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Introductory. This paper considers a canonical form, or rather a class of
canonical forms, for three dimensional probability distributions subject to a
rather mild restriction. These canonical forms are used to develop suitable
tests of independence and lead to a consideration of the partition of %2 in the
analysis of complex contingency tables. Where these methods and Bartlett's
are both applicable it is shown that they give comparable results; but the
partitioning methods are more general.

1. Historical and Introductory

Karl Pearson [25] was the first to consider the analysis of contingency
tables in more than two dimensions. In [25], however, he was concerned with
the identification of a certain limiting value of %2IN = (f>2 with a determinan-
tal function of the coefficients of correlation and did not proceed further with
the interpretation of <f>z. In a very remarkable article, Pearson [26] returned
to the contingency tables of several dimensions, which we shall refer to as
complex contingency tables. He considered first of all the test of the hy-
pothesis of complete independence, when the probability density is given by
the multiplication rule. He stated that in this case #2 is distributed with
a/fy • • • — 1 degrees of freedom even though he had used the sums in the
rows and columns to estimate the row and column parameters and so on,
so that he should really have had oc/9y • • • — (a — 1) — (/? — 1) • • • — 1
degrees of freedom. In his second case, he considered the cell frequencies to
be given by some other law than complete independence although once again
the row parameters were estimated from the data so that the sums of observ-
ed and expected were identical for rows, columns • • \ As is well known he
did not regard this type of restriction as causing any loss of degrees of free-
dom or, as he would say, of variables. In the next paragraph of [26], he
considered additional restraints in a most interesting manner and shows how
each restraint reduces the number of variables (that is, degrees of freedom)
by unity. It is surprising that he failed to see that the same reasoning should
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apply to the fixing of marginal totals in a contingency table. In the third
paragraph, Pearson [26] considered the frequencies in one two-dimensional
face as fixed beforehand and the test is for homogeneity of distribution of a
third variable; he referred to this as partial contingency. It is worthy of
note that he introduced both homogeneous and non-homogeneous restraints
and in the latter case reached a %z which does not have the usual expectation.
[26] is indeed full of important ideas. Further, although in the single variate
distributions Pearson in his many papers was anxious to show that the
normal curve was not the only one, yet in both [25] and [26] he is very
concerned with the notion that the observations had arisen from a joint
multivariate normal distribution.

Wilks [30], applying the theory of the likelihood ratio of Neyman and
Pearson [22] derived a test function for a complex contingency table of
r X s X t cells, which is distributed approximately as x2 with rst — r—s —
t + 2 degrees of freedom, the parameters for the rows, columns and layers
being estimated from the data but the totals of the cells of the two dimen-
sional marginal contingency tables were not taken as fixed. Bartlett [2]
followed a suggestion of R. A. Fisher that he should apply the theory of [6]
to the 2 x 2 x 2 tables. In [6] it is assumed that the probability of a given
contingency table can be factored into a chain of conditional probabilities
similar to the well known factorization in a two dimensional contingency
table after the manner of Yates [33] and Bartlett [3]. Bartlett [2] noted that
his method would lead to computational difficulties even in the 3 x 2 x 2
tables. However, Norton [23] applied the methods of [3] to an R X 2fc table.

The methods of Lombard and Doering [18] are rather outside the lines of
development already mentioned. They adopted the technique of partial
correlation from the normal theory and defined second order interactions in
the same way as r12# 3 in the normal theory. This work has been criticised by
Dyke and Patterson [5] who used a transformation to certain variables, zi,
and then carried out an analysis of variance of the zt.

Wilson and Worcester [31] considered different models indicating differ-
ences in the mode of dependence of the three variables. They independently,
as [2], introduced a cubic equation; they noted that the expectation of
a cell is not exactly the same as the expression given by the solution of the
cubic.

Winsor [32] re-examined the data of [18] using probit analysis, taking
linear combinations of the transformed cell proportions.

Simpson [29] considered various definitions of interaction suggested by
general probability theory and by the coefficients of Yule given in [12].
Lancaster [16] used the partition of x2 to obtain appropriate tests. Asymptot-
ically his x2 was equivalent to the Bartlett x2 in the 2 x 2 x 2 tables, [16].
He stated, unfortunately, that the cubic has only one root. An accurate
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statement would have been that it has only one real root in the admissible
range.

