A NOTE AS TO A PERTURBATION OF HILL'S CURVES

V.R. Matas Astronomical Institute, Czechoslovak Academy of Sciences, Praha, Czechoslovakia

Let us consider motion of an infinitesimal body in the gravitational field of two homogeneous spheroids with coincident equatorial planes. Let mass of the infinitesimal body M - a material point - be negligible if compared with masses of the spheroids S₁, S₂ respectively. We will study the motion of M in the common equatorial plane provided that the spheroids move along circular orbits (in an inertial frame of reference) - see Kondurar', 1952. System of the equations of motion of M posseses Jacobi's integral and Hill's generalized curves of zero relative velocity of M are consequently described by the equation

$$H(\mathbf{r}_{1}) = (1 + \frac{3}{10}(\mathbf{a}_{1}^{2}\mathbf{e}_{1}^{2} + \mathbf{a}_{2}^{2}\mathbf{e}_{2}^{2}))\frac{1 - \mathbf{m}}{2}\mathbf{r}_{1}^{2} + \frac{1 - \mathbf{m}}{\mathbf{r}_{1}} + \frac{1 - \mathbf{m}}{10}\mathbf{a}_{1}^{2}\mathbf{e}_{1}^{2}\mathbf{r}_{1}^{-3} =$$
(1)
$$C - (1 + \frac{3}{10}(\mathbf{a}_{1}^{2}\mathbf{e}_{1}^{2} + \mathbf{a}_{2}^{2}\mathbf{e}_{2}^{2}))\frac{\mathbf{m}}{2}\mathbf{r}_{2}^{2} - \frac{\mathbf{m}}{\mathbf{r}_{2}} - \frac{\mathbf{m}}{10}\mathbf{a}_{2}^{2}\mathbf{e}_{2}^{2}\mathbf{r}_{2}^{-3} = C - B(\mathbf{r}_{2}) = A$$

where C is a "Jacobian" constant of integration, r_1 , r_2 are the dimensionless distances between M and the centers of mass of the spheroids S_1 , S_2 ; 1 - m, m are the dimensionless masses of the spheroids; a_1 , b_2 , are their respective semimajor axes and eccentricities (I = 1, 2).

Let r, be given. Then solving (1) is equivalent to seeking positive roots of the function G(x) = H(x) - A, where A is a constant parameter. If $A \neq 0$ then there does not exist any solution of the equation G(x) = 0. In the case A > 0 let us study the functions G(x), H(x) in the interval $(0,\infty)$. It follows that the functions G, H are convex in $(0,\infty)$ and have there an absolute minimum at a point $x \neq 1$ (1 is the dimensionless distance of the centers of mass of the spheroids) which is the only root of the derivative $G'(or H) - an increasing and concave function in <math>(0,\infty)$. If the minimum G(x) is positive, equation G(x) = 0 evidently has no real solution. Provided that G(x) = 0 we put $r_1 = x$ and consequently pair r_1 , r_2 (r_2 was given) Satisfies Eq. (1) of the zero relative

R. L. Duncombe (ed.), Dynamics of the Solar System, 33-36. Copyright © 1979 by the IAU.

33

velocity curve. Eventually in the case $G(x_0) < 0$ there are two different positive roots r_{11} , r_{12} , $(r_{11} < x_0 < r_{12})$ of the equation G(x) = 0. If moreover

$$\mathbf{r_{1k}} + \mathbf{r_2} \stackrel{\geq}{=} 1, \, \mathbf{r_{1k}} + 1 \stackrel{\leq}{=} \mathbf{r_2}, \, \mathbf{r_2} + 1 \stackrel{\geq}{=} \mathbf{r_{1k}},$$
 (2)

where k equals either 1 or 2 (r, was given), then the pair of distances r_{1k} and r_{2} (from S, and S, respectively) defines two points (or one point) on the zero relative velocity curve (1).

