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Summary

The loop design of Kerr and Churchill is a clever application of incomplete blocks of size 2 to two-
channel microarray experiments. In this paper, we extend the loop design to include more replicates,
biological and technical replication, multi-factor experiments, and blocking. Loop and extended
loop designs are shown to be more efficient than the reference design for any given number of
arrays. We also show that adding new treatments to a loop design requires the same number of
additional arrays as adding treatments to a reference design, with a greater gain in power. Given the
flexibility of extended loop designs and their power, we propose that these should be the designs of
choice for most experiments using two-channel microarrays.

1. Introduction

A microarray is a platform for simultaneously
measuring the expression of thousands of genes.
Since they were first devised in 1995, microarrays
have become one of the tools of choice for genome-
wide studies of expression. Because of the noisy
nature of the data, and the high dimension of the
response, development of statistical tools for proces-
sing microarray data is a growth industry.

However, it was not until the seminal papers of
Kerr & Churchill (2001a, b) that serious effort was put
into the design of microarray experiments. In par-
ticular, Kerr & Churchill (2001a) put the design of
microarray experiments in the context of classical
experiment design. Subsequently, Dobbin et al.
(2003), Landgrebe et al. (2004), Glonek & Solomon
(2004), Wit et al. (2005) and Latif (2005) have applied
the principles of optimal design to two-channel
microarrays. This paper is in the same spirit. The
many sources of both biological and technical vari-
ation in the experiments imply that considerable gains
in efficiency may be possible with good experimental
design.

The basic principle of measuring gene expression
on a microarray is simple. The array is a substrate on

which are printed ‘spots ’ or probes. When a gene
expresses in a tissue, it produces mRNA which can be
processed into single-stranded cDNA. Each spot on
the array consists of many copies of single-stranded
DNA which is complementary to a selected cDNA.
A gene may be represented by one or more spots – if
more than one, these may be identical or may rep-
resent different sections (oligos) of the same gene.
Gene expression is detected by extracting the mRNA
from the tissue, processing into cDNA, labelling with
a fluorescent dye, and then allowing the sample to
hybridize with the complementary spots on the array.
The measurement of gene expression is a quantifi-
cation of the intensity of fluorescence.

A commonly used technology is the two-channel
array. This technology allows two samples, labelled
with two dyes, generally Cy3 (green) and Cy5 (red), to
be hybridized to the same array. This reduces some
of the noise in the system, since it eliminates sources
of variability due to differences among arrays. How-
ever, the chemistry of sample labelling can introduce
gene-specific dye biases if a cDNA has greater affinity
for one of the two dyes. Because of the need to guard
against dye bias, we consider only designs in which
each treatment has an even number of samples, with
equal numbers labelled with green and red (dye-
balanced designs). However, we make explicit that
technical replication is not required for dye-swap
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designs, and allow the dye-swap pairs to come from
different biological replicates. Thus, unlike Kerr &
Churchill (2001a) all our samples may be biological
replicates, so that designs without dye-swap do not
save any labelling reactions, and our reference designs
include dye-swaps of the reference and treatment
samples. Dobbin et al. (2003) discuss the dye balance
issue in more detail.

In this paper, we will use the term ‘treatment ’
where Kerr & Churchill (2001a) used the term ‘var-
iety’. This terminology is used in the statistical sense
of the combination of factor levels which apply to the
sample. For example, in a time course experiment
observing the effects of various doses of a chemical
agent on liver and brain tissue in two strains of mice,
the treatment would be the combination of genotype,
tissue type, dose and time point.

We are also careful to distinguish between biologi-
cal and technical replication. Kerr & Churchill
(2001a) considered only designs in which each treat-
ment was represented by a single sample of mRNA,
which was hybridized to two microarrays. This type
of design is suitable for making inferences about the
samples. For biological inference, a measure of bio-
logical variation is required, and this requires multiple
biologically independent samples. Most of this paper
discusses designs in which there is only biological rep-
lication – that is each treatment is represented by
several biologically independent samples of mRNA,
each of which is hybridized to a single microarray. In
Section 6, we will briefly take up the question of ex-
periments having both biological and technical repli-
cation in which the biological samples are split and
hybridized to two microarrays.

A two-channel microarray can be thought of as a
block of size 2. If only two experimental treatments
are to be compared, the principles of experimental
design suggest that the experiment should be treated
as a randomized complete block design, i.e. one
sample from each condition should be hybridized to
each array, with biological replicate dye-swaps.
However, if there are three or more treatments, this
approach cannot be utilized, as each array can have
only two samples. The choice of which samples are
paired on the arrays and how they are labelled is
called the hybridization design.

A popular hybridization design for two-channel
microarray studies is the reference design, in which
one channel on each array is used for a reference
sample. The same reference is used for all arrays,
and the difference or ratio of expression between
the treatment sample and the reference sample is
usually used as the unit of analysis. The reference
design is briefly discussed in Section 3 to provide
a basis of comparison with the loop design, and
because it is a very popular design for two-channel
arrays.