Yates [34] noted that the theory of three dimensional distributions is
necessary if comparisons of two treatments in a number of different trials
are being compared.

Freeman and Halton [8] proposed to enumerate the exact probabilities
and thereby avoid the use of x2. They also have used the theory of the
factorisation of probabilities into chains of conditional probabilities.

Mitra [20] and Roy and Kastenbaum [27] and [28] have used the theory
of Fisher [6], Barnard [1] and E. S. Pearson [24] to give generalisations of
the Fisher theory to higher dimensions and distinguish between variables
and categories.

We shall make further comments on the historical aspects after having
set up a model for three dimensional distributions subject to a certain restric-
tion, which enables a canonical form to be given and which is fulfilled for all
distributions with a finite number of points and for very many other distri-
butions such as the multivariate normal.

2. The probability model

In this section, we shall extend the analysis of [15] to contingency tables
of higher dimensions, discussing the three-dimensional case in detail. For
notational convenience we take the most general three dimensional distribu-
tion function to be F(x, y, z) and marginal distribution functions to be
G(x), H{y) and K(z) and drop the variable, writing F, G, H and K. The
discussion is limited to <£2-bounded distributions, that is, those obeying the
condition,

(1) <f>2+ 1 = jdFz/(dGdHdK) = J (dF/dGdHdK)2dGdHdK < oo,

with the integral used in the sense of Hellinger as explained in [15]. The
marginal distributions may have a finite or infinite number of points of
increase.

Complete orthonormal sets {xli)}, {y{i)} and {z{i)} can be defined on
the marginal distributions for this can be established for arbitrary
statistical distributions. The product set, {x{i)} X {yli}} X {zli)} is then
complete on the product distribution, which can be written symbolically as
G X H x K. Now by (1) the ratio {dFJ(dGdHdK)} is square summable on
this product distribution and so may be expanded in a series, so that

(2) dF = {1 + 2 Po*yli)*{k) + I Pio**li}z(k) +
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where

(3) <f>lv + <f>l + <f>lv + <&k = <i>\
with the </>'s defined as in (4) below and by the Schwarz inequality each p is
less in absolute value than unity. We do not follow the convention, possible
in the two dimensional case, that the p's are non-negative.

DEFINITION. The main effects or zero order interactions are defined to be
the expectations of x(i), y{i) and z{i) respectively. (In the theoretical distri-
butions these are all zero). The first order interactions are defined here to be
the expectation of the forms, x(i)yU), x{i)z(k) and y{i)zlk), the indices each
being greater than zero. These expectations are pm,piOli and/>OiS respectively.
Similarly the second order interactions are defined as the expectations of the
forms, x{i)y(j)z{k), namely pijk. The process of definition can be extended into
higher dimensions. We further define,

with summation over the non-zero indices. We prove later that these quan-
tities are invariants under certain transformations. In the 2 x 2 x 2 table
we write <f>xy in place of p1 1 0 .

i.i.k

is similarly defined for the three dimensions. The process may be continued if
required into higher dimensions. The estimates of the p's will be the mean
value of the forms in the sample e.g. Sx{i)y{j)/N.

THEOREM 1. If F is a ^-bounded distribution function, then dF can be
expanded in the form (2). The sum of squares of the coefficients is given by the
Parseval equality,

(6) <f>2 = <f>l + # . + « . + «« , .
PROOF. This follows from the general theory of orthonormal sets.

THEOREM 2. A necessary and sufficient condition for complete independence
of the three marginal variables is that <f>2 should be zero.

PROOF. This is obvious but the theorem is stated because it is the basis for
some tests of independence.

THEOREM 3. For the class of three dimensional <f>2-bounded distributions,
the two dimensional marginal distributions are ^-bounded and the bivariate
element of distribution can be expanded in the form,

(7) dL(x, y) = {1 + 1 pm*li)yu)}dGdH,

almost everywhere.
PROOF. This follows from (2) by integrating out the variable, z.
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THEOREM 4. For any choice of complete sets of orthonormal functions on the
marginal distributions, the following are invariants, <f)lv, (f?vt, <f>lz, 4>\vt and
consequently also <f>2.