An analogical examination of the function B(x) in the interval $(0,\infty)$ immediately gives that B is concave in $(0,\infty)$ and has there an absolute maximum at a point $x_1 \leq 1$ which is the only root of the derivative B'(that is decreasing and convex in $(0,\infty)$). The above considerations as to the functions H, B imply that the curves of the zero relative velocity of M are real if, and only if, $H(x_1) \leq C + B(x_1)$. In this case the Jacobian constants C have a lower bound, viz. $C \geq H(x_1) - B(x_1) = C$. Consequently if C = C equation (1) posseses only one solution $f_1 = x_2$, $r_2 = x_1$ which defines, if moreover $x_1 + x_1 > 1$, two equilibrium solutions L_T , L_T of the equations of motion of M.

Let $C \ge C$ and $x_1 + x_1 > 1$ be valid. It follows from the preceding study of the function B that the equation $H(x_1) = C + B(r_2)$ has two solutions $r_{2\min} \ge r_{2\max}$ in the most. The pair x_0 , $r_{2\min}$ defines actual points on the zero relative velocity curve in case $r_{2\min} \ge 1 - x_0$. The pair $x_1, r_{2\max}$ represents actual points on the curve if $r_{2\max} \le 1 + x_0$. Analogically the equation $H(r_1) = C + B(x_1)$ posseses two solutions $r_{1\min} \le r_{1\max}$ in the most. The pair $r_{1\min}, x_1$ characterizes actual points on the curve examined when $r_{1\min} \ge 1 - x_1$. The pair $r_{1\max}$, x_1 determines actual points on the curve if $r_{1\max}$ are increasing functions of C, all of them in $\langle C_0, \infty \rangle$. Let C_1, C_2, D_1, D_2 be values of C for which

$$\mathbf{r}_{lmin}(C_1) = 1 - \mathbf{x}_1, \ \mathbf{r}_{lmax}(D_1) = 1 + \mathbf{x}_1, \\ \mathbf{r}_{2min}(C_2) = 1 - \mathbf{x}_0, \ \mathbf{r}_{2max}(D_2) = 1 + \mathbf{x}_0.$$
(3)

 C_1 , C_2 , D_1 , D_2 are to be determined uniquely (if $x_1 < 1$, $x_0 < 1$). We easily find

$$C_{1} = H(1 - x_{1}) - B(x_{1}), C_{2} = H(x_{0}) - B(1 - x_{0}),$$

$$D_{1} = H(1 + x_{1}) - B(x_{1}), D_{2} = H(x_{0}) - B(1 + x_{0}).$$
(4)

Let us first consider the zero relative velocity curves determined by C $\leq \langle C_0, C_1 \rangle$ (or C $\leq \langle C_0, C_2 \rangle$). Then the properties found as to the functions H, B justify us to state that the locus of all the points least distant from the spheroid S₁ (or S₂) on the concerned zero relative velocity curves is the minor arc $L_m L_m^-$ (intersecting the line segment $S_1 S_2$ at a point P_1 (or P_2)) of a circle center of which is the center of mass of the other spheroid. As the Jacobian constant C approaches C₂, the points of the determined locus approach L_m , L_m^- (C = C₂ implies that L_m , L_m^- are on the locus). As C approaches C₁ (or C₂), the points of the locus approach the intersection of the locus and the line segment $S_1 S_2$. If $C \ge C_1$ (or $C \ge C_2$) then, with respect to (3), the points 2 - on the corresponding generalized Hill's curves - which are nearest to the spheroid S₁ (or S₂) fill the line segment $S_1 P_1$, excluding S₁ (or $S_2 P_2$, excluding S_2^2); the finite dimensions of the spheroids are not considered now. As C becomes equal to C₁ (or C₂) the concerned points approach the intersection P₁ (or P₂) - these points approach the center of mass of S₁ (or S₂) if the constant C becomes infinite.

If, for instance, S, approaches a sphere with a spherical density distribution then $x \rightarrow 1$ and C, becomes infinite. If x = 1there does not exist any real C, so that $r_{\min}(C_2) = 1 - x = 0$. Instead of this we have $r_{\min}(C) \rightarrow 0$ for $C \rightarrow \infty$. In this case the concerned minor arc $L_{m}L_{m}$ of the circle centered at S, goes through S, (provided that S, is considered to be a material point) but S, is not a point of the locus. The points of this minor arc merely² approach S, if C becomes infinite. The same considerations may be made for the body S₁. It is to be seen that the locuses found represent a generalization of a similar geometric property of the Hill's curves in the restricted three-body problem (see Matas, 1978).

