V.R. Matas
Astronomical Institute, Czechoslovak Academy of Sciences, Praha, Czechoslovakia

Let us consider motion of an infinitesimal body in the gravitational field of two homogeneous spheroids with coincident equatorial planes. Let mass of the infinitesimal body M - a material point - be negligible if compared with masses of the spheroids S_{1}, S_{2} respectively. We vill study the motion of M in the common equatorial plane provided that the spheroids move along circular orbits (in an inertial frame of reference) - see Kondurar'. 1952. System of the equations of motion of M posseses Jacobi's integral and Hill's generalized curves of zero relative velocity of M are consequently described by the equation

$$
\begin{align*}
& H\left(r_{1}\right)=\left(1+\frac{3}{10}\left(a_{1}^{2} e_{1}^{2}+a_{2}^{2} e_{2}^{2}\right)\right)^{1-m_{1}} \frac{2}{2}+\frac{1-m}{r_{1}}+\frac{1-m_{1}^{2}}{10} a_{1}^{2} e_{1}^{2} r_{1}^{-3}= \tag{1}\\
& C-\left(1+\frac{3}{10}\left(a_{1}^{2} e_{1}^{2}+a_{2}^{2} e_{2}^{2}\right)\right)_{2_{2}^{2}}^{2}-\frac{1}{r_{2}}-\frac{m_{10}}{10} a_{2}^{2} e_{2}^{2} r_{2}^{-3}=C-B\left(r_{2}\right)=A
\end{align*}
$$

where C is a "Jacobian" constant of integration, $r_{1}: r_{2}$ are the dimensionless distances between M and the centers of mess of the spheroids $S_{1}, S_{7} ; 1-m_{\text {, }}$ mare the dimonsionless masses of the spheroids; ${ }_{i},{ }_{1}$ are their respective semimajor axes and cocentricitits ($=1,2$).

Let r_{2} be given. Then solving (1) is equivalent to seoking positive roots of the function $G(x)=H(x)=A$, where A is a constant parameter. If $A \leqq 0$ then there does not exist any solution of the equation $G(x)=0$. In the case $A>0$ let us study the functions $G(x)$, $H(x)$ in the interval $(0, \infty)$. It follows that the functions G, H are convex in $(0, \infty)$ and have there an absolute minimum at a point $x \leqq 1$ (1 is the dimensionless distance of the centers of mass of ${ }^{0}$ the spheroids) which is the only root of the derivative G^{\prime} (or H) - an increasing and concave function in ($0, \infty$). If the minimum $G\left(x_{0}\right)$ is positive, equation $G(x)=0$ evidently has no real solution. Pfovided that $G\left(x_{0}\right)=0$ we put $r_{1}=x_{0}$ and consequently pair $r_{1}: r_{2}$ (r_{2} was given) fatisfies Eq. ($($) of the zero relative
velocity curve. Eventually in the case $G\left(x_{0}\right)<0$ there are two different positive roots $r_{11}, r_{12},\left(r_{11}<f_{0}<r_{12}\right)$ of the equation $G(x)=0$. If moreoter

$$
\begin{equation*}
r_{1 k}+r_{2} \geqq 1, r_{1 k}+1 \geqq r_{2}, r_{2}+1 \geqq r_{1 k} \tag{2}
\end{equation*}
$$

where k equals either 1 or 2 (r_{2} was given), then the pair of distances $r_{1 k}$ and r_{2} (from S_{1} and S_{2} respectively) defines two points (or ofe poin\}) on the zero relative velocity curve (1).

An analogical examination of the function $B(x)$ in the interval $(0, \infty)$ immediately gives that B is concave in $(0, \infty)$ and has there an absolute maximum at a point $x \leqq 1$ which is the only root of the derivative B^{\prime} (that is decreasing and convex in $(0, \infty)$). The above considerations as to the functions H, B imply that the curves of the zero relative velocity of M are real if, and only if, $H\left(x_{0}\right) \leqq C+B\left(x_{1}\right)$. In this case the Jacobian constants C have a lowir bound, vit. $C \geqq H\left(x_{0}\right)-B\left(x_{1}\right)=C$. Consequently if $C=C$ o -quation (1) posseses only one solution $\rho_{1}=x_{0}, r_{2}=x_{1}$ which dofines, if moreover $x_{0}+x_{\gamma_{1}}>1$, two equilibrium solutions L_{T}, L_{T}^{r} of the equations of motion df M .