PROOF. Suppose that a bi-unique transformation is made of the form,
{x(i)} -» {x*{i)}, for definiteness, on one of the marginal distributions. Let us
consider the coefficients of x(i)y(i) for a fixed value of /. In the first system,
the multiplier of yU) is

(8) /(*. /) = 1 Pi^
li) = P*x. with 2 P«o^ # , < « > •

Now let this function, l(x, j) be written in the new set of variables by means
of the orthogonal transformation,

(9) x = Rx*,

R orthogonal. Then the new coefficients will be given by the elements of
pTR = p*T. But since R is orthogonal, the sums of squares of the p's, namely
2</>ij0

 = HiP?io w ^ be invariant for a fixed /. Consequently <f>lv is invariant.
Note that the constant term of either orthogonal sets is not involved.

By varying x, y and z in turn we can prove the whole theorem.
Let us consider the various possibilities of the sums <j>2, cf>lv, <f>lvz, having

zero or non-zero values. Instead of writing <f>xyz we shall write (xyz) in the
following. The possibilities are that for some x, y, z, each non-zeio,

(i)
(")

(iii)
(iv)

(xyz) = 0,
(xyz) = 0,
(xyz) = 0,
(xyz) = 0,

(xyO) =
(xyO) ,
(xyO) =5
(a^O) 7

= (Oy*) =
^ 0 ,
^ 0 ,

(Oyz)
(Oyz)
(Oyz)

(xOz) == 0
= (a;Oz) = 0
#0, (xOz) =

(xOz) 4
-- 0
= 0.

(v)
(vi)

(vii)
(viii)

(xyz) 7
(a;^) 7

±0,

(Two more possibilities are open for each of (ii) and (iii) by a permutation of
the variables x, y and z).

(xyO) = (Oyz) = (xOz) = 0
(a^0) ^ 0, (Oyz) = (xOz) = 0
(xyO) ^ 0, (Oyz) # 0, (xOz) = 0
(a^0) # 0, (Oyz) ^ 0, (xOz) # 0.

(Two more possibilities are open for each of (vi) and (vii) by a permutation
of the variables x, y and z).

EXAMPLE (i) There exist three dimensional distributions corresponding to
each of the possibilities (i) to (viii) listed above. We take each distribution
to consist of equal masses at the points ± 1 and define complete orthonormal
sets for each variable of the form, x{0) = 1, xa) = x, then

(10) p(x, y, z) = 1(1 + p110xy + PonVZ + p101xz + Plllxyz)

is a frequency distribution in three dimensions if each \p\ ̂  1, and
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(" ) IPiiol + IPioil + IPoul + iPml ^ 1

under these conditions no frequency element is negative.

TABLE 1

Independence table for a three dimensional statistical distribution

Interactions

+1.
m

m

Variables

x, y
y,z
x,z
x, (y,z)***
y, {x, z)
z, (x, y)

(i)

0*
0
0
0

/
I
I
I
I
I

(ii)

0

+
0
0

D
I
I
D
D
I

(iii)

0
-f
4-
0

D
D
I
D
D
D

(iv)

Values of

0

+
-f
+

Dependence

D
D
D
D
D
D

(v)

t h e <f>*

4-**
0
0
0

Values

/
I
I
D
D
D

(vi)

+
-\-
0
0

D
I
I
D
D
D

(vii)

+
+

0

D
D
I
D
D
D

(viii)

+
-f
-f-

+

D
D
D
D
D
D

* 0 s i g n i f i e s <f>^M = 0 e / c e t e r a .
** + signifies <f>^t =£ 0 et cetera

*** I in this part of the table is to be read, x fs independent of the joint distribution of y and
z. D signifies that this is not so.

The different cases can now be interpreted with the aid of a table in
which we write / for independence and D for dependence. We shall say
that a dependency exists if the independence conditions are not fulfilled.
The various cases given above may be considered in turn:

(i) Complete independence.
(ii) z is independent separately of x and of y and of them jointly. All other

possible relations show dependencies.
(iii) x is independent of z. All other relations are dependencies.
(iv) No pair of marginal variables is mutually independent. No variable

is independent of the joint distribution of the other two.
In (v) to (viii) no variable is independent of the joint distribution of the

other two.
(v) The marginal variables are independent in pairs but no variable is

independent of the other two jointly.
(vi) Two pairs of marginal variables are mutually independent but no

variable is independent of the other two jointly.
(vii) One pair of marginal variables are mutually independent.
(viii) All relations are dependencies.

