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Abstract The singular boundary-value problem (g(x′(t)))′ = µf(t, x(t), x′(t)), x(0) = x(T ) = 0 and
max{x(t) : 0 � t � T} = A is considered. Here µ is the parameter and the negative function f(t, u, v)
satisfying local Carathéodory conditions on [0, T ]×(0, ∞)×(R\{0}) may be singular at the values u = 0
and v = 0 of the phase variables u and v. The paper presents conditions which guarantee that for any
A > 0 there exists µA > 0 such that the above problem with µ = µA has a positive solution on (0, T ).
The proofs are based on the regularization and sequential techniques and use the Leray–Schauder degree
and Vitali’s convergence theorem.
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1. Introduction

Let T be a positive constant, J = [0, T ], R+ = (0,∞) and R0 = R\{0}. We will consider
the singular boundary-value problem (BVP)

(g(x′(t)))′ = µf(t, x(t), x′(t)), (1.1)

x(0) = 0, x(T ) = 0, (1.2)

max{x(t) : t ∈ J} = A, (1.3)

where g ∈ C0(R; R) is an increasing and odd function, f satisfies local Carathéodory
conditions on J ×R+ ×R0 (f ∈ Car(J ×R+ ×R0; R)), µ ∈ R is a parameter and A ∈ R+.
The function f(t, u, v) may be singular at the value u = 0 and v = 0 of the phase variables
u and v, respectively.
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Let A ∈ R+. We say that x is a solution of BVP (1.1)–(1.3) if

(i) x ∈ C1(J ; R), g(x′) ∈ AC(J ; R) (that is, g(x′) is absolutely continuous on J), x > 0
on (0, T );

(ii) x satisfies the boundary conditions (1.2), (1.3); and

(iii) there exists µA ∈ R such that x satisfies (1.1) with µ = µA for a.e. t ∈ J .

We recall that any solution of BVP (1.1)–(1.3) starts and finishes at the singular point
of f in the first phase variable and at an inner point of the interval J ‘passes through’
the singular point of f in the second phase variable.

The purpose of this paper is to give conditions on the functions g and f in (1.1) which
guarantee the solvability of BVP (1.1)–(1.3) for each A ∈ R+. Problems of the above
form have received very little attention in the literature (see [3] and references therein).
In [3] the authors discussed the Lidstone BVP

(−1)nx(2n)(t) = µh(x(t), x′(t), . . . , x(2n−2)(t)),

x(2j)(0) = x(2j)(T ) = 0, 1 � j � n − 1,

together with the condition (1.3) and where h may be singular at the zero value of all
its phase variables.

We note that problem (1.1), (1.2) is a singular Dirichlet BVP depending on the param-
eter µ, and so we are looking for a value of µ for which problem (1.1), (1.2) has a positive
solution on (0, T ) satisfying (1.3). Under the assumption that problem (1.1), (1.2) has
a unique positive solution for each µ from a subset of R, the shooting method can be
applied for solving the BVP (1.1)–(1.3). This procedure was used, for example, in [16]
for a special form of the function f and when g(u) ≡ u, and the authors consider sign-
changing solutions. In this paper the uniqueness of solutions to problem (1.1), (1.2) is
not assumed. Another method, based on the implementation of parameters to differential
equations, functional differential equations and their systems with additional conditions,
has been employed, for instance, in [6,9,11,13,17–21].

We observe that the singular Dirichlet problem (1.1), (1.2) with µ = 1 and g(u) ≡ u

in (1.1) and non-positive f(t, u, v) which may be singular at the zero value of the phase
variable u and having positive solution on (0, T ) has been considered in the literature
(see, for example, [1,2,8,12,14,15,22–27], and references therein). Here solutions were
considered in the class C0(J)∩C2((0, T )) or C1(J)∩C2((0, T )) or C0(J) ∩ AC1

loc((0, T )).
To prove existence results for BVP (1.1)–(1.3), we use the following procedure. First,

we define a set of regular differential equations depending on n ∈ N and, using the Leray–
Schauder topological degree and the Borsuk antipodal theorem (see, for example, [7]),
we show that a sequence of auxiliary regular BVPs of the type (1.1)–(1.3) has a sequence
{xn} of solutions. Then, applying the Arzelà–Ascoli theorem we verify that a convergent
subsequence can be selected from {xn}. Finally, by Vitali’s convergence theorem (see, for
example, [5,10]), we prove that its limit is a solution of BVP (1.1)–(1.3).
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From now on,

‖x‖ = max{|x(t)| : t ∈ J} and ‖x‖∞ = essmax{|x(t)| : t ∈ J}

stand for the norms in C0(J ; R) and L∞(J ; R), respectively. For a measurable set M ⊂ R,
µ(M) denotes the Lebesgue measure of M.