Kerr & Churchill (2001a, b), introduced the loop
design, which is a type of partially balanced incom-
plete block design. A loop design includes exactly two
replicates of each treatment, one labelled with green
and the other with red. The design is most readily
visualized by a diagram such as Fig. 1, in which each
arrow designates an array. The tail of the arrow is
attached to the sample labelled with green and the
head to the sample labelled with red. The loop design
does not use reference samples, as a result of which
only half the arrays are required to attain the same
sample size as the reference design. The loop design
is balanced for dye effects (i.e. equal numbers of rep-
licates of each treatment are labelled with each dye).
Kerr & Churchill assumed that two replicates would
be sufficient and that dye-swaps would be achieved by
splitting samples. Again, we emphasize that in this
paper, each sample is biologically distinct.

In this paper, we model the data for each channel
(‘single-channel analysis ’), instead of taking differ-
ences or ratios. This allows us to compute the vari-
ance of any contrast, and to determine the effect
of various types of replication on the variance. We
feel it is most natural to consider the array effect to
be a source of unexplained variation, and thus treat
it as a random effect in our analyses. Variance com-
putations allow us to design the hybridizations to
minimize the variance of selected contrasts, a basic
concept in optimal experiment design. This allows us
to explore optimal allocation of additional replicates,
the arrangement of factorial treatments around the
loop, the use of technical and biological replicates,
and the use of randomized complete block designs
for the samples.
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swap

Reference design – balanced
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B

Fig. 1. Some basic designs for two-channel microarrays
with three treatments and two samples per treatment. Each
boxed letter represents two biologically independent
samples.
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Two commonly cited ‘problems’ with loop designs
are the loss of information for some spots on some
arrays, leading to unbalanced designs, and the prob-
lem of adding treatments to the experiment. We note
that with single-channel analysis, information loss
leads to an unbalanced design, but is otherwise not
problematic unless all the data are lost for a given
gene and treatment combination. Reference designs
also suffer from imbalance if there is information loss.
We also suggest a simple method of ‘patching’ a new
treatment into an existing loop.

2. To Difference or not to difference?

The objective of two-channel microarray experiments
is comparative analysis. As a result, the two channels
on the array are often differenced (after converting
to logarithms base 2), and the difference is treated
as the observation of interest. That is, denoting the
log2 expression as Yica for gene i in channel c (red or
green) on array a, analysis is generally done on Mia=
YiRaxYiGa. This is particularly convenient, because
normalization is often done by normalizing Mia

against the average of the two channels,
Aia=(YiRa+YiGa)/2.

In this paper, we use the individual channels as the
observations of interest. Thus, each array provides
two observations for each gene. As needed, we con-
vert the normalized differences, ~MMia back to channel-
level data via the transformation:

~YYiRa=(2Aia+ ~MMia)=2

~YYiGa=(2Aia+ ~MMia)=2:

Often A is normalized across arrays. See Smyth (2005)
for single-channel analysis of two-channel micro-
arrays.

To see the efficacy of this approach, we look at
some data from a Drosophila array (B. McIver,
personal communication). In this experiment, two
biological samples were labelled and split. Both
samples were then hybridized to the same array, as
well as to other arrays with different samples. The
normalized data are displayed in Fig. 2. The two left-
hand panels show the normalized log2(expression)
values for the two samples on the same array. The two
right-hand panels show the values for the different
arrays. While the two right-hand panels are much
noisier (Var(M)=0.453 as opposed to Var(M)=0.126
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Fig. 2. Log2(Expression) from a Drosophila experiment. The Green and Red samples are different biological samples that
were split after labelling into two aliquots. A is the average Log2(Expression) while M is the difference in expression. In the
two left-hand panels, the samples were hybridized to one array. In the two right-hand panels, the samples were hybridized
to different arrays.
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in the two left-hand panels) there is still considerable
information in the individual channels.

In the next section we show that a partial difference
of the form ~YYiRaxw ~YYiGa is the optimal unit of analysis
for a reference design. The optimal value of w depends
on the correlation between samples hybridized to the
same spot (or intraclass correlation). This quantity is
unknown, but can be estimated from a mixed-effect
ANOVA. In unpublished experiments using Agilent
two-colour arrays, using the LIMMA (Smyth, 2004)
software to assess the mean intraclass correlation, we
found that the correlation between the two channels
was about 0.2–0.7, indicating an information loss of
17–65% by differencing, instead of using the single-
channel analysis.

The same computations can be used to determine
the relative efficiency of different experimental designs
and to determine optimal designs for microarray ex-
periments. While the optimal weights vary from gene
to gene, the ranking of the relative efficiency of dif-
ferent designs does not depend on the value of the
weights, and hence the optimal design is the same for
all genes.