The relations may be gathered together as a theorem.
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THEOREM 5. ^-bounded three dimensional distributions can be classed into
8 types according to whether the <f>\yz is zero or not and according to the number
of the <f>lv, <f>lz and <f>lg which are zero.

The dependence or independence can be read off from Table 1.
Arbitrary three-dimensional distributions can be set up as in section 7

of (15).
EXAMPLE, (ii). The multivariate normal distribution is often considered

as being relevant, [25], [26] and [18]. Expansions can be given as in [11]
of the frequency function in the form (2). Unfortunately these expressions
have not the simple form of the Mehler expansion (the tetrachoric in other
terminology). It is easily seen that the partial correlation technique may be
quite irrelevant as the piik may have no necessary relation with the p(i0

et cetera if the distribution is not jointly normal. In the case of a joint normal
distribution,

(12) ^ =

with similar expressions for <f>lg and <f>lg. <f>lvz can be obtained by subtraction.
In (12) the elements of P are given by pti = 0, pi} = ri} for i ^ /, 1 + P

and 1 — P being positive definite.

3. The Theory underlying Bartlett's Method

Interesting theorems, due substantially to Fisher [6] and Wilson and
Worcester [31], which we cite without proof, treat the conditional distribu-
tions arising in the study of contingency tables.

THEOREM 6. In the fourfold {i.e. 2 x 2 ) table, a necessary and sufficient
condition that the distribution of the cell totals, given the marginal totals, should
be independent of the value of the parameters of the marginal distribution is that

(13) Prft = p2p3

THEOREM 7. In the 2 x 2 x 2 table, a necessary and sufficient condition
that the distribution of the cell totals, given the marginal totals, should be
independent of the parameters of the marginal distribution is that

(14) PiPiPtPi = PzPsPsPs

These results can be extended to r X s and r X s X t tables respectively, by
constructing all possible 2 x 2 and 2 X 2 x 2 tables from the given marginal
totals.

This theory of the probability, conditional on the marginal totals, is the
basis of Bartlett's treatment of the 2 x 2 x 2 tables. Let us apply his
method to a 2 x 2 x 2 table supposed to be obtained from a sample of size
of arbitrarily large, N. In doing so we are really studying the theoretical
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distribution. Bartlett's method leads us to add a quantity to the cell number
in one cell and subtract it from others. In the theoretical case such a constant
is of the form,

a constant X x™y™z™ dGdHdK,

which is of sufficient importance to write in as a theorem.

THEOREM 8. Let U(x, y, z) be a function which is square summable with
respect to the product of the marginal distributions and such that the expression,
U(x, y, z) dG(x) is zero for almost all values of (y, z) and a similar relation
holds for the other two variables. Then

(15) U(x,y,z) =

summation being over all positive integers i, j , k.
PROOF. By the same type of analysis as justifies (2), we minimise the

integral of the square of U less a (possibly infinite) series of orthonormal
functions. We find that the restrictions introduced ensure that the value of
the integrals of Ux(i)yU) and like terms vanish.

(16) rm = JU{x, y, z) x^y^z™ dGdHdK.

Theorem 8 is true both for theoretical distributions and for empirical
distributions, where marginal parameters have been estimated from the
data.

COROLLARY 1. If the sample size 2 V o f a 2 x 2 x 2 table is imagined to be
indefinitely large, Bartlett's %% is (asymptotically) N<f>lve.

PROOF. We have only two points with positive weights on each of the
marginal distributions. We have then only one orthonormal function possible;
we can take it without loss of generality to take this function as the marginal
variable. The theoretical distribution can then be written,

(17) dF = (1 + <f>xyxy + <f>xzxz + faMyz + Kzxyz) dGdHdK.
As N is indefinitely large, the cell contents all approximate to the theoretical.
The cell contents are approximately NdF(x,y, z).
Theorem 8 enables us to write the quantity to be added and subtracted to the
cells as NAxyz dGdHdK, where A has to be found by the solution of a certain
cubic. After cancellations of powers of AT and terms of the type dG(x), we get
the difference of two products, which we write