In this paper we use the following assumptions.

(H1) g ∈ C0(R; R) is increasing, g(−u) = −g(u) for u ∈ R, limu→∞ g(u) = ∞, and there
exists β ∈ R+ such that

g(u) � uβ for u ∈ R+.

(H2) f ∈ Car(J × R+ × R0; R) and there exists a ∈ R+ such that

a � −f(t, u, v) for a.e. t ∈ J and each (u, v) ∈ R+ × R0.

(H3) For a.e. t ∈ J and each (u, v) ∈ R+ × R0,

−f(t, u, v) � ϕ(t)[h1(u) + h2(u)][ω1(g(|v|)) + ω2(g(|v|))], (1.4)

where ϕ ∈ L∞(J ; R+), h1, ω1 ∈ C0([0,∞); R+) are non-decreasing, h2, ω2 ∈
C0(R+; R+) are non-increasing, and∫ 1

0
h2(s) ds < ∞,

∫ 1

0
ω2(s) ds < ∞, (1.5)∫ ∞

0

β
√

s

ω1(s)
ds = ∞. (1.6)

Remark 1.1. Since h2, ω2 : R+ → R+ are non-increasing, (1.5) implies that∫ V

0
h2(s) ds < ∞,

∫ V

0
ω2(s) ds < ∞ for each V ∈ R+.

2. Auxiliary regular BVPs

Throughout this section we assume that assumptions (H1)–(H3) are satisfied. For each
n ∈ N, define χn ∈ C0(R; R+) and fn ∈ Car(J × R2; R) by

χn(u) =

⎧⎪⎪⎨
⎪⎪⎩

u for u � 1
n

,

1
n

for u <
1
n

,

and

fn(t, u, v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

f(t, χn(u), v) for (t, u, v) ∈ J × R ×
((

− ∞,− 1
n

)
∪

(
1
n

,∞
))

,

1
2n

[
f

(
t, χn(u),

1
n

)(
v +

1
n

)
− f

(
t, χn(u),− 1

n

)(
v − 1

n

)]

for (t, u, v) ∈ J × R ×
[

− 1
n

,
1
n

]
.
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Then the inequalities
a � −fn(t, u, v) (2.1)

and

−fn(t, u, v) � ϕ(t)[h1(u) + h1(1) + h2(u)][ω1(g(|v|) + g(1)) + ω2(g(|v|))] (2.2)

are satisfied for a.e. t ∈ J and each (u, v) ∈ R+ × R0.
Consider the family of regular differential equations

(g(x′(t)))′ = µfn(t, x(t), x′(t)) (2.3)

depending on the parameters µ ∈ R and n ∈ N.

Lemma 2.1. Let A ∈ R+ and let x be a solution of BVP (2.3), (1.2), (1.3) with some
µ = µx and n ∈ N in (2.3). Then µx > 0, x′ is decreasing on J ,

x′(t) � g−1(aµx(ξ − t)) for t ∈ [0, ξ],

x′(t) � −g−1(aµx(t − ξ)) for t ∈ (ξ, T ],

}
(2.4)

where g−1 : R → R denotes the inverse function to g and ξ ∈ (0, T ) is the (unique) zero
of x′,

x(t) �

⎧⎪⎪⎨
⎪⎪⎩

A

ξ
t for t ∈ [0, ξ],

A

T − ξ
(T − t) for t ∈ (ξ, T ],

(2.5)

and

µx � 1
a

(
A

(
1 +

1
β

))β(
2
T

)1+β

. (2.6)

Proof. If µx � 0, then (g(x′))′ � −aµx � 0 a.e. on J and so g(x′) is non-decreasing
on J , which implies that x′ is non-decreasing on J as well. Since, by (1.3), x′(t0) = 0 for
a t0 ∈ (0, T ), we have x′ � 0 on [0, t0] and x′ � 0 on [t0, T ] and then (1.2) yields x � 0 on
J , contrary to (1.3). Hence µx > 0. Consequently, (g(x′))′ � −aµx < 0 a.e. on J , from
which we deduce that x′ is decreasing on J and x′ has the unique zero ξ ∈ (0, T ).