We start with the simplest case, with one hybrid-
ization per biological replicate and one spot per gene
on each array. We will use a simplified mixed model
for the normalized expression data by channel :

~YYijca=mi+tij+cic+aia+eijca (1)

where
mi is the mean normalized expression for gene i

over the entire experiment
tij is the mean effect of treatment j on gene i
cic is the mean effect of dye c on gene i (dye by

gene interaction)
aia is the random effect of array a for gene i with

variance sia
2

eijca is the random error with variance sie
2 .

The variance of an observation is sia
2 +sie

2 . The co-
variance between the channels at the same spot is sia

2 .

A key quantity is the intraclass correlation, ri=
s2
ia

s2
ia
+s2

ie
,

which in the experience of the authors is often above
0.5. The variance of the difference between two ex-
pression levels of the same gene on different arrays
includes a component due to the two arrays and a
component due to the two errors, giving 2(sie

2 +sia
2 ),

while the variance of difference on a single array does
not include array variance, giving 2sie

2 . Thus the rela-
tive efficiency of comparisons between samples on the
same array, compared with comparisons of samples
on different arrays is 2sie

2 /[2(sie
2 +sia

2 )]=1xri. As
discussed in more detail in the remainder of the paper,
good designs take advantage of this variance re-
duction by pairing treatments of most interest on the
same arrays. Good analyses take advantage of this

variance reduction by weighting more efficient com-
parisons more highly in computations.

On some arrays, genes may be represented by mul-
tiple spots. On cDNA arrays, these are duplicates
of the same cDNA. On oligo arrays, these may be
duplicates of the same oligos, or other oligos from the
same gene. The information from multiple spots is
often combined to form a gene summary for each
gene on each array, such as a simple average or
methods resistant to outliers, such as the median.
(Note that using a linear model with spot effects is
equivalent to averaging.) Alternatively, some in-
vestigators prefer to analyse each spot, rather than
each gene. If each spot is analysed, then model (1)
applies directly, but the subscript i refers to spots,
rather than genes. If a gene summary is used, model
(1) still applies, but aia and eijca refer to effects for the
gene summaries, rather than for individual spots.

Model (1) assumes that independent biological
samples are hybridized to each array. However, it
is still common to have technical replication in which
a single mRNA sample is split and hybridized to
multiple arrays. For these cases, the model needs to be
expanded to

~YYijlcab=mi+tij+cic+aia+bijb+eijlcab (2)

where mi, tij and cic, aia and eijlcab have the same
meanings as in model (1) and bijb is the random effect
of biological sample bwithin treatment j for gene iwith
variance sib

2 . Sections 2 to 5 of this paper concern
model (1). We return to model (2) in Section 6.

The focus is on a gene-by-gene analysis of the ef-
ficiency of pairwise comparisons between treatments.
Hence we do not make distribution assumptions ex-
cept for the independence of the random effects in
models (1) and (2), and the usual constraints on the
fixed effects required for identifiability. The optimal
weights and the variance of pairwise comparisons
depend on the variances and covariances of the data.
When the variance components are known, general
least squares can be used to estimate the pairwise
comparisons using the optimal weights, and also
compute the variance of the estimates. For the pur-
poses of planning the hybridization design for a fixed
number of arrays and biological samples, estimates of
the components are not required.

For data analysis, estimates of the variance
components can be estimated by restricted maximum
likelihood (REML) or maximum likelihood (ML),
but these methods are very inaccurate with the small
sample sizes often used in microarray studies. Various
approaches using all the spots on the array have been
suggested to improve estimation. Smyth et al. (2005)
use empirical Bayes estimation to improve the esti-
mate of sie

2 and assume that ri=r, a single value that
can be computed from all the genes. Cui et al. (2005)
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use shrinkage estimation to improve the estimation of
all the variance components.

3. Reference design

In a reference design, one channel of each array is
a reference sample, which is the same biological
material on every array. With T treatments and k
replicates per treatment, we use krT arrays.

Usually the analysis is done on the difference be-
tween the treatment and reference samples on each
array. For convenience of exposition we assume that
the differences have been computed as M=treat-
ment – reference, so we can denote the normalized
difference as ~MMia without keeping track of +/x signs
for dye-swaps.

