The correct figures are shown in Table 1.

f(x) =
x(x2 + x− 1)

x+ 1

Secant algorithm Parallel algorithm
p xp xp,1 xp,2 xp,3

−1 −0.1
0 0.1 −0.1 0.1 0.2
1 1.99× 10−2 −9.33× 10−3 4.66× 10−2 1.99× 10−2

2 −4.88× 10−3 −2.87× 10−5 3.77× 10−4 9.22× 10−4

3 1.99× 10−4 −3.00× 10−11 5.30× 10−8 2.17× 10−8

4 1.92× 10−6 −8.54× 10−26 1.30× 10−18 3.18× 10−18

5 −7.65× 10−10 0 0 0

Table 3. The average time ts of one iteration in the sequential algorithm and, likewise, tp for the
parallel algorithm, along with the parallelization overhead δt = tp−ts. The calculation of each function
value f(x) was paused by an amount of time called the sleep time. The function f is the same as
in Table 1. All times are in milliseconds. All times are obtained on an Intel Core2 Quad Q6600 @
2.4 GHz.

Sleep time 0 20 50 100 200 500

ts 4.3 22.9 52.8 103.0 203.0 502.8
tp 12.4 29.5 59.2 109.9 209.7 510.5
δt 8.1 6.6 6.5 6.9 6.8 7.6

https://doi.org/10.1112/S1461157015000236 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000236

724 m. j. p. nijmeijer

The usefulness of a parallel algorithm is determined by two opposing effects: the algorithm
is expected to require fewer iterations (because it has a larger order of convergence) but each
iteration is slower because of the parallelization overhead. If we use a simple model and estimate
the total execution time of the sequential algorithm as the number of iterations Ns times the
average time per iteration ts, (and, likewise, the total execution time for the parallel algorithm
as Nptp), and if the parallel algorithm requires ∆N fewer iterations (Np = Ns −∆N) which,
however, last δt longer (tp = ts + δt), then the condition Nptp < Nsts is equivalent to

∆N

Ns
>

δt

ts + δt
. (41)

The number of iterations Ns depends on, for example, the nature of the function f , the initial
estimates, the sequential algorithm that is used and the required precision with which the root
α must be calculated. The reduction in the number of iterations ∆N also depends on these
factors as well as on the number of processor cores employed. The average iteration time ts
depends (for a given hardware configuration) on f and the sequential algorithm one is using.
All these factors make it hard to make general and, at the same time, practical statements on
when to consider a parallel algorithm. As a rule of the thumb though, we expect parallelization
to make a difference if either the calculation of f is significantly slower than the expected
parallelization overhead δt, or the required precision of the approximation of α is high enough
that ∆N becomes of the order of Ns.

We estimate the parallelization overhead δt for our three-core parallel Java program. We do
this on an Intel Core2 Quad Q6600 CPU running at 2.4 GHz. This CPU has four processor
cores. We estimate the average iteration time ts of a sequential algorithm which calculates the
second-order approximant a2 with the method of improved approximants. As for the parallel
algorithm, the sequential algorithm is implemented in Java. We estimate tp from the parallel
program and calculate δt = tp − ts.

To study the effect of a varying tp, we do the following. We either pause the threads on which
f is calculated (this is the main thread in case of the sequential algorithm) for a certain ‘sleep
time’, or we invoke a loop in the calculation of f in which dummy calculations are carried
out. Controlling the number of loop iterations allows us to vary the calculation time of f . The
results are shown in Tables 3 and 4.

Table 3 shows a constant parallelization overhead of 7 ∼ 8 ms over a wide range of sleep
times. The same overhead occurs in Table 4 for the smallest values of ts. However, when it
takes more time to calculate f , the parallelization overhead increases. We suspect that this is
due to the fact that there is more variation in calculation time per core, compared to Table 3.
The cores have to perform actual calculations now, rather than being paused for a specified
amount of time. Since the time of an iteration is determined by the slowest core, and the
variation in calculation time over the cores increases with the time needed to calculate f , the
parallelization overhead increases with tp. This is the more realistic case, compared to pausing
the threads.

Table 4. As Table 3 but now we vary the calculation time of f by the invocation of a loop with
dummy calculations. The loop length is the number of iterations in the loop in millions.