Using g(0) = 0, x′(ξ) = 0 and integrating (g(x′))′ � −aµx over [t, ξ] ⊂ [0, ξ] and
[ξ, t] ⊂ [ξ, T ], we obtain (2.4).

Since x(0) = x(T ) = 0, x(ξ) = A and x is concave on J , which follows from the fact
that x′ is decreasing on J , x satisfies (2.5).

It remains to prove (2.6). Since g(u) � uβ for u ∈ R+ by (H1), we have

g−1(u) � β
√

u for u ∈ R+. (2.7)

Therefore (see (2.4)),

A = x(ξ) =
∫ ξ

0
x′(t) dt �

∫ ξ

0
g−1(aµx(ξ − t)) dt =

1
aµx

∫ aµxξ

0
g−1(t) dt

� 1
aµx

∫ aµxξ

0

β
√

t dt =
β
√

aµxξ1+(1/β)

1 + (1/β)
,

https://doi.org/10.1017/S0013091503000774 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091503000774


Singular Dirichlet boundary-value problems 5

and

A = x(ξ) =
∫ ξ

T

x′(t) dt �
∫ T

ξ

g−1(aµx(t − ξ)) dt =
1

aµx

∫ aµx(T−ξ)

0
g−1(t) dt

� 1
aµx

∫ aµx(T−ξ)

0

β
√

t dt =
β
√

aµx(T − ξ)1+(1/β)

1 + (1/β)
.

Hence

A �
β
√

aµx

1 + (1/β)
max{ξ1+(1/β), (T − ξ)1+(1/β)} �

β
√

aµx

1 + (1/β)
( 1
2T )1+(1/β),

and then from the inequality

β
√

aµx � A

(
1 +

1
β

)(
2
T

)1+(1/β)

we deduce (2.6). �

Lemma 2.2. Let A ∈ R+. Then there exists a positive constant P independent of
n ∈ N and λ ∈ (0, 1] such that for any solution x of BVP (2.3), (1.2) with some µ = µx

and n ∈ N in (2.3) satisfying

max{x(t) : t ∈ J} = λA, λ ∈ (0, 1], (2.8)

the inequalities
‖x′‖ < P (2.9)

and

0 < µx � 1
a

(
A

(
1 +

1
β

))β(
2
T

)1+β

(2.10)

are valid.

Proof. Let x be a solution of BVP (2.3), (1.2) with some µ = µx and n ∈ N in (2.3)
satisfying (2.8). Then, by Lemma 2.1 (with λA instead of A),

0 < µx � 1
a

(
λA

(
1 +

1
β

))β(
2
T

)1+β

� 1
a

(
A

(
1 +

1
β

))β(
2
T

)1+β

,

x > 0 on (0, T ), x′ is decreasing on J and has the unique zero ξ ∈ (0, T ). Hence

‖x′‖ = max{x′(0),−x′(T )} (2.11)

and
x(ξ) = λA. (2.12)
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In addition, by (2.2),

(g(x′(t)))′ � −µxϕ(t)[h1(x(t)) + h1(1) + h2(x(t))][ω1(g(|x′(t)|) + g(1)) + ω2(g(|x′(t)|))]
(2.13)

for a.e. t ∈ J . Consequently,

(g(x′(t)))′x′(t)
ω1(g(x′(t)) + g(1)) + ω2(g(x′(t)))

� −µxϕ(t)[h1(x(t)) + h1(1) + h2(x(t))]x′(t)

(2.14)

for a.e. t ∈ [0, ξ], and

(g(x′(t)))′x′(t)
ω1(−g(x′(t)) + g(1)) + ω2(−g(x′(t)))

� −µxϕ(t)[h1(x(t)) + h1(1) + h2(x(t))]x′(t)

(2.15)

for a.e. t ∈ [ξ, T ]. Integrating (2.14) over [0, ξ] and (2.15) over [ξ, T ], we get

∫ g(x′(0))