To compute the variance of estimated comparisons,
we use the formula

Var(YxwX)=Var(Y)+w2Var(X)x2wCov(Y,X)

(3)

where w is a fixed number and Y and X are the
random observations. We will consider optimizing
our choice of w to minimize variance. Through
calculus or algebra, we can see the optimal choice of
w is Cov(Y, X)/Var(X) and the minimum variance
achievable is Var(Y)xCov2(Y, X)/Var(X). Using
model (1), the variance of the log(expression) in a
single spot in a single channel is sia

2 +sie
2 . The co-

variance between the channels at the same spot is
sia
2 . Ignoring the effect of normalization and using R

to indicate the reference sample, we have for gene i
on array a, ~MMiAa= ~YYiA1ax ~YYiR2a with variance

Var( ~YYiA1a)+Var( ~YYiR2a)x2Cov( ~YYiA1a, ~YYiR2a)

=2(s2
ia+s2

ie)x2s2
ia=2s2

ie:

Then if treatmentA is on array 1 and treatment B is on
array 2, the contrast AxB is estimated by ~MMiA1x ~MMiB2

and ~MMiA1 and ~MMiB2 are independent (and hence have
covariance 0). Accordingly, using (3), we find that
Var( ~MMiA1x ~MMiB2)=4s2

ie. With k replicates, the esti-
mated contrast would have variance 4sie

2 /k.
We now consider using the partial difference for

a treatment T, ~MMw
iTa= ~YYiTaxwi

~YYiRa and estimate
the contrast with ~MMw

iA1x ~MMw
iB2= ~YYiA1xwi

~YYiR1x( ~YYiB2x
wi

~YYiR2). Noting that Cov( ~MMw
iA1,

~MMw
iB2)=0, we opti-

mize as we did above and find that the optimal weight
is wi=ri, with resulting variance 2sie

2 (1+ri) and with
k biological replicates the variance is 2sie

2 (1+ri)/k.
While we do not know the variance and intraclass

correlation, if we use mixed-model ANOVA, the
weights are approximated from the data – leading to
more efficient estimates and more powerful tests of
differential expression. For small sample sizes, ri (or
equivalently, the variances) are not well estimated,

and the improvements using the weighted approach
may be smaller than indicated by statistical theory.

4. Loop designs

A loop is balanced for dye effects and has two
replicates at each node. For T treatments using Tk
arrays we have 2k replicates, compared with a refer-
ence design for which the same number of arrays
yields only k replicates. In this section and Section 5,
all replicates are biological replicates. In Section 6, we
consider designs with both biological and technical
replicates.

The computation of variance of a pairwise com-
parison in a loop design depends on the number of
treatments and the shortest distance between the
treatments on the loop. For expository purposes
we demonstrate with four treatments, but the con-
clusions are similar regardless of the number of
treatments and are displayed in Table 1 for three to
seven treatments.

The three possible arrangements (ignoring loop
direction) of the four-treatment loop design are
depicted in Fig. 3. Note that each uppercase letter
represents two independent biological samples with
the same treatment.

As for the reference design, we consider the
variance of a comparison. For example, suppose
we wish to estimate the mean difference in expression
for treatments A and B (tiAxtiB, using the notation
in model 1). Using g and r to denote Cy3 and Cy5
respectively, we have one expression value for each
treatment with each dye (e.g. for treatment A, we have
YAg and YAr). To avoid confusion and so that the
computation applies to all three diagrams in Fig. 3,
we suppress the other subscripts, which can be deter-
mined from the diagram. Consider a linear combi-
nation of the observations :

w1YAg+w2YAr+w3YBg+w4YBr+w5YCg

+w6YCr+w7YDg+w8YDr:

This will be an unbiased estimator of tiAxtiB if
w1+w2=1, w3+w4=x1, w5+w6=0 and w7+w8=0.
Notice that under these constraints, due to the dye
balance, the dye effect cancels. We can optimize the
weights subject to these constraints to find the
weighting which minimizes the variance and the vari-
ance using the optimal weights. Equivalently, this is
the general linear model estimator of the contrast.

Using the optimal weighting, we find that for the
designs in Fig. 3, the variance of the difference of ad-
jacent treatments is sie

2 +sia
2 sie

2 /2(sia
2 +sie

2 )=sie
2 (1+ri/

2), while the variance of the difference of diagonally
opposite treatments is sie

2 +sia
2 sie

2 /(sia
2 +sie

2 )=sie
2

(1+ri). Both of these are smaller than the variance of
the contrast from a reference design with the same
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number of treatments and arrays, primarily because
there are two biological replicates per sample, rather
than one. Also, with four treatments, the loop design
with four arrays has sufficient replication for statisti-
cal analysis, while the reference design with four arrays
has no replication.

Table 1 shows the variance of pairwise contrasts
for designs with T treatments on T arrays for the ref-
erence and loop designs. For the loop design, the
variance depends on the ‘distance’ between the
treatments in the shortest route around the loop. For
example, in Fig. 3, the distance between any two ad-
jacent arrays is D=1 and between any two diagonally
opposite arrays is D=2. Table 2 shows the same in-
formation as a function of the error variance when ri
is 0.25, 0.5 or 0.75. The variance of pairwise contrasts
depends on the ‘distance’ between the treatments on
the loop. In practical terms, this means that loop de-
signs must be carefully planned so that the compari-
sons of most interest are close together on the loop.
Alternatively, if we wish to compare treatments which
are expected to have similar gene expression patterns,
these should be placed closely together on the loop.
As will be seen in Section 5, replicated loops can be
designed to minimize differences in variance in pair-
wise contrasts.