Loop length 0 1 2 4 8 16 ×106

ts 2.8 29.0 54.9 106.2 209.8 418.0
tp 9.2 35.8 62.6 116.4 225.9 443.1
δt 6.4 6.8 7.7 10.2 16.1 25.2

https://doi.org/10.1112/S1461157015000236 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000236

a parallel root-finding algorithm 725

We conclude that our three-core Java program running on our hardware, has a parallelization
overhead of at most roughly 10% of the iteration time of the sequential algorithm, with a
minimum of about 8 ms. This brings the right-hand side of (41) to about 0.1 if the calculation
time of f(x) is much larger than 8 ms.

7. Conclusions

We have constructed a parallel root-finding algorithm and calculated the order with which
the most accurate approximant converges to the root. We also calculated the corresponding
asymptotic error. Our algorithm is for a real, scalar root. It is derivative free and performs
one function evaluation per core in each iteration. We have demonstrated the mathematical
properties with high-precision numerical simulations of an n-core algorithm. A truly parallel
Java implementation showed a parallelization overhead of at most 10% with a minimum of
about 8 ms per iteration for the three core algorithm running on a quad-core Intel processor.

The algorithm requires at least three processor cores. The order grows linearly with the
number of processors n and becomes approximately equal to n − 1 when n becomes large.
We sketched some alternative algorithms. The versions without memory all appear to have an
order of convergence n − 1 + O(1/n) for large n. One might hope that the leading order is
larger for algorithms with memory. However, this remains to be shown.

We only studied the convergence of the most accurate approximant, that is, of the sequence

{xp,1}. It can be expected that the other sequences {xp,i} with i > 1 converge with the same

order, but with a different asymptotic error.

It would be worthwhile to also have a parallelization scheme for two cores. Starting from

a sequential algorithm running on one processor core, the first step in parallelization is

to run on two cores. A two-core algorithm could be a scheme with memory like xp,1 =

a1(xp−1,1xp−1,2, xp−2,1) and xp,2 = a1(xp−1,1xp−1,2, xp−2,2). We have not explored this any

further.

Executing n+ 2 iterations of a sequential algorithm am such as discussed in § 2, is expected

to give a better approximant of α than one iteration of our parallel algorithm on n+ 2 cores.

If one has to solve N independent equations fi(x) = 0 with N larger than or equal to the

number of available cores, the likely fastest strategy is therefore to solve each equation with a

sequential algorithm on one core. Judged by the orders of convergence, this is more efficient

than solving the equations one-by-one with a parallel algorithm on all available cores.

Popular ‘general purpose’ root-finding algorithms for scalar, real roots combine an interval

method with a locally convergent method [2, 4, 18]. Since we know how to parallelize an

interval method and we have parallel schemes for locally convergent methods, it should be

possible to create a parallel version of these combined methods.

Appendix A. Recursion with disturbance

We show that the recursion

Rn = τnR
−β
n−1, n = 1, 2, 3, . . . ,

R0 = 1,
(A.1)

with τn > 0 for all n, limn→∞ τn = 1, and 0 < β < 1, generates a sequence {Rn} which

converges to one. This is trivial if τn = 1 for all n since then Rn = R
(−β)n
0 . The question is

whether the ‘disturbances’ τn can change this limiting behaviour. It may be clear that is not

the case, but we give a formal proof below.

https://doi.org/10.1112/S1461157015000236 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000236

726 m. j. p. nijmeijer

Proof. With

bn = (τn+2τ
−β
n+1)1/(1−β

2),

we have

Rn+2 = b1−β
2

n Rβ
2

n .

We prove that the subsequence {R2n}∞n=0 converges to one. From (A.1) it follows that the

subsequence {R2n+1}∞n=0 also converges to one, which means that the entire sequence {Rn}∞n=0

converges to one.

Define Sn = R2n and cn = b2n. Sn develops recursively as

Sn+1 = c1−β
2

n Sβ
2

n .

We have to prove that limn→∞ Sn = 1. From the recursion we see that

Sn < Sn+1 < cn if Sn < cn,

cn < Sn+1 < Sn if Sn > cn,

Sn+1 = Sn if Sn = cn,

(A.2)

and therefore

|Sn+1 − 1| 6 max(|Sn − 1|, |cn − 1|). (A.3)

Because limn→∞ cn = 1, there exists an Nε ∈ N for all ε > 0 such that |cn − 1| < ε for all

n > Nε. If we can proof that for each ε > 0 there exists at least one n? > Nε such that

|Sn? − 1| < ε, then, from (A.3), |Sn?+1 − 1| < ε and, by induction, |Sn?+p − 1| < ε for all

p = 0, 1, 2, This implies that the sequence {Sn} converges to one.