0

g−1(s)
ω1(s + g(1)) + ω2(s)

ds

= −
∫ ξ

0

(g(x′(t)))′x′(t)
ω1(g(x′(t)) + g(1)) + ω2(g(x′(t)))

dt

� µx

∫ ξ

0
ϕ(t)[h1(x(t)) + h1(1) + h2(x(t))]x′(t) dt

� µx‖ϕ‖∞

(
h1(1)x(ξ) +

∫ x(ξ)

0
(h1(t) + h2(t)) dt

)

� µx‖ϕ‖∞

(
h1(1)A +

∫ A

0
(h1(t) + h2(t)) dt

)
(2.16)

and ∫ g(−x′(T ))

0

g−1(s)
ω1(s + g(1)) + ω2(s)

ds

=
∫ T

ξ

(g(x′(t)))′x′(t)
ω1(−g(x′(t)) + g(1)) + ω2(−g(x′(t)))

dt

� −µx

∫ T

ξ

ϕ(t)[h1(x(t)) + h1(1) + h2(x(t))]x′(t) dt

� −µx‖ϕ‖∞

(
− h1(1)x(ξ) −

∫ x(ξ)

0
(h1(t) + h2(t)) dt

)

� µx‖ϕ‖∞

(
h1(1)A +

∫ A

0
(h1(t) + h2(t)) dt

)
. (2.17)

Since ∫ ∞

0

β
√

u

ω1(u)
du = ∞
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by (H3), from the properties of ω1 and using (2.7) we have∫ ∞

0

g−1(u)
ω1(u + g(1))

du = ∞,

and then from the fact that ω2 : R+ → R+ is non-increasing we deduce that∫ ∞

0

g−1(u)
ω1(u + g(1)) + ω2(u)

du = ∞.

Hence there exists a positive constant Q such that∫ Q

0

g−1(u)
ω1(u + g(1)) + ω2(u)

du > µx‖ϕ‖∞

(
h1(1)A +

∫ A

0
(h1(u) + h2(u)) du

)
.

Then (2.16) and (2.17) give

max{g(x′(0)), g(−x′(T ))} < Q,

and from (2.11) we see that (2.9) is satisfied with P = g−1(Q). �

Lemma 2.3. Let A ∈ R+. Then there exists a positive constant µA independent of
n ∈ N such that for any solution x of BVP (2.3), (1.2), (1.3) with some µ = µx and
n ∈ N in (2.3), the inequality

µA � µx (2.18)

is satisfied.

Proof. Let x be a solution of BVP (2.3), (1.2), (1.3) with some µ = µx and n ∈ N

in (2.3). Then x(ξ) = A, where ξ ∈ (0, T ) is the unique zero of x′ (see Lemma 2.1).
Whence

A = x(ξ) − x(0) = x′(η1)ξ, A = x(ξ) − x(T ) = −x′(η2)(T − ξ),

where 0 < η1 < ξ < η2 < T , and so x′(η1) = A/ξ, −x′(η2) = A/(T − ξ). Since
min{ξ, T − ξ} � T/2, we have max{x′(η1),−x′(η2)} � 2A/T and then ‖x′‖ � 2A/T .
Now arguing as in the proof of Lemma 2.2 (see (2.16) and (2.17)),

∫ g(2A/T )

0

g−1(s)
ω1(s + g(1)) + ω2(s)

ds �
∫ g(‖x′‖)

0

g−1(s)
ω1(s + g(1)) + ω2(s)

ds

� µx‖ϕ‖∞

(
h1(1)A +

∫ A

0
(h1(s) + h2(s)) ds

)
.

Thus (2.18) holds with

µA =
( ∫ g(2A/T )

0

g−1(s)
ω1(s + g(1)) + ω2(s)

ds

)/(
‖ϕ‖∞

(
h1(1)A+

∫ A

0
(h1(s)+h2(s)) ds

))
.

�
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Lemma 2.4. Let A ∈ R+. Then BVP (2.3), (1.2), (1.3) has a solution for each n ∈ N.

Proof. Fix n ∈ N and let P ∈ R+ be given by Lemma 2.2. Set

Ω =
{

(x, µ) : (x, µ) ∈ C1(J ; R) × R, ‖x‖ < A + 1, ‖x′‖ < P,

|µ| <
1
a

(
A

(
1 +

1
β

))β(
2
T

)1+β

+ 1
}

.

