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MAXIMUM MODULUS THEOREMS AND SCHWARZ 
LEMMATA FOR SEQUENCE SPACES 

BY 

B. L. R. SHAWYER* 

1. Introduction. In this note, we prove analogues of the classical maximum 
modulus theorem and Schwarz lemma, for sequence spaces. We begin by stating 
these two results in a convenient way; that is for the unit disk and functions of 
bound one. 

MAXIMUM MODULUS THEOREM. If f(z) is analytic in the disk | z |< l , continuous 
for \z\<\ and satisfies \f(z)\<\ on |z| = l, then \f(z)\<\for \z\<\. 

SCHWARZ LEMMA. If f satisfies the conditions of the maximum modulus theorem 
and, in addition, satisfies/(0)=0, then either 

{a) \f(z)\ < \z\ forz ^ 0 and | / ' (0) | < 1, or 

(b) f(z) = cz where c is a constant with \c\ = 1. 

In what follows, we write fe MM iff satisfies the conditions of the maximum 
modulus theorem, and we wri te /G SL if/satisfies the conditions of the Schwarz 
lemma. 

Further, we shall assume, whenever x={xk} is a sequence of complex numbers, 
t ha t / (x )={ /K)} . 

2. The sequence space s. Let s be the space of all sequences of complex numbers 
with 

IWI.=22T 
•k 

*=1 1 + 1**1 

Clearly | |x| | s<l for all x e s9 and so the following result is immediate: 

THEOREM 1. Iff e MM and x es with |M|S<1, then f(x) e s and \\f(x)\\s<l. 

3. The sequence spaces m, c, and c0. Let m be the space of bounded sequences 
with |ML=supfc \xk\ finite; let c be the subspace of m of convergent sequences 
with ||x||c = |M|w; and let c0 be the subspace of c of null sequences with \\x\\c = 

IWL-
THEOREM 2. Iffe MM andxe m with | M | m < l , thenf(x) e m and | | / (x) | |m^l . 
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Proof. | |x | |w<l implies that \xk\<l and so that | /(x f t) |<l. Thus | | /(x)| |m= 
sup*|/fe)|<l. 

The same argument holds with c in place of m. 

THEOREM 3. Iffe SLandx e cQ with \\x\\CQ< 1, thenf{x) e c0and \\f(x)\\CQ< \\X\\CQ. 

This follows from the Schwarz lemma in the same way that theorem 2 follows 
from the maximum modulus theorem. 

4. The sequence spaces l^. For p>0, we write x elp if |(x||z =(2*Li \x\p)1/q 

is finite, where q=l whenever 0 < / ? < l and q=p wheneverp>l. 

THEOREM 4. Iffe SL and xelv with \\x\\ l < 1, thenf(x) e lv and \\f(x)\\ l < \\x\\ t . 

Proof. Since/(0)=0, write f(z)=zg(z). It follows that g e MM. Thus, 

(ii/wiL/=2i/fe)r=ii^gfe)r 

^ 2 W (since g(xk) ^ 1) 

= (11*11,,)'. 

5. The sequence space bvQ. We write x e bv0 if x e c0 and \\x \\bv =2feLi \xk~xk+i\ 
is finite. 

Suppose that/(z)=2SLi bnz
n. Iffe MM orfe SL, the radius of convergence 

of the McLaurin series representing/is at least one, and since/is continuous for 
|z |<l , we have that ^n=ibn=f(l), provided that 2*=i*n is convergent. (See 
[3D-

LEMMA. Ifx e bv0andf(z)=z*+\p e N), thenf(x) e bv0 and ||/WI|&Vo</(lkl!6,0). 

Proof. We are given that 2*Li l**-**+il<°°- T h u s yn=2k=n\xk-xk+1\-^0 
as «->oo. Note also that yn-yn+1=\xn-xn+1\ and that yn—JJ^n \xk-xk+1\> 
\2Zn (*fc-*fc+l)l = KI- T n U S 

00 00 It 

ll/MILo = ï\*î+1-XÏXl\ < I l**-*W-ll 2 l**|('-r,|*wlr 

fc=l r = 0 fc=l 

= /(WLo). 
THEOREM 5. Iffe SL with 2£Li \bn\<l> and xebv0 with |M|6r()<;i, thenf{x) e 

bvQ and \\f{x)\\hVQ<\\x\\ 
bVn' 
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Proof. Since %->0 and/(0)=0, it follows thsitf(xk)->0. Using the lemma above, 
it follows that 

oo oo 

ll/(x)IL„=Xl/fe)-/fe+1)|=I 
jfc=l k=l 

2,^n\xk~^xk-hl) 

£Ï Ï\K\ • K-xn
k+l\ = ï\bn\ï\xl-xn

k+1\ 
lc=l n==l n~l k=l 

< : I \ K \ • ( IWL 0 ) n < \\x\\bV(,2\bn\ <, \\x\\ivt. 
n—l n= l 

To illustrate how close the conditions of theorem 5 are to being necessary, 

consider the following example [1]*: 

Suppose that 0 < a < 3 — 2 v 2 , and set 

/(2) = 2 ( z + 1 ) ( z _ a ) = l ^ 
2 ( 1 — a ) ?i=i 

It is readily shown that | / (z ) |< l on |z| = l, and that j L i |6J = l / ( l - a ) > L 
Let *={1 , a, a/2, 0, 0, . . .} so that |WL o =l and \\f(x)\\hv=\+2 | / (a /2) |>l . 

6. The sequence spaces hbv0 and Hbv0. Many complex analysts hold the view 
that Euclidean distance is not the best distance function when working in the unit 
disk, and prefer to use a hyperbolic distance such as 

D(z, w) = w—z 
1— zw 

or d(z9w) ^ilog] + ^ w ) . [See e.g. 2.] 
1 — D(z, w) 

For fe MM, both these distances have the property that they are "distance de­
creasing": that is 

D(f(z%f(w)) <Ç D(z, w) and d(f(z),f(w)) < d(z, w). 

We use these hyperbolic distances to define hyperbolic bounded variation sequence 
spaces as follows: we write x G hbv0 [resp. Hbv0] if xe c0 and \\x\\hbv =2&Li d(xk, 
xk+i) [^sp. ||x|| 

Z*Li D(xk> xk+i)] is finite. 
Because of the distance decreasing property, it is easy to show the following 

result: 
THEOREM 6. If feSL and xehbv0 with \\x\\hbVo<l, then f(x)ehbv0 with 

\\f(x)\\hbv0^\\xhbv0>
 and the same result with Hbv0 replacing hbv0. 

7. The sequence spaces bs and cs. We write x ebs if IML=supw \^k=1xk\ is 
finite; we write x e cs if x e bs and J&Li xk is convergent and set IMICS=IML-

* It is clear that we cannot hope for necessary and sufficient conditions since we may choose 
x with \\x\\bVQ to be as small as we please. However, whether the condition Z^Li \bn\ <; 1 is a 
necessary condition if we insist that \\x\\bVQ = 1, is an open question. 
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We cannot prove theorems for these sequence spaces as the following examples 
show: Let/(z)=z2. 

(1) If x={(-l) fc}, then x e bs with | |*L=1 butf{x)$bs. 
(2) If x={(-l)lclk}, then xecs with ||x||cs=l but f(x)ecs with \\f(x)\\cs= 

7 T 2 / 6 > 1 . 
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