It remains to be proven that for each ε > 0 there exists an n? > Nε such that |Sn? − 1| < ε.

Suppose this is not the case. Then there exists an ε̃ and an Ñ such that |Sn − 1| > ε̃ for all

n > Ñ . We can take Ñ > Nε̃ such that |cn − 1| < ε̃ for all n > Ñ . From (A.2), we see that

the sequence {SÑ+p}∞p=0 is either decreasing and bounded from below by 1 + ε̃, or increasing

and bounded from above by 1− ε̃. This means it converges to a limit a. The limit a must be

larger than zero. From

lim
n→∞

Sn+1

Sβ
2

n

= lim
n→∞

c1−β
2

n = 1

we have a = 1. This contradicts our assumption that there exists an ε̃ and an Ñ such that

|Sn − 1| > ε̃ for all n > Ñ . Hence we have proven that for each Nε there exists at least one

n? > Nε such that |Sn? − 1| < ε.

Appendix B. Numerical examples

Tables B1 and B2 show numerical examples of the convergence behaviour of theorem 1. Both

tables use the function f that is also used in Table 1. It is shown in appendix C of [17] that

C2 = −2 and Cn = (−1)n+1 for n > 2 for this function. This gives AIP
∞0 = −2, AIP

∞1 = 7,

AIP
∞2 = −31 and AIP

∞3 = 154 for the method of inverse polynomial interpolation. We have

AIA
∞0 = −2, AIA

∞1 = 3, AIA
∞2 = −5 and AIA

∞3 = 8 for the method of improved approximants.

The tables below were calculated using high-precision arithmetic.

https://doi.org/10.1112/S1461157015000236 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000236

a parallel root-finding algorithm 727

Table B1. Convergence of the three-core parallel algorithm for the function f . Convergence is shown
for both the method of inverse polynomial interpolation and the method of improved approximants.
Starting values are x0,1 = −0.1, x0,2 = 0.1 and x0,3 = 0.2 for both methods. The order of convergence
is φ3 = 1 +

√
2 (c.f. Theorem 1). The expected value is the asymptotic error term |A∞0|φ3−1 (c.f.

Theorem 1). The expected values are the same for both methods because AIP
∞0 = AIA

∞0 = C2. The first
5 iterations for the method of improved approximants are also shown in Table 1.

f(x) =
x(x2 + x− 1)

x + 1

Number of cores: 3
Inverse interpolation Improved approximants

p xp,1
|xp,1|

|xp−1,1|φ3
xp,1

|xp,1|
|xp−1,1|φ3

1 −2.74× 10−2 7.105 39 −9.33× 10−3 2.422 025
2 −1.97× 10−4 1.165 54 −2.87× 10−5 2.283 310
3 −3.93× 10−9 3.481 66 −3.00× 10−11 2.776 358
4 −1.21× 10−20 2.377 37 −1.03× 10−25 2.619 726
5 −2.32× 10−48 2.794 31 −1.28× 10−60 2.684 187
6 −2.60× 10−115 2.613 41 −6.77× 10−145 2.657 296
7 −6.29× 10−277 2.686 87 −2.35× 10−348 2.668 402
8 −4.12× 10−667 2.656 19 −1.49× 10−839 2.663 796
9 −4.27× 10−1609 2.668 86 −2.09× 10−2025 2.665 703

10 −3.00× 10−3883 2.663 61 −2.62× 10−4888 2.664 913
11 −1.53× 10−9373 2.665 78 −5.74× 10−11 800 2.665 240
12 −2.82× 10−22 628 2.664 88 −3.44× 10−28 486 2.665 104
13 −4.89× 10−54 628 2.665 25 −2.72× 10−68 770 2.665 161
14 −2.71× 10−131 882 2.665 10 −1.02× 10−166 024 2.665 137
15 −1.43× 10−318 390 2.665 16 −1.13× 10−400 817 2.665 147
16 −2.23× 10−768 661 2.665 14 −5.23× 10−967 658 2.665 144

Expected 2.66 514 2.665 144

Table B2. As table B1 but for four and five cores. The method of inverse polynomial interpolation
is used for four cores, the method of improved approximants for five cores. Starting values are x0,1 =
−0.2, x0,2 = −0.1, x0,3 = 0.1 and x0,4 = 0.2 in the case of four cores. The order of convergence
is φ4 = (3 +