Then Ω is an open, bounded and symmetric with respect to (0, 0) subset of the Banach
space C1(J ; R) × R. Define H : [0, 1] × Ω̄ → C1(J ; R) × R by

H(λ, x, µ) =
{∫ t

0
g−1

(
B + µ

(
(λ − 1)s + λ

∫ s

0
fn(τ, x(τ), x′(τ)) dτ

))
ds,

λ[max{x(t) : t ∈ J} + min{x(t) : t ∈ J}] + (1 − λ)x( 1
2T ) + µ

}
,

where the constant B = B(λ, x, µ) is the unique solution of the equation

p(c; λ, x, µ) = 0 (2.19)

with

p(c; λ, x, µ) =
∫ T

0
g−1

(
c + µ

(
(λ − 1)t + λ

∫ t

0
fn(s, x(s), x′(s)) ds

))
dt. (2.20)

The existence and uniqueness of a solution for (2.19) follows from the fact that p(·; λ, x, µ)
is continuous and increasing on R and

lim
c→−∞

p(c; λ, x, µ) = −∞, lim
c→∞

p(c; λ, x, µ) = ∞

for each (λ, x, µ) ∈ [0, 1] × Ω̄.
Since

H(0, x, µ) =
{∫ t

0
g−1(B − µs) ds, x( 1

2T ) + µ

}
,

where B is the unique solution of the equation p(c; 0, x, µ) = 0, that is the equation

∫ T

0
g−1(c − µt) dt = 0,

the mean-value theorem for integrals gives B = µt0 for a t0 ∈ (0, T ). Hence

H(0, x, µ) =
{∫ t

0
g−1(µ(t0 − s)) ds, x( 1

2T ) + µ

}
,

and we see that H(0,−x,−µ) = −H(0, x, µ) for (x, µ) ∈ Ω̄. Consequently, H(0, ·, ·) is an
odd operator.
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We are going to show that H is a compact operator. Let

{(λm, xm, µm)} ⊂ [0, 1] × Ω̄ and lim
m→∞

(λm, xm, µm) = (λ0, x0, µ0)

in [0, 1]×C1(J ; R)×R. Let Bm be the (unique) solution of the equation p(c; λm, xm, µm) =
0, where the function p is given by (2.20). Since |fn(t, xm(t), x′

m(t))| � q(t) for a.e. t ∈ J

and each m ∈ N with a q ∈ L1(J ; R), we see that {Bm} is bounded. If {Bm} is not conver-
gent, there exist convergent subsequences {Bkm} and {Blm} such that limm→∞ Bkm = c1,
limm→∞ Blm = c2 and c1 
= c2. Then applying the Lebesgue dominated convergence the-
orem, we have

0 = lim
m→∞

p(Bkm ; λkm , xkm , µkm) = p(c1; λ0, x0, µ0)

and

0 = lim
m→∞

p(Blm ; λlm , xlm , µlm) = p(c2; λ0, x0, µ0),

which contradicts p(c1; λ0, x0, µ0) 
= p(c2; λ0, x0, µ0). Hence {Bm} is convergent and let
limm→∞ Bm = B0. Then

lim
m→∞

∫ t

0
g−1

(
Bm + µm

(
(λm − 1)s + λm

∫ s

0
fn(τ, xm(τ), x′

m(τ)) dτ

))
ds

=
∫ t

0
g−1

(
B0 + µ0

(
(λ0 − 1)s + λ0

∫ s

0
fn(τ, x0(τ), x′

0(τ)) dτ

))
ds

in C1(J), and since

lim
m→∞

(λm[max{xm(t) : t ∈ J} + min{xm(t) : t ∈ J}] + (1 − λm)xm( 1
2T ) + µm)

= λ0[max{x0(t) : t ∈ J} + min{x0(t) : t ∈ J}] + (1 − λ0)x0( 1
2T ) + µ0,

H is a continuous operator. Let {(λj , xj , µj)} ⊂ [0, 1 × Ω̄]. Then the sequence

{λj [max{xj(t) : t ∈ J} + min{xj(t) : t ∈ J}] + (1 − λj)xj( 1
2T ) + µj}

is bounded and there exists r ∈ L1(J ; R) such that |fn(t, xj(t), