Canad. Math. Bull. Vol. 18 (4), 1975

MAXIMUM MODULUS THEOREMS AND SCHWARZ LEMMATA FOR SEQUENCE SPACES

BY

B. L. R. SHAWYER*

1. Introduction. In this note, we prove analogues of the classical maximum modulus theorem and Schwarz lemma, for sequence spaces. We begin by stating these two results in a convenient way; that is for the unit disk and functions of bound one.

MAXIMUM MODULUS THEOREM. If f(z) is analytic in the disk |z| < 1, continuous for $|z| \le 1$ and satisfies $|f(z)| \le 1$ on |z| = 1, then $|f(z)| \le 1$ for |z| < 1.

SCHWARZ LEMMA. If f satisfies the conditions of the maximum modulus theorem and, in addition, satisfies f(0)=0, then either

- (a) |f(z)| < |z| for $z \neq 0$ and |f'(0)| < 1, or
- (b) f(z) = cz where c is a constant with |c| = 1.

In what follows, we write $f \in MM$ if f satisfies the conditions of the maximum modulus theorem, and we write $f \in SL$ if f satisfies the conditions of the Schwarz lemma.

Further, we shall assume, whenever $x = \{x_k\}$ is a sequence of complex numbers, that $f(x) = \{f(x_k)\}$.

2. The sequence space s. Let s be the space of all sequences of complex numbers with

$$\|x\|_{s} = \sum_{k=1}^{\infty} 2^{-k} \frac{|x_{k}|}{1+|x_{k}|}$$

Clearly $||x||_s \leq 1$ for all $x \in s$, and so the following result is immediate:

THEOREM 1. If $f \in MM$ and $x \in s$ with $||x||_s \leq 1$, then $f(x) \in s$ and $||f(x)||_s \leq 1$.

3. The sequence spaces m, c, and c_0 . Let m be the space of bounded sequences with $||x||_m = \sup_k |x_k|$ finite; let c be the subspace of m of convergent sequences with $||x||_c = ||x||_m$; and let c_0 be the subspace of c of null sequences with $||x||_{c_0} = ||x||_m$.

THEOREM 2. If $f \in MM$ and $x \in m$ with $||x||_m \le 1$, then $f(x) \in m$ and $||f(x)||_m \le 1$.

Received by the editors July 8, 1974 and, in revised form, October 16, 1974.

^{*} Supported in part by the National Research Council of Canada. The author acknowledges valuable conversations held with Professors D. Borwein and A. Peyerimhoff.

Proof. $||x||_m \le 1$ implies that $|x_k| \le 1$ and so that $|f(x_k)| \le 1$. Thus $||f(x)||_m = \sup_k |f(x_k)| \le 1$.

The same argument holds with c in place of m.

THEOREM 3. If
$$f \in SL$$
 and $x \in c_0$ with $||x||_{c_0} \le 1$, then $f(x) \in c_0$ and $||f(x)||_{c_0} \le ||x||_{c_0}$.

This follows from the Schwarz lemma in the same way that theorem 2 follows from the maximum modulus theorem.

4. The sequence spaces l_p . For p > 0, we write $x \in l_p$ if $||x||_{l_p} = (\sum_{k=1}^{\infty} |x|^p)^{1/q}$ is finite, where q=1 whenever 0 and <math>q=p whenever $p \ge 1$.

THEOREM 4. If $f \in SL$ and $x \in l_p$ with $||x||_{l_p} \le 1$, then $f(x) \in l_p$ and $||f(x)||_{l_p} \le ||x||_{l_p}$.

Proof. Since f(0)=0, write f(z)=zg(z). It follows that $g \in MM$. Thus,

$$(\|f(x)\|_{l_p})^q = \sum_{k=1}^{\infty} |f(x_k)|^p = \sum_{k=1}^{\infty} |x_k g(x_k)|^p$$
$$\leq \sum_{k=1}^{\infty} |x_k|^p \quad (\text{since } g(x_k) \leq 1)$$
$$= (\|x\|_{l_p})^q.$$

5. The sequence space bv_0 . We write $x \in bv_0$ if $x \in c_0$ and $||x||_{bv_0} = \sum_{k=1}^{\infty} |x_k - x_{k+1}|$ is finite.

Suppose that $f(z) = \sum_{n=1}^{\infty} b_n z^n$. If $f \in MM$ or $f \in SL$, the radius of convergence of the McLaurin series representing f is at least one, and since f is continuous for $|z| \le 1$, we have that $\sum_{n=1}^{\infty} b_n = f(1)$, provided that $\sum_{n=1}^{\infty} b_n$ is convergent. (See [3]).

LEMMA. If
$$x \in bv_0$$
 and $f(z) = z^{p+1} (p \in N)$, then $f(x) \in bv_0$ and $||f(x)||_{bv_0} \leq f(||x||_{bv_0})$.