(18) { IT - IT } {1 + 4>m,*y + * „ * * + <f>vzyz + {4>M. ± A)xyz) = 0
1,4,6,7 2,3,5,8

where the first product is taken over cells numbers 1, 4, 6, 7 and the second
over 2, 3, 5 and 8. If the first order interactions $&,> <l>a>z an (^ $vz a r e zero, this
has an exact solution

(19) A =
"xv z
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If they are not quite large (19) is approximately true. If two of the first
order (f>'s are zero (19) is exact once again. By Bartlett's rule for computing
the %2, we have

X2 = N (AxyzdGdHdK)2/{(l + cf>xyxy + <f>xzxz + <f>yzyz)dGdIUK}

(20) = N JA2x2y2z2/{l + <f>xyxy + <f>xzxz + ^2/2} dGdHdK

~NA2~N<f>lvz.

The denominator may be taken as approximately unity. Moreover, the fact
that these denominators vary about unity will make this approximation
more realistic. In fact, the ratio of the approximate value to the true value
may be expected to differ from unity by a quantity of the order of the square
of the largest of the first order </>'s. But Ncj>xyz is the second order x% obtained
by partition in the manner of [16].

COROLLARY 2. For finite sample size, N, of a 2 x 2 x 2 table, Bartlett's
X2 approximates to N(f>xyg if the theoretical marginal parameters are available
or to Ni*.yz if the parameters are estimated and so to the x2 of the second
order interaction of [16]. Or better, Bartlett's x may be regarded as a non-
central normal variable with variance not greatly different from unity.

PROOF. The proof goes through as in Corollary 1; the distribution can be
reduced to canonical form (17) with a multiplier, N. If A is chosen consistent
with the rules laid down by Bartlett, namely solving (18), then the solution
is A = rxyz, where rxyz is the observed value of the second order interaction
with the marginal parameters estimated from the data. But

N

(21)

which can be shown to be the second order x with parameters estimated
from the data. This identification follows essentially from the observation
that the second row of the orthogonal matrices used to partition x2 in [16]
can be written x<\/dG(x) in the notation of this paper.

4. A Random Sampling Experiment

Random sampling numbers were used to imitate sampling from three
dimensional distributions. For computational convenience, the distributions
were specialised so that the marginal frequencies were non-zero at only two
points, each associated with a probability, \. There is only one orthonormal
function on such a distribution and without loss of generality we take it to
be the marginal variable, x, y or z, as the case may be. To obey the ortho-
normal conditions these variables can take only the values ± 1. In the first
two sets of drawings the sample total, N, was taken to be a Poisson variable
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with parameter 640; in the third set the parameter has the value 720.
The first set of- 10 drarwings were made to test whether large first order
interactions would be likely to cause spuriously high values of the second
order interactions. The theoretical values of \ were given to each of the first
order correlations and zero to the second order correlation. In the second set,
pno = p011 = i = p m , other p's all zero. In the third set p m = £, all other
p's being zero. The usual x2 of a contingency table were computed using first

TABLE 2

A sampling experiment

Drawing

1
2
3
4
5
6
7
8
9

10

First Series

(1)

+ 3.67
- 0 . 1 2
+ 1.65
- 0 . 5 2
+ 1.40
+ 0.44
- 0 . 7 5
+ 0.76
- 0 . 4 4
— 1.17

(2)

+ 3.07
- 0 . 2 6
+ 1.40
- 0 . 3 9
+ 1.40
+ 0.38
- 1 . 0 1
+ 0.04
— 0.51
- 1 . 4 1

(3)

+ 3.50
- 0 . 2 4
+ 1.65
- 0 . 4 5
+ 1.50
+ 0.44
- 0 . 9 9
+ 0.26
- 0 . 5 2
- 1 . 3 9

Second Series

(1)

- 0 . 2 3
+ 0.28
+ 0.22
+ 0.04
- 0 . 6 6
+ 1.53
- 0 . 1 7
- 1 . 1 0
+ 0.29
- 0 . 2 1

(2)

- 0 . 6 0
+ 0.11
+ 0.39
-0 .27
-0 .96
+ 1.64
-0 .29
— 1.11
-0 .35
-0 .32

(3)

-0 .31
+ 0.45
+ 0.53
+ 0.10
-0 .81
+ 1.82
-0 .06
-0 .97

0.00
-0 .11

Third Series

(1)

+ 3.06
+ 0.30
-1 .74
-0 .95
+ 0.69
-1.52
-0 .88
+ 0.84
+0.76
— 1.49

(2)