Notice now the zero relative velocity curves defined by $C \in \langle C_{0}, D_{1} \rangle$ (or $C \in \langle C_{0}, D_{2} \rangle$). The derived characteristics of the functions H, B imply that the locus of all the points most distant from the spheroid S_{1} (or S_{2}) on the considered zero relative velocity curves is the major arc $L_{m}L_{m}$ of the circle centered at the remaining spheroid. As the Jacobian constant C approaches C, the points of this locus approach L_{m} , L_{m}^{*} (C = C corresponds to the equilibrium points L_{m} , L_{m}^{*}). As C approaches D_{1}^{*} (or D_{2}), the points of the locus approach an intersection R_{1} (or R_{2}) of the locus and the ray $S_{1}S_{2}$ (or $S_{2}S_{1}$) extended from S_{1}^{*} (or S_{2}). In the case when $C \ge D_{1}^{*}$ (or $C \ge D_{2}^{*}$) is a ray which: (i) is situated on the straight line $S_{1}S_{2}$, (ii) has endpoint R_{1} (or R_{2}) and (iii) does not go through the spheroids. As the Jäcobian constant C approaches D_{1}^{*} (or D_{2}^{*}) points of the ray approach R_{1} (or R_{2}); the points of the fay have unlimited extent in the opposite direction if the constant C becomes infinite.

An analytical approach gives (see the precision adopted in (1))

$$x_{0} = 1 - \frac{a_{2}^{2} a_{2}^{2}}{10}, \quad x_{1} = 1 - \frac{a_{1}^{2} a_{1}^{2}}{10},$$
 (5)

$$C_{0} = \frac{3}{2} + \frac{1}{4} a_{1}^{2} e_{1}^{2} + \frac{3}{20} a_{2}^{2} e_{2}^{2} + \frac{n}{10} (a_{2}^{2} e_{2}^{2} - a_{1}^{2} e_{1}^{2}) \ge \frac{3}{2},$$

$$C_{0} \rightarrow \frac{3}{2} \text{ for } e_{1}, e_{2} \rightarrow 0;$$

$$C_{1} \approx \frac{100(1 - n)}{a_{1}^{2} e_{1}^{2}} \rightarrow \infty \text{ for } e_{1} \rightarrow 0;$$

$$C_{2} \approx \frac{100n}{a_{2}^{2} e_{2}^{2}} \rightarrow \infty \text{ for } e_{2} \rightarrow 0;$$

$$D_{1} = \frac{5}{2} - n + \frac{7}{16} a_{1}^{2} e_{1}^{2} + \frac{3}{5} a_{2}^{2} e_{2}^{2} - \frac{n}{20} (\frac{23}{4} a_{1}^{2} e_{1}^{2} + 7a_{2}^{2} e_{2}^{2}),$$

$$D_{1} \rightarrow \frac{5}{2} - n \text{ for } e_{1}, e_{2} \rightarrow 0;$$

$$D_{2} = \frac{3}{2} + n + \frac{1}{4} a_{1}^{2} e_{1}^{2} + \frac{3}{20} a_{2}^{2} e_{2}^{2} + \frac{n}{20} (7a_{1}^{2} e_{1}^{2} + \frac{23}{4} a_{2}^{2} e_{2}^{2}),$$

$$D_{2} \rightarrow \frac{3}{2} + n \text{ for } e_{1}, e_{2} \rightarrow 0.$$

REFERENCES

DISCUSSION

Garfinkel: Are the two spheroids of zero obliquity with respect to the orbital plane? Hori: Yes. Garfinkel: Can the restriction that the spheroids are of constant density be removed by introducing the moments of interia in the place of a₁, a₂, e₁, e₂? Hori: Very likely.