Proof. We are given that $\sum_{k=1}^{\infty} |x_k - x_{k+1}| < \infty$. Thus $y_n = \sum_{k=n}^{\infty} |x_k - x_{k+1}| \to 0$ as $n \to \infty$. Note also that $y_n - y_{n+1} = |x_n - x_{n+1}|$ and that $y_n = \sum_{k=n}^{\infty} |x_k - x_{k+1}| \ge |\sum_{k=n}^{\infty} (x_k - x_{k+1})| = |x_n|$. Thus

$$\begin{split} \|f(x)\|_{bv_0} &= \sum_{k=1}^{\infty} |x_k^{p+1} - x_{k+1}^{p+1}| \le \sum_{k=1}^{\infty} |x_k - x_{k+1}| \sum_{r=0}^{p} |x_k|^{(p-r)} |x_{k+1}|^r \\ &\le \sum_{k=1}^{\infty} (y_k - y_{k+1}) \sum_{r=0}^{p} y_k^{p-r} y_{k+1}^r = \sum_{k=1}^{\infty} (y_k^{p+1} - y_{k+1}^{p+1}) = y_1^{p+1} = (\|x\|_{bv_0})^{p+1} \\ &= f(\|x\|_{bv_0}). \end{split}$$

THEOREM 5. If $f \in SL$ with $\sum_{n=1}^{\infty} |b_n| \le 1$, and $x \in bv_0$ with $||x||_{bv_0} \le 1$, then $f(x) \in bv_0$ and $||f(x)||_{bv_0} \le ||x||_{bv_0}$.

594

Proof. Since $x_k \rightarrow 0$ and f(0)=0, it follows that $f(x_k) \rightarrow 0$. Using the lemma above, it follows that

$$\begin{split} \|f(x)\|_{bv_0} &= \sum_{k=1}^{\infty} |f(x_k) - f(x_{k+1})| = \sum_{k=1}^{\infty} \left| \sum_{n=1}^{\infty} b_n (x_k^n - x_{k+1}^n) \right| \\ &\leq \sum_{k=1}^{\infty} \sum_{n=1}^{\infty} |b_n| \cdot |x_k^n - x_{k+1}^n| = \sum_{n=1}^{\infty} |b_n| \sum_{k=1}^{\infty} |x_k^n - x_{k+1}^n| \\ &\leq \sum_{n=1}^{\infty} |b_n| \cdot (\|x\|_{bv_0})^n \leq \|x\|_{bv_0} \sum_{n=1}^{\infty} |b_n| \leq \|x\|_{bv_0}. \end{split}$$

To illustrate how close the conditions of theorem 5 are to being necessary, consider the following example [1]*:

Suppose that $0 < \alpha < 3 - 2\sqrt{2}$, and set

$$f(z) = \frac{z(z+1)(z-\alpha)}{2(1-\alpha)} = \sum_{n=1}^{3} b_n z^n.$$

It is readily shown that $|f(z)| \le 1$ on |z|=1, and that $\sum_{n=1}^{3} |b_n|=1/(1-\alpha)>1$. Let $x=\{1, \alpha, \alpha/2, 0, 0, \ldots\}$ so that $||x||_{bv_0}=1$ and $||f(x)||_{bv_0}=1+2|f(\alpha/2)|>1$.

6. The sequence spaces hbv_0 and Hbv_0 . Many complex analysts hold the view that Euclidean distance is not the best distance function when working in the unit disk, and prefer to use a hyperbolic distance such as

$$D(z, w) = \left| \frac{w - z}{1 - \overline{z}w} \right| \text{ or } d(z, w) = \frac{1}{2} \log \frac{1 + D(z, w)}{1 - D(z, w)}.$$
 [See e.g. 2.]

For $f \in MM$, both these distances have the property that they are "distance decreasing": that is

 $D(f(z), f(w)) \le D(z, w)$ and $d(f(z), f(w)) \le d(z, w)$.

We use these hyperbolic distances to define hyperbolic bounded variation sequence spaces as follows: we write $x \in hbv_0$ [resp. Hbv_0] if $x \in c_0$ and $||x||_{hbv_0} = \sum_{k=1}^{\infty} d(x_k, x_{k+1})$ [resp. $||x||_{Hbv_0} = \sum_{k=1}^{\infty} D(x_k, x_{k+1})$] is finite.

Because of the distance decreasing property, it is easy to show the following result:

THEOREM 6. If $f \in SL$ and $x \in hbv_0$ with $||x||_{hbv_0} \leq 1$, then $f(x) \in hbv_0$ with $||f(x)||_{hbv_0} \leq ||x||_{hbv_0}$, and the same result with Hbv_0 replacing hbv_0 .

7. The sequence spaces bs and cs. We write $x \in bs$ if $||x||_{bs} = \sup_n |\sum_{k=1}^n x_k|$ is finite; we write $x \in cs$ if $x \in bs$ and $\sum_{k=1}^\infty x_k$ is convergent and set $||x||_{cs} = ||x||_{bs}$.

1975]

^{*} It is clear that we cannot hope for necessary and sufficient conditions since we may choose x with $||x||_{bv_0}$ to be as small as we please. However, whether the condition $\sum_{n=1}^{\infty} |b_n| \le 1$ is a necessary condition if we insist that $||x||_{bv_0} = 1$, is an open question.

We cannot prove theorems for these sequence spaces as the following examples show: Let $f(z)=z^2$.

(1) If $x = \{(-1)^k\}$, then $x \in bs$ with $||x||_{bs} = 1$ but $f(x) \notin bs$.

(2) If $x = \{(-1)^k/k\}$, then $x \in cs$ with $||x||_{cs} = 1$ but $f(x) \in cs$ with $||f(x)||_{cs} = \pi^2/6 > 1$.

References

1. D. Borwein, Personal communication.

2. W. A. Veech, A second course in complex analysis, W. A. Benjamin Inc., New York, 1967.

3. A. Zygmund, Trigonometric Series, 2nd Edition, Cambridge, 1959, p. 300, Theorem 1.14.

DEPARTMENT OF MATHEMATICS,

THE UNIVERSITY OF WESTERN ONTARIO, LONDON, ONTARIO, CANADA, N6A 5B9.

596