Tables 1 and 2 show that the loop design is always
more efficient than the reference design with the same
number of arrays. In the parlance of Glonek &
Solomon (2004), the reference design is inadmissible
for pairwise comparisons of treatments. Also, the
loop design with T treatments and T arrays has
enough replication for statistical analysis. The ref-
erence design requires additional arrays in order to
have replication, and also requires the investigator to
maintain a large uniform reference sample.

5. Replicated loop designs

The basic loop design has two replicates per con-
dition. If more replication is desired, the design can
be replicated.

One way to replicate the design is to run an ident-
ical loop, or a loop with the dye-swaps of the arrays
in the original loop. When there are k replicates of
the loop, the entries in Tables 1 and 2 would be div-
ided by k.

When many of the comparisons are of equal
importance, a better choice of replication is to run a
different loop. The choice of loop can be made toT
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Fig. 3. The three possible four-treatment loop designs.
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minimize the variance of selected comparisons. Some
clever choices can be made.

When the number of treatments, T, is odd, the rep-
licates are readily combined into a balanced incom-
plete block design in which each pair of conditions is
found together on an array with complete dye balance
for each condition. This is a desirable design, because
all the pairwise comparisons have the same variance.
This can be achieved simply by adding ‘stars’ to the
original loop consisting of arrays with every second
node, every third node up to every (Tx1)/2 node,
giving the T(Tx1)/2 arrays needed for the balanced
incomplete block. This is illustrated for T=5 and 7
in Fig. 4.

Unfortunately, when T is an even number, the
design with each pair of conditions on an array is
balanced for the conditions but not for dyes, and
hence is not desirable. To completely balance the
design, the dye-swap of each array is also needed,
leading to T(Tx1) arrays being required. For ex-
ample, for five conditions, the 10 arrays shown in
Fig. 3 form a balanced incomplete block design, but
for four conditions, 12 arrays are required. Of course,
for five conditions on 10 arrays, there are four rep-
licates per condition, whereas for the four conditions
on 12 arrays, there are six replicates per condition,
yielding additional power for detecting differential
expression. Alternatively, if the number of treatments
is even, a control treatment can be added for the
purpose of balancing the design for the dye effect with
fewer arrays. For example, with 10 treatments, the
dye-balanced, balanced incomplete block design re-
quires 10r9=90 arrays but with 11 conditions only
11r10/2=55 arrays are required.

Fig. 3 shows the three possibilities for loops for the
four-treatment design. With 12 arrays, the variance
of any treatment difference in the reference design is
2/3[sie

2 (1+ri)]. If we replicate any one loop three
times, the variance of treatment differences adjacent
on the loop is 1/3sie

2 (1+ri/2) and the variance of
those diagonally opposite is 1/3sie

2 (1+ri). If we
use all three possible loops as our replicates, which is
the balanced incomplete block design, the variance of

any treatment difference for the loop design is 1/3sie
2

[1.5x3/(4ri+3)], which is considerably smaller than
the variance of the reference design with the same
number of arrays and is between the adjacent and di-
agonal values of the design using the same number
of replicates.

In general, for large T, the number of arrays re-
quired for a balanced incomplete block design is
prohibitive. Designs with two or three loops can be
very effective. Kerr & Churchill (2001a) and Wit et al.
(2005) discuss the selection of optimal designs for two-
channel microarray experiments. They call designs
like those in Fig. 4 ‘ interwoven’ loop designs, and
note that these are often optimal or near optimal in
the sense of minimizing a criterion based on the vari-
ance of all the possible contrasts. However, Wit et al.
also find some designs that are very far from loops
which optimize overall variance by having very small
variance for a few comparisons and much bigger
variance for others (as in their Figure 3). This may
be desirable in some experiments. However, in many
experiments all the pairwise comparisons are equally
important (e.g. in comparison of genotypes), there is
an expected ordering (e.g. the single knock-outs closer
to wild-type than the double mutants), or there
is a factorial arrangement, which indicates which

Table 2. Numerical variance of pairwise contrasts for one-factor loop and reference designs. We show the
numerical values when sie

2 : sia
2 =1/3, 1 and 3, which correspond to intraclass correlations of 0.75, 0.5 and 0.25,

respectively

Design T D ri=0.75 ri=0.5 ri=0.25 D ri=0.75 ri=0.5 ri=0.25 D ri=0.75 ri=0.5 ri=0.25