√
13)/2 and the asymptotic error is |A∞2|−φ4/(φ4+1)|A∞1|φ4−1. Starting values are

x0,1 = −0.2, x0,2 = −0.1, x0,3 = 0.1, x0,4 = 0.2 and x0,5 = 0.3 in the case of five cores. The order of
convergence is φ5 = 2 +

√
5 and the asymptotic error is |A∞3|−2φ5/(φ5+1)|A∞2|φ5−1.

f(x) =
x(x2 + x− 1)

x + 1

Number of cores: 4 Number of cores: 5
Inverse interpolation Improved approximants

p xp,1
|xp,1|

|xp−1,1|φ4
xp,1

|xp,1|
|xp−1,1|φ5

1 −1.62× 10−2 3.2965 2.14× 10−3 1.952 46
2 −4.50× 10−6 3.6920 −3.06× 10−11 6.265 69
3 −1.62× 10−17 7.3504 1.83× 10−44 6.354 45
4 −2.11× 10−55 6.0475 −3.35× 10−185 6.311 30
5 −1.67× 10−180 6.4164 2.25× 10−781 6.321 46
6 −1.09× 10−593 6.3024 −8.34× 10−3307 6.319 06
7 −2.36× 10−1958 6.3367 1.06× 10−14 004 6.319 63
8 −1.59× 10−6465 6.3263 −1.04× 10−59 321 6.319 50
9 −1.04× 10−21 351 6.3294 1.21× 10−251 287 6.319 53

10 −1.99× 10−70 517 6.3285
11 −9.12× 10−232 901 6.3288
12 −1.67× 10−769 216 6.3287

Expected 6.3287 6.319 52

https://doi.org/10.1112/S1461157015000236 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000236

728 m. j. p. nijmeijer

Acknowledgements. The author thanks Professor George F. Corliss for an explanation of his
work on parallel root-finding algorithms. Dr A. Hogervorst has created and run the parallel
Java program. I have benefited from many discussions with him about the results of § 6.
The high-precision numerical results have been obtained with the help of the open-source
program Sage (www.sagemath.org). The Java programs have been created in the open-source
development environment NetBeans (www.netbeans.org).

References

1. G. E. Alefeld and F. A. Potra, ‘Some efficient methods for enclosing simple zeros of nonlinear equations’,
BIT 32 (1992) no. 2, 334–344.

2. G. E. Alefeld, F. A. Potra and Y. Shi, ‘Algorithm 748: enclosing zeros of continuous functions’, ACM
Trans. Math. Software 21 (1995) no. 3, 327–344.

3. S. Amat and S. Busquier, ‘On a higher order secant method’, Appl. Math. Comput. 141 (2003) no. 2–3,
321–329.

4. R. P. Brent, ‘An algorithm with guaranteed convergence for finding a zero of a function’, Comput. J. 14
(1971) no. 4, 422–425.

5. R. Brent, S. Winograd and P. Wolfe, ‘Optimal iterative processes for root-finding’, Numer. Math. 20
(1973.) 327–341.

6. R. L. Burden, J. D. Faires and A. C. Reynolds, Numerical analysis, 2nd edn (Prindle, Weber and
Schmidt, 1981).

7. A. Cordero, J. L. Hueso, E. Mart́ınez and J. R. Torregrosa, ‘A family of derivative-free methods with
high order of convergence and its application to nonsmooth equations’, Abstr. Appl. Anal. 2012 (2012)
Article ID 836901, doi:10.1155/2012/836901.

8. G. F. Corliss, ‘Parallel root finding algorithms’, PhD Thesis, Department of Mathematics, Michigan
State University, 1974.

9. P. D́ıez, ‘A note on the convergence of the secant method for simple and multiple roots’, Appl. Math.
Lett. 16 (2003) no. 8, 1211–1215.

10. S. Gal and W. Miranker, ‘Optimal sequential and parallel search for finding a root’, J. Combin. Theory
Ser. A 23 (1977) 1–14.

11. K. Ghidouche, R. Couturier and A. Sider, ‘A parallel implementation of the Durand–Kerner algorithm
for polynomial root-finding on GPU’, 2014 International Conference on Advanced Networking Distributed
Systems and Applications (INDS) (IEEE, 2014) 53–57.