Let $C \geqq C$ and $x_{0}+x_{1}>1$ be valid. It follows from the preceding studf of the function B that the equation $H\left(x_{0}\right)=C+B\left(r_{2}\right)$
 $r_{2} \geqq 1-x_{0}$. The pair x_{0}, r_{2} represents actual points on the chent if $\mathrm{r}_{2} 0^{\circ} \leq 1+x_{0}$. Ahalogite posseses tina characterizes actual poiflyin on titnay urve examined when $r_{1}{ }_{1}{ }_{1}-x_{1}$ The pair $r_{1 \text { max }}, x_{1}$ determines actual points on the

 Let $C_{1}{ }^{1}$ max $_{2}, Z_{1},{ }_{D_{2}}$ be values of C for which

$$
\begin{align*}
& r_{1 \min }\left(C_{1}\right)=1-x_{1}, r_{1 \max }\left(D_{1}\right)=1+x_{1}, \\
& r_{2 \min }\left(C_{2}\right)=1-x_{0}, r_{2 \max }\left(D_{2}\right)=1+x_{0} . \tag{3}
\end{align*}
$$

$C_{1}, C_{2} D_{1} ; D_{2}$ are to be determined uniquely (if $x_{1}<1, x_{0}<1$). weacily finc

$$
\begin{align*}
& C_{1}=H\left(1-x_{1}\right)-B\left(x_{1}\right), C_{2}=H\left(x_{0}\right)-B\left(1-x_{0}\right), \\
& D_{1}=H\left(1+x_{1}\right)-B\left(x_{1}\right), D_{2}=H\left(x_{0}\right)-B\left(1+x_{0}\right) . \tag{4}
\end{align*}
$$

Let us first consider the zero relative velocity curves determined by $C \in\left\langle C, C_{0}\right\rangle$ (or $C \in\left\langle C, C_{0}\right\rangle$). Then the properties found as to the functiohs H, B justiff u s to state that the locus of all the points least distant from the spheroid S_{1} (or S_{2}) on the
concerned zero relative velocity curves is the minor arc $I_{T r} I_{T}^{\prime}$ (intersecting the line segment $S_{1} S_{2}$ at a point P_{1} (or P_{2})) of a circle center of which is the cefter of mass of the other spheroid. As the Jacobian constant C approaches C, the points of the determined locus approach $L_{p}, L_{p}^{\prime}\left(C=C_{0}\right.$ implies tiat I_{n}, L_{m}^{\prime} are on the locus) . As C approaches C (or C_{2}), the points of the locus approach the intersection of the locus and the line segment $S_{1} S_{2}$. If $C \geqq C_{1}$ (or C $\geqq \mathrm{C}_{\text {? }}$) then, with respect to (3), the points ${ }^{2}$ - on the corresponaing generalized Hill's curves - which are nearest to the spheroid S_{1} (or S_{2}) fill the line segment $S_{1} P_{1}$, excluding S_{1} (or $S_{2} P_{2}$ excldding S_{2}^{2}); the finite dimensions ${ }_{i f}{ }^{1}$ the spheroids are not considered now. As C becomes equal to C_{1} (or C_{2}) the concerned points approach the intersection $P_{1}\left(\text { or } P_{2}\right)^{1}$ - these points approach the center of mass of $S_{1}\left(\operatorname{or} S_{2}\right)$ if the constant C becories infinite.

If, for instance, S_{2} approaches a sphere with a spherical density distribution then $x_{0} \rightarrow 1$ and C_{2} becomes infinite. If $x_{0}=1$ there does not exist any real C_{2} so that $r_{2 m i n}\left(C_{2}\right)=1-x_{0}={ }_{0}{ }_{0}$. Instead of this ve have $\mathrm{r}_{\text {2min }}(C) \rightarrow 0$ for $C \rightarrow \operatorname{con}_{0} \mathrm{In}^{2}$ this case ${ }^{0}$ the concerned minor arc $L_{T} L_{T}^{\prime} \delta_{1} T_{\text {the }}$ aircle centered at S_{1} goes through S_{2} (provided that S_{2} is considered to be a material point) but S_{2} is not a point of the locus. The points of this minor are merely ${ }^{2}$ approach S_{2} if C becomes infinite. The same considerations may be made for the body $S_{\text {. }}$. It is to be seen that the locuses found represent a generalization of a similar geometric property of the Hill's curves in the restricted three-body problem (see Matas, 1978).