Reference T 1 3.5sie
2 3sie

2 2.5sie
2

Loop 3 1 1.273sie
2 1.2sie

2 1.111sie
2

4 1 1.375sie
2 1.25sie

2 1.125sie
2 2 1.75sie

2 1.5sie
2 1.25sie

2

5 1 1.418sie
2 1.263sie

2 1.127sie
2 2 1.949sie

2 1.579sie
2 1.268sie

2

6 1 1.436sie
2 1.267sie

2 1.27sie
2 2 2.036sie

2 2.036sie
2 1.6sie

2 3 2.2sie
2 1.667sie

2 1.286sie
2

7 1 1.445sie
2 1.268sie

2 1.127sie
2 2 2.075sie

2 1.60sie
2 1.270sie

2 3 2.311sie
2 1.690sie

2 1.288sie
2

A

B

CD

E

A

B

C

DE

F

G

Fig. 4. Replicated loop designs with (Tx1)/2 replicates
forming balanced incomplete block designs. For the design
with five treatments, each uppercase letter represents four
biologically independent samples. For the design with
seven treatments, each letter represents six biologically
independent samples. Each type of line represents one
complete loop design.

Extending the loop design for two-channel microarray experiments 159

https://doi.org/10.1017/S0016672307008476 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672307008476


comparisons are of most interest and hence require
the smallest variance. Glonek & Solomon (2004)
discuss the selection of designs for two-channel
microarrays when some comparisons are of particular
interest.

The estimation of the variance of contrasts pro-
vided by equation (1) allows the investigator to select
an appropriate design from those available. For ex-
ample, in a study involving eight tissues in one loop,
the investigators chose to place the most similar tis-
sues adjacent on the loop to provide the most power
to detect differences between tissues that may differ
the least. However, when the opportunity arose to
obtain another loop, the two interwoven loop designs
depicted in Fig. 5 were examined. The variance of
comparisons of treatment pairs at distance D is given
in Table 3 for several values of ri. The investigators

selected design 5b, as the variances of pairwise com-
parisons among tissues are almost equal for all D.
If comparisons among tissues at D=1 and D=2 had
been deemed to be of more importance, design 5a
would be preferable.

It is also useful to notice that interwoven loop
designs are actually composed of several loops.
For example, the design in Fig. 5b has the loops
ABCDEFGH and AFCHEBGD. The two loops in
Fig. 5a are harder to see. They are: ABCDEFHG and
ACEGFDBH.

6. Factorial designs

So far, this paper has considered pairwise compari-
sons, which are often of interest in one-factor designs.
However, two-factor (and even three-factor) designs,
such as genotype or drug (or both) and time are often
done. In this case, the main effects and interactions
are of interest.

Factorial treatment designs can readily be incor-
porated into loop designs. For example, a two-factor
design with two levels per factor (Aa and Bb) and
main effects of primary interest could be laid out as in
Fig. 6.

The variances of the effects are listed in Table 4.
The three contrasts are:

main effect of A : (AB+Ab)/2x(aB+ab)/2
main effect of B : (AB+aB)/2x(Ab+ab)/2
interaction: (AB+ab)/2x(Ab+aB)/2

We say that the effect is on the diagonal of the
design if the pairs of arrays which are averaged are
on the diagonal of the square. Otherwise the effect is
adjacent. The interaction, B main effect and A main
effect are diagonal in designs 6a, 6b and 6c, respect-
ively. From Table 4, we can see that the diagonal
effect has the smallest variance. As in the previous
sections, replication of the design by choice of two
different loops can serve to equalize the variance of
the effects if more samples and arrays are available
and more precision is required.

For designs with more factors and more levels,
there are many more choices of loop arrangements.
Also, the main effects and interactions are defined
by orthogonal sets of comparisons. Thus, optimal

Table 3. Numerical variance of pairwise contrasts for
one-factor replicated loop design with eight
treatments. We show the numerical values when ri is
0.25, 0.5 and 0.75, respectively. Notice that the
optimal design will depend on which comparisons are
of most interest. Two identical loops is most powerful
for comparisons for treatments which are adjacent on
the outer loop, but the interwoven design illustrated in
Fig. 5b is preferable if all pairwise comparisons are
equally important. There is little difference among the
designs when ri is small

ri D
Two identical
loops

Interwoven
(5a)

Interwoven
(5b)

0.75 1 0.724se
2 0.760se

2 0.781se
2

2 1.046se
2 0.789se

2 0.875se
2

3 1.181se
2 0.937se

2 0.781se
2

4 1.217se
2 0.941se

2 0.875se
2

0.5 1 0.634se
2 0.667se

2 0.688se
2

2 0.804se
2 0.687se

2 0.750se
2

3 0.848se
2 0.773se

2 0.688se
2

4 0.857se
2 0.774se

2 0.750se
2

0.25 1 0.564se
2 0.590se

2 0.594se
2

2 0.635se
2 0.593se

2 0.625se
2

3 0.644se
2 0.630se

2 0.594se
2

4 0.645se
2 0.630se

2 0.625se
2

(b)

A 

B

C

D E 

F 

G 

H 

(a)

A 

B 

C 

D E 

F 

G 

H 

Fig. 5. Two interwoven loop designs with eight
treatments. Each type of line indicates one complete loop.