+ 3.06
+ 0.34
-1 .75
-0 .90
+ 0.40
-1 .25
-0 .85
+ 0.81
+ 0.80
— 1.56

(3)

+ 3.09
+ 0.36
-1 .75
-0 .89
+ 0.61
-1 .53
-0 .85
+ 0.86
+ 0.74
— 1.51

First Series p110 = p101 = p o u = 0.25, p i n = 0
Second Series p110 = 0.25 = p m

Third Series p m = ^. All other p's zero.
(1) Second order interaction i less p m N, theoretical parameters.
(2) Second order interaction JJ less p m N, estimated parameters.
(3) Second order interaction x l e s s Pm N, by Bartlett's method.

theoretical parameters px = \,et cetera and was also shown partitioned into
the seven components [16]. The marginal parameters were estimated from
the data and a second set of four components computed for the first and
second order interactions [16]. Finally Bartlett's x% w a s computed. In the
first set, there was only one value of the second order x2 above three, where
the theoretical parameters gave a value 13.48, the estimated parameters
9.42 and Bartlett's x2 was 12.25. The x2 of the first order interaction in
every case in this set was greater than 29.00. There was good agreement
between the two second order interaction x2 and Bartlett's x2 in practically
every case. We prove the proposition in our next section, that the square
root of the x2 with an appropriate convention for the sign is approximately
distributed as a non-central normal variable, with unit variance. We,
therefore, give the comparisons of the form,

(22) C = Vx2 ~ PmVN,

in Table 2. The values given there seem quite compatible with the hypoth-
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esis that, for either of the three test functions £ can be regarded as a
standardised normal deviate. The sign of \/^2 is to be taken as the sign of the
difference, observed minus expected, in the first cell.

5. On the Solution of Bartlett's Cubic

In [16], I considered the solution of Bartlett's cubic with a null hypothesis
of complete independence and showed that the approximations, discussed
here in Corollaries 1 and 2 to Theorem 8, would hold but stated that the
cubic had only one real root. The correct statement is that there can only be
one admissible real solution since any other would give negative values to
some of the expected frequencies. Let us consider the solution of

0 = Q=s (a1+(5)(a4+(5)(a6+<5)(a7+<5) - {a2-d)(a3-6){as-6){a8-d)
(23) = fo+a) (<x2+<5) (a3+<5) (a4+<5) - fa-d) (&-*) fa-d) (fiA-d)

= A-B

where the a's and /S's are the a's arranged in descending order. Now for
d = —a4, A = 0; and A increases steadily zero as 6 increases from — a4.
For <5 increasing from — <x4 to + /34, B is positive but decreasing since each
term is positive but decreasing. Q is therefore monotonically increasing for <5
in the range, — a4 to + /34 from a negative value to a positive value. It has
exactly one real root in this range. No other value of 6 gives admissible values
to the expected numbers in the cells. For 6 < — <x4, the cell corresponding
to a4 would have a negative expectation. For <5 > /?4, the cell corresponding
to /34 would have a negative expectation. It is easy to find values for the
a's and /5's, which give such inadmissible values to <5 as well as the admissible
one. The form (23) is the most convenient for numerical solution, since trial
integral values are given to 3 and then better approximations are obtained
by linear interpolation and iteration.

6. Computation of the Component ^2 of a 2 x 2 x 2 Table

To avoid subscripts in this section we consider the two layers of a 2 x 2x2
table and write them alongside one another

a b e f r
c d g h R.

We take r as the total of the first rows, R as the total of the second, r + R =
N. For columns we similarly take s and S and for layers t and T.

The total #2 is obtained by computing first N2/r and N2(R and using these
factors to multiply the squares of the elements a, be and / and c, d, g and h
respectively. The items in each column are added and the sums divided by
factors ts, tS, Ts and TS respectively. The sum of these four quotients is
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X2 + N. For the interaction x2> w e multiply the rows by R and r and form
the differences of the form, Ra — re.

The second order % is then {Ra — re) TS — (Rb — rd)Ts — (Re — rg)tS
+ (Rf - rh)ts divided by ^/{NRrSsTt).