12. F. B. Hildebrand, Introduction to numerical analysis, 2nd edn (Dover, 1987).
13. B. Ignatova, N. Kyurkchiev and A. Iliev, ‘Multipoint algorithms arising from optimal in the sense

of Kung–Traub iterative procedures for numerical solution of nonlinear equations’, Gen. Math. Notes 6
(2011) no. 2, 45–79.

14. D. E. Muller, ‘A method for solving algebraic equations using an automatic computer’, Mathematical
Tables and Other Aids to Computation 10 (1956) 208–215.

15. R. E. Moore, R. B. Kearfott and M. J. Cloud, Introduction to interval analysis (SIAM, 2009).
16. H. Mukai, ‘Parallel algorithms for solving systems of nonlinear equations’, Comput. Math. Appl. 7 (1981)

235–250.
17. M. J. P. Nijmeijer, ‘A method to accelerate the convergence of the secant algorithm’, Adv. Numer. Anal.

2014 (2014) Article ID 321592, doi:10.1155/2014/321592.
18. E. Novak, K. Ritter and H. Wozniakowski, ‘Average case optimality of a hybrid secant-bisection

method’, Math. Comp. 64 (1995) no. 212, 1517–1539.
19. V. Y. Pan and A.-L. Zheng, ‘New progress in real and complex polynomial root-finding’, Comput. Math.

Appl. 61 (2011) no. 5, 1305–1334.
20. W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical recipes: the art of

scientific computing, 2nd edn (Cambridge University Press, 2007).
21. M. Raydan, ‘Exact order of convergence of the Secant method’, J. Optim. Theory Appl. 78 (1993) 541–551.
22. J. R. Sharma and P. Gupta, ‘An efficient family of Traub–Steffensen-type methods for solving systems

of nonlinear equations’, Adv. Numer. Anal. 2014 (2014) Article ID 152187, doi:10.1155/2014/152187.
23. A. Sidi, ‘Unified Treatment of Regula Falsi, Newton–Raphson, Secant, and Steffensen Methods for

Nonlinear Equations’, J. Online Math. Appl. 6 (2006), www.maa.org/node/115943.
24. A. Sidi, ‘Generalization of the Secant method for nonlinear equations’, Appl. Math. E-Notes 8 (2008)

115–123.
25. J. Stoer and R. Bulirsch, Introduction to numerical analysis, 3rd edn (Springer, 2002).
26. L. Taher and T. Elahe, ‘On a new efficient Steffensen-like iterative class by applying a suitable self-

accelerator parameter’, Sci. World J. 2014 (2014) doi:10.1155/2014/769758.

https://doi.org/10.1112/S1461157015000236 Published online by Cambridge University Press