(a) AB → aB

 ↑  ↓

Ab ← ab

(b) AB → ab

 ↑        ↓

Ab ← aB

(c) AB → ab

 ↑        ↓

aB ← Ab

Fig. 6. A two-factor experiment with two levels of factor 1
(A and a) and two levels of factor 2 (B and b). Each pair of
letters represents a treatment with two independent
biological replicates, each of which has the indicated levels
of the factor.
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arrangements of the treatments around the loop can
be determined by examining the variance of a set of
orthogonal contrasts to define the effects. For ex-
ample, in a two-factor design where A has two levels
(Aa) and B has three levels (Bbb) the effects are de-
fined by:

A main effect : (AB+Ab+Ab)/3x(aB+ab+ab)/3
B main effect : (AB+aB)/2x(Ab+ab)/2
(AB+aB)/2+(Ab+ab)/2x(Ab+ab)
AB interaction: (ABxaB)/2x(Abxab)/2
(ABxaB)/2+(Abxab)/2x(Abxab)

The variance of each contrast is readily computed
from equation (1) and a loop (or replicated loop) can
be chosen to minimize the variance of the effects of
most interest. Alternatively, we may not be interested
in the particular contrasts, but rather in the main ef-
fects and interactions. In this case, we may consider
optimizing the general linear F-test for the effect or
using one of the optimality criteria based on the
variance of the contrasts comprising the effect (Shah
& Sinha, 1989). The F-test and optimality criteria are
invariant to the choice of orthogonal contrasts chosen
to represent the effects (Hua, 2005), and hence the
optimal design is unambiguously defined.

7. Incorporating biological replicates and blocks

Model (1) assumes that the only source of correlation
in the study is due to the two channels on the micro-
array. However, often there are sources of variation
that induce correlation between arrays, such as sub-
samples from the same individual hybridized to mul-
tiple arrays (technical replication), or blocking factors
such as multiple treatments measured on the same
individual (e.g. several tissues), multiple samples from
the same cell line in a time course experiment, or
arrays processed in batches due to constraints on
personnel or equipment.

(i) Technical replication

Technical replication is often done in the form of dye-
swap. This means that each RNA sample is split into
two, and the subsamples are labelled with different
dyes. For example, in the original Kerr & Churchill
formulation of the loop design (2001a), each loop

includes two technical replicates for each condition
and no biological replication. Such a design is ad-
equate for making inferences for the samples at hand,
but for inference about the biological population,
biological replication is required. Hence, in what fol-
lows, we assume that there is both biological and
technical replication, with the technical replicates
done in dye-swap pairs. The discussion in this section
is limited to two technical replicates per sample, as
this is most common and illustrates the issues. The
final recommendation, however, is to use each set of
technical replicates for a loop; this is readily extended
to any (even) number of technical replicates with
complete dye-swap.

When we have both biological and technical repli-
cation, arrow diagrams for representing designs can
be misleading. For example, Fig. 7 shows two differ-
ent arrow diagrams for a design with three treatments
(different letters), each of which has two biological
replicates (lower and upper case letters) with dye-
swap technical replicates. The two diagrams define
the same set of arrays, and hence depict the same
hybridization design. (Unlike earlier figures, each
letter in Fig. 7 depicts a single sample.) Even with only
three treatments and two biological replicates per
treatment, and keeping to the principle that each
array has two different treatments, there are 10 hy-
bridization designs to consider (not counting permu-
tations of the treatment names), and the number
quickly grows with the number of treatments and
biological replicates.

Table 4. The variance of the effects in a 2r2 factorial design in a single loop

ri=0.75 ri=0.5 ri=0.25

Adjacent
s2
ia+s2

ie

2
x

s4
ia

8(s2
ia+s2

ie)
1.719sie

2 0.928sie
2 0.656sie

2

Diagonal
s2
ia+s2

ie

2
x

s2
ia

4
1.25sie

2 0.75sie
2 0.583sie

2

A

BBCC

a

a

bbcc

A

A

B

B

a C C

A

a

cc

b

b

Fig. 7. Two ways of depicting a design with three
treatments, two biological replicates per treatment and two
technical replicates per biological replicate. Each boxed
letter depicts a single sample.
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A reference design, while requiring twice as many
arrays to accommodate the same number of biologi-
cal and technical replicates as ‘ loop-like ’ designs, is
readily performed. Alternatively, in the spirit of Wit
et al. (2005), it is possible to enumerate all the designs,
compute the theoretical variance of the pairwise
comparisons and thus select the optimal design.