The products, Rr, Ss and Tt, will have been computed in any case to
obtain the %2 of the marginal tables. A check on the computations is now
possible. This method is one suggested by equation (12) of [10]. A generalisa-
tion of this method to complex contingency of more than eight cells is possible
but it is sufficient to compute the overall x2, the x2 of the marginal contingency
tables and then obtain the second order interaction %2 by subtraction. In
this latter method there is no automatic check on the computations.

7. Discussion

In the test of discrete distributions one has the choice of combinatorial
and approximating tests such as x2- We shall not consider the combinatorial
methods here and refer the reader to [1], [3], [8], [20], [21], [24], [27], [28],
[29], [31], which cover the ground and give further references. Cochran [4]
gives a method of treating >a binomial or Poisson variable defined over a
two-dimensional grid, which can be regarded as closely related to the methods
suggested by our methods here. Similarly Dyke and Patterson [5] used a
transformation, z = \ loge{p/q}, which gives in effect the same result in a
complex table of dimensions r X s x 2, since the binomial variable and z
when normalised must give the same orthonormal function. A similar remark
will apply to the probit analysis of Winsor [32]. The methods developed here
enable us to give precise tests of significance for each of the hypotheses,
pijk = 0, where no two of the i, j , k are zero, which are (asymptotically)
independent of one another. The testing of all second order interactions has
been considered by Fog [7] and Mood [21], but they have not given a method
of obtaining individual degrees of freedom nor linked the test up with a
canonical form of distribution. Wilks [30] has given a likelihood test which
combines the first and second order interaction %2. It may be said that where
the papers [5], [7], [21], [30] and [32] deal with the same test, they are in
agreement with the methods of this paper and the chief differences are in the
amount of differentiation of the hypotheses to be tested. Garner and McGill
[9] and McGill [19] deal with the test of interactions from the viewpoint of
information theory and the likelihood ratio test.

The present paper may be considered to be a continuation of the ideas of
Irwin [10] and my earlier papers [13] to [16], in which explicit orthogonal
transformations are given to derive expressions for individual degrees of
freedom. It is pointed out in [15] that a passage from orthogonal matrices
to orthogonal functions on a finite number of points is easy; in fact, the
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functions are elements of a row of an orthogonal matrix divided by the
corresponding element of the first row. The generalisation from one and two
dimensions to higher is carried out by the use of direct products of matrices.
To consider the transition from finite numbers of points to continuous distri-
butions, we have used orthonormal functions and this has led to the intro-
duction of the notion of the generalised correlation coefficients, pijk

To obtain the higher order interactions and so to test whether the
generalised correlation coefficients, pijle_, are zero or not, we have in-
troduced the direct product of sets of orthonormal functions of the form
{x(i)} x {yU)} X {z{k)} which enables us to test all possible departures from
independence in a very wide class of distributions, those which are termed
02-bounded. The development of these ideas in detail will be given in a later
paper [17]. It may be mentioned here that in the non-null case, the %2-
variables obtained will have a non-central distribution and the Ny* times
square roots of the <f?xv, <\>\t and <f>lz, defined in (2) above, will be the para-
meters of non-centrality. Similarly Nj>xyz will be the parameter for the %2 of
the second order interactions and so on for higher dimensions. N<f>2, the sum
of all the component N (j>2's, will be the parameter of the non-central total
X% in the non-null case. The likelihood ratio when null and non-null cases are
being compared will be given by the series in (2) above. So that the present
analysis leads to easy identifications of %% with the likelihood tests of [22]
and [30].

References

[1] Barnard, G. A., Significance tests for 2x2 tables, Biometrika 34, (1947) 123-138.
[2] Bartlett, M. S., Contingency table interactions, J. roy. statist. Soc. Suppl. 2 (1935),

248-252.
[3] Bartlett, M. S., Properties of sufficiency and statistical tests, Proc. Roy. Soc. A, 160

(1936), 268-282.
[4] Cochran, W. G., The analysis of variance when experimental errors follow the Poisson

or binomial laws, Ann. math. Statist. 11 (1940), 335 — 347.
[5] Dyke, G. V. and Patterson, H. D., Analysis of factorial arrangements when the data are

Proportions, Biometrics, 8 (1952), 1 — 12.
[6] Fisher, R. A., The logic of inductive inference, J. roy. statist. Soc, 98 (1935), 39 — 54.
[7] Fog, D., Contingency tables and approximate ^2 distributions, Math. Scand. 1 (1953),

93-103.
[8] Freeman, G. H. and Halton, J. H., Note on the exact treatment of contingency, goodness

of fit, and other problems of significance, Biometrika, 38 (1951), 141 — 149.
[9] Garner,W. R. and McGill, W. J., The relation between information and variance analyses.