Notice now the zero relative velocity curves defined by $C \in\left\langle C_{0}, D_{1}\right\rangle$ (or $C \in\left\langle C_{0}, D_{2}\right\rangle$). The derived characteristics of the functi8ns H, B imply thit the locus of all the points most distant from the spheroid S_{1} (or S_{2}) on the considered zero relative velocity curves is the major arc $L_{T} f_{p}$ of the circle centered at the remaining spheroid. As the Jacobian constant C approaches C_{0}, the points of this locus approach I_{y}, $I_{T}^{\prime}\left(C=C\right.$ corresponds to ${ }^{\circ}$ the equilibrium points L_{T}, I_{T}^{\prime}). As C Apprdaches D_{1}^{0} (or D_{2}), the points of the locus approach an intersection R_{1} (or R_{2}^{1}) of the locus and the ray $S_{1} S_{2}$ (or $\mathrm{S}_{2} \mathrm{~S}_{1}$) extended from $\mathrm{S}_{1}{ }^{1}$ (or S_{2}. In the case when $\mathrm{C} \geqq D_{1}$ (or $C^{2} \geq^{1} D_{2}$) obviousiy (ses (3)) the locus of all the most distant points - On the given generalized Hill's curves - from the spheroid $S_{1}\left(\operatorname{or} S_{2}\right.$) is a ray which: (i) is situated on the straight line $S_{2} S_{2}$, (ii) has endpoint $R_{1}\left(\operatorname{or} R_{2}\right)$ and (iii) does not $g o$ through the spheroids. As the Jwcobian constant C approaches D_{1} (or D_{2}) points of the ray approach R_{1} (or R_{2}); the points of the fay have unlimited extent in the opposite direction if the constant C becomes infinite.

An analytical approach gives (see the precision adopted in (1))

$$
\begin{equation*}
x_{0}=1-\frac{a_{2}^{2} e_{2}^{2}}{10}, \quad x_{1}=1-\frac{a_{1}^{2} e_{1}^{2}}{10} \tag{5}
\end{equation*}
$$

$$
\begin{align*}
& c_{0}=\frac{3}{2}+\frac{1}{4} a_{1}^{2} e_{1}^{2}+\frac{3}{20} a_{2}^{2} a_{2}^{2}+\frac{m}{10}\left(a_{2}^{2} e_{2}^{2}-a_{1}^{2} a_{1}^{2}\right) \geqq \frac{3}{2}, \\
& c_{0} \rightarrow \frac{3}{2} \text { for } e_{1}, e_{2} \rightarrow 0 \text {; } \\
& c_{1} \approx \frac{100(1-w)}{a_{1}^{2} \Theta_{1}^{2}} \rightarrow \infty \text { for } \quad e_{1} \rightarrow 0 ; \\
& c_{2} \approx \frac{100 \text { m }}{a_{2}^{2} L_{2}^{2}} \rightarrow \infty \text { for } e_{2} \rightarrow 0 \text {; } \tag{6}\\
& D_{1}=\frac{5}{2}-m+\frac{7}{16} a_{1}^{2} \Theta_{1}^{2}+\frac{3}{5} a_{2}^{2} \theta_{2}^{2}-\frac{m}{20}\left(\frac{23}{4} a_{1}^{2} e_{1}^{2}+7 a_{2}^{2} e_{2}^{2}\right), \\
& D_{1} \rightarrow \frac{5}{2}-m \text { for } e_{1}, e_{2} \rightarrow 0 \text {; } \\
& D_{2}=\frac{3}{2}+m+\frac{1}{4} a_{1}^{2} e_{1}^{2}+\frac{3}{20} a_{2}^{2} e_{2}^{2}+\frac{m}{20}\left(7 a_{1}^{2} e_{1}^{2}+\frac{23}{4} a_{2}^{2} e_{2}^{2}\right) \text {. } \\
& D_{2} \rightarrow \frac{3}{2}+m \text { for } e_{1}, \theta_{2} \rightarrow 0 \text {. }
\end{align*}
$$

REFERINCES

Kondurar", V.T.: 1952, "Trudy Gos. Astron. Inst. Shternberga" 21, pp.135-158.
Matas, V.: 1978, Celes. Mech. (in press).

DISCUSSION

Garfinkel: Are the two spheroids of zero obliquity with respect to the orbital plane?
Hori: Yes.
Garfinkel: Can the restriction that the spheroids are of constant density be removed by introducing the moments of interia in the place of $a_{1}, a_{2}, e_{1}, e_{2}$?
Hori: Very likely.