www.sagemath.org
www.netbeans.org
http://dx.doi.org/10.1155/2012/836901
http://dx.doi.org/10.1155/2012/836901
http://dx.doi.org/10.1155/2012/836901
http://dx.doi.org/10.1155/2012/836901
http://dx.doi.org/10.1155/2012/836901
http://dx.doi.org/10.1155/2012/836901
http://dx.doi.org/10.1155/2012/836901
http://dx.doi.org/10.1155/2012/836901
http://dx.doi.org/10.1155/2012/836901
http://dx.doi.org/10.1155/2012/836901
http://dx.doi.org/10.1155/2012/836901
http://dx.doi.org/10.1155/2012/836901
http://dx.doi.org/10.1155/2012/836901
http://dx.doi.org/10.1155/2012/836901
http://dx.doi.org/10.1155/2012/836901
http://dx.doi.org/10.1155/2012/836901
http://dx.doi.org/10.1155/2012/836901
http://dx.doi.org/10.1155/2012/836901
http://dx.doi.org/10.1155/2012/836901
http://dx.doi.org/10.1155/2014/321592
http://dx.doi.org/10.1155/2014/321592
http://dx.doi.org/10.1155/2014/321592
http://dx.doi.org/10.1155/2014/321592
http://dx.doi.org/10.1155/2014/321592
http://dx.doi.org/10.1155/2014/321592
http://dx.doi.org/10.1155/2014/321592
http://dx.doi.org/10.1155/2014/321592
http://dx.doi.org/10.1155/2014/321592
http://dx.doi.org/10.1155/2014/321592
http://dx.doi.org/10.1155/2014/321592
http://dx.doi.org/10.1155/2014/321592
http://dx.doi.org/10.1155/2014/321592
http://dx.doi.org/10.1155/2014/321592
http://dx.doi.org/10.1155/2014/321592
http://dx.doi.org/10.1155/2014/321592
http://dx.doi.org/10.1155/2014/321592
http://dx.doi.org/10.1155/2014/321592
http://dx.doi.org/10.1155/2014/321592
http://dx.doi.org/10.1155/2014/152187
http://dx.doi.org/10.1155/2014/152187
http://dx.doi.org/10.1155/2014/152187
http://dx.doi.org/10.1155/2014/152187
http://dx.doi.org/10.1155/2014/152187
http://dx.doi.org/10.1155/2014/152187
http://dx.doi.org/10.1155/2014/152187
http://dx.doi.org/10.1155/2014/152187
http://dx.doi.org/10.1155/2014/152187
http://dx.doi.org/10.1155/2014/152187
http://dx.doi.org/10.1155/2014/152187
http://dx.doi.org/10.1155/2014/152187
http://dx.doi.org/10.1155/2014/152187
http://dx.doi.org/10.1155/2014/152187
http://dx.doi.org/10.1155/2014/152187
http://dx.doi.org/10.1155/2014/152187
http://dx.doi.org/10.1155/2014/152187
http://dx.doi.org/10.1155/2014/152187
http://dx.doi.org/10.1155/2014/152187
http://www.maa.org/node/115943
http://www.maa.org/node/115943
http://www.maa.org/node/115943
http://www.maa.org/node/115943
http://www.maa.org/node/115943
http://www.maa.org/node/115943
http://www.maa.org/node/115943
http://www.maa.org/node/115943
http://www.maa.org/node/115943
http://www.maa.org/node/115943
http://www.maa.org/node/115943
http://www.maa.org/node/115943
http://www.maa.org/node/115943
http://www.maa.org/node/115943
http://www.maa.org/node/115943
http://www.maa.org/node/115943
http://www.maa.org/node/115943
http://www.maa.org/node/115943
http://www.maa.org/node/115943
http://www.maa.org/node/115943
http://www.maa.org/node/115943
http://www.maa.org/node/115943
http://www.maa.org/node/115943
http://dx.doi.org/10.1155/2014/769758
http://dx.doi.org/10.1155/2014/769758
http://dx.doi.org/10.1155/2014/769758
http://dx.doi.org/10.1155/2014/769758
http://dx.doi.org/10.1155/2014/769758
http://dx.doi.org/10.1155/2014/769758
http://dx.doi.org/10.1155/2014/769758
http://dx.doi.org/10.1155/2014/769758
http://dx.doi.org/10.1155/2014/769758
http://dx.doi.org/10.1155/2014/769758
http://dx.doi.org/10.1155/2014/769758
http://dx.doi.org/10.1155/2014/769758
http://dx.doi.org/10.1155/2014/769758
http://dx.doi.org/10.1155/2014/769758
http://dx.doi.org/10.1155/2014/769758
http://dx.doi.org/10.1155/2014/769758
http://dx.doi.org/10.1155/2014/769758
http://dx.doi.org/10.1155/2014/769758
http://dx.doi.org/10.1155/2014/769758
https://doi.org/10.1112/S1461157015000236

a parallel root-finding algorithm 729

27. J. Traub, Iterative methods for the solution of equations (Prentice-Hall, Englewood Cliffs, New Jersey,
1964.).

28. H. T. Kung and J. F. Traub, ‘Optimal order of one-point and multipoint iteration’, J. Assoc. Comput.
Mach. 21 (1974) no. 4, 643–651.

29. H. T. Kung and J. F. Traub, ‘Optimal order and efficiency for iterations with two evaluations’, SIAM
J. Numer. Anal. 13 (1976) no. 1, 84–99.

M. J. P. Nijmeijer
Heemraadssingel 182D
3021 DM Rotterdam
The Netherlands

mail@marconijmeijer.nl

https://doi.org/10.1112/S1461157015000236 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000236

	1 Introduction
	2 Sequential algorithms
	3 The parallel algorithm
	4 Convergence properties
	4.1 Basic convergence
	4.2 Order of convergence

	5 Alternatives
	6 A parallel implementation
	7 Conclusions
	Appendix A Recursion with disturbance
	Appendix B Numerical examples
	References