Psychometrika, 21 (1956), 219-228.
[10] Irwin, J. O., A note on the subdivision of %2 into components, Biometrika, 36 (1949),

130-134.
[11] Kendall, M. G., Proof of relations connected with the tetrachoric series and its generali-

zation, Biometrika, 32 (1941), 196—198.
[12] Kendall, M. G., The Advanced Theory of Statistics, Vol. 1, C. Griffin & Co., London (1943).
[13] Lancaster, H. O., The derivation and partition of y? in certain discrete distributions,

Biometrika 36 (1949), 117—129.

https://doi.org/10.1017/S1446788700025593 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700025593


254 H. O. Lancaster [14]

[14] Lancaster, H. O., Some properties of the bivariate normal distribution considered in the
form of a contingency table. Biometrika, 44 (1957) 289—292.

[15] Lancaster, H. O., The structure of bivariate distributions. Ann. math. Statist. 29 (1958),
719—736.

[16] Lancaster, H. O., Complex contingency tables treated by the partition of x2> J- r o v -
statist. Soc, Ser. B, 13 (1951), 242—249.

[17] Lancaster, H. O., (unpublished), Analogues of the Pearson #*.
[18] Lombard, H. L. and Doering, C. R., Treatment of the fourfold table by partial association

and partial correlation as it relates to public health problems, Biometrics, 3 (1947),
123-128.

[19] McGill, W. J., Multivariate information transmission, Psychometrika, 19 (1954),
97—116.

[20] Mitra, S. K., Contributions to the statistical analysis of categorical data, Instit.
Statistics, Univ. Nth. Carolina (1955), Mimeo series 142.

[21] Mood, A. M., Introduction to the Theory of Statistics, McGraw-Hill Book Co. Inc., New
York (1950).

[22] Neyman, J. and Pearson, E. S., On the use and interpretation of certain test criteria,
Part II, Biometrika. 20 A (1928) 263—294.

[23] Norton, H. W., Calculation of chi-square for complex contingency tables, J. Amer.
statist. Assoc. 40 (1945), 251—258.

[24] Pearson, E. S., The choice of statistical tests illustrated on the interpretation of data
classed in a 2 X 2 table, Biometrika, 34 (1947), 139—167.

[25] Pearson, K., Mathematical contributions to the theory of evolution — XIII. On the
theory of contingency and its relation to association and normal correlation.
Drapers' Co. Res. Memoirs (1904) Biometric Series 1, pp 34.

[26] Pearson, K., On the general theory of multiple contingency with special reference to
partial contingency, Biometrika, 11 (1916), 145—158.

[27] Roy, S.N. and Kastenbaum, M. A., On the hypothesis of 'no interaction' in a multi-way
contingency table, Ann. math. Statistics, 27 (1956), 749—756.

[28] Roy, S. N. and Kastenbaum, M. A., A generalization of analysis of variance and
multivariate analysis to data based on frequencies in qualitative categories or class
intervals, Instit. Statistics, Univ. Nth. Carolina mimeo. No. 131.

[29] Simpson, E. H., The interpretation of interaction in contingency tables, J. roy.
statist. Soc, Ser. B. 13 (1951), 238—241.

[30] Wilks, S. S., The likelihood test of independence in contingency tables, Ann. Math.
Statistics, 6 (1935), 190-196.

[31] Wilson, E. B. and Worcester, J., The association of three attributes, Proc. nat. Acad.
Sci. U.S.A. 28 (1942), 384—390.

[32] Winsor, C. P., Factorial analysis of a multiple dichotomy, Hum. Biol., 20 (1948),
195—204.

[33] Yates, F., Contingency tables involving small numbers and the %* test, J. roy. statist.
Soc. Suppl. 1 (1934), 217—235.

[34] Yates, F., A note on the application of the combination of probabilities test to a set of
2 x 2 tables, Biometrika, 42, (1955), 404—411.

Department of Mathematical Statistics
University of Sydney.

https://doi.org/10.1017/S1446788700025593 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700025593