As an alternative to these extremes which maintains
the cost-effectiveness of the loop design, we suggest
that each biological replicate be used for one loop
(Fig. 8). By enumerating the designs, we can see that
for two treatments the two possible designs
{AB,BA,ab,ba} and {AB,bA,Ba,ab} have the same
variance of pairwise comparison. The design depicted
in Fig. 8 is optimal for three treatments (although
there are other designs with the same variance). When
we reach four or more treatments, we need to consider
replicated loop designs as in Section 5. However,
designs in which each loop is a single biological rep-
licate will continue to have good properties, because
they are partially balanced for the effects of technical
replication and of array, which means that many
random effects cancel when considering pairwise
comparisons of the treatment effects.

(ii) Complete block designs

Experimental material may come in clusters that are
more similar within cluster than between, or may be

handled in batches. For example, in tissue compari-
son experiments, tissues dissected from the same
specimen are likely to be more similar than tissues
dissected from different specimens. Similarly, samples
prepared on the same day, or using the same batch
of reagent, are likely to have similarities induced
by handling compared with samples produced on
different days or using different reagents. Groups of
similar samples are called blocks.

It is very desirable to balance the design so that
block effects are not confounded with the effects of
interest. When feasible, it is best to have a measure-
ment for every condition in every block – that is, a
complete block design. It is very simple to incorporate
complete block designs in loop designs. When T is
even, the smallest available complete block has T/2
arrays. This is illustrated in Fig. 9 for T=8. The thick
arrows indicate block 1 and the thin arrows indicate
block 2. Clearly the pattern can be repeated for each
loop in the design. When T is odd, the smallest avail-
able complete block is an entire loop.

8. Adding treatments

In a reference design, it is quite obvious how to add a
treatment to the design – just include new arrays with
the new treatment. Usually arrays will be added in
pairs to accommodate dye-swapping.

It is equally simple to add a treatment to a loop
design. It is simply spliced in as illustrated in Fig. 10,
where condition F is added to a five-treatment loop.
For a loop design, as in a reference design, two arrays
are required to maintain dye balance for the new
treatment. The balance of the design at the splice
point is readily maintained by removing array AE
from the experiment, or adding a dye-swap of this
array. For woven loop designs, to maintain the woven
pattern it is usually necessary to hybridize one or two
extra arrays, as shown in Fig. 8b, to accommodate the
increase in distance between treatments adjacent to
the new treatment.

A 

B B C C 

A 

a 

b b c c 

a 

Fig. 8. A hybridization design with one biological
replicate and its dye-swap technical replicate in each loop.
Each letter depicts a single sample.

A B

H

G

C

D

F E

Fig. 9. An eight-treatment loop design in two complete
blocks. The bold lines are one block and the thin lines are
the other.

A 

B 

C D 

E 

F
 

A 

B

C D 

E 

F  

Fig. 10. Adding treatment F to a five-treatment loop
design or woven loop design. The continuous lines are the
arrays which are retained. The dashed lines are the added
arrays. The dotted lines are arrays which may be removed
from the analysis if a balanced design is desired.
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9. Missing data

Loss of an array in a loop design is problematic pri-
marily due to the loss of balance for the dye effect. Of
course, if a whole array fails, the investigator is likely
to take another sample and redo the array. More
commonly, some spots fail on some arrays, creating
a loss of balance for some genes. The ANOVA
computations automatically adjust for such imbal-
ance, but the loss of information can severely affect
statistical power. Each ‘ lost ’ spot loses information
about two treatments for the affected gene. In refer-
ence designs, a ‘ lost ’ spot also causes imbalance in the
dye effect, but loses information only for the single
treatment on the array. Recall, however, that the ref-
erence design has only about half as much infor-
mation per array, so that missing spots have about
the same effect on both designs. The robustness of
microarray experiments to spot-loss is discussed in
Latif (2005).

10. Discussion

While the reference design can be useful when the
primary objective of the microarray experiment is
comparison of several treatments with a control,
when the objective is comparison of treatments with
each other, it is inefficient compared with designs
which have two treatments on each array. Replicated
loop designs are very convenient and efficient designs
for handling this latter situation. In this paper, we
have tried to show that these designs are more
powerful than reference designs and can readily be
adapted to complex experiments such as factorial
designs including time course studies, incorporating
additional replication, and incorporating complete
blocks. Loop and interwoven loop designs are not the
only possibilities – the set of comparisons of interest
to the investigators should drive the design. Mixed
models and the principles of optimal design can use-
fully be employed to improve the efficiency of micro-
array experiments, by allowing the experimenter to set
up the hybridization design to minimize the variance
of comparisons of most interest.

This paper has not discussed the analysis of the re-
sulting data. Clearly, since the design is based on
mixed model (1) or (2) the resulting data can be fitted
by mixed-model ANOVA, using the normalized data
from each channel. This is readily extended to more
powerful Bayes and empirical Bayes methods such as
LIMMA (Smyth et al., 2005). Permutation methods
such as SAM (Tusher et al., 2001) can also be adapted
for the single-channel analysis of loop and related
designs, but permutations must be restricted to take
into account the pairing of the observations on the
arrays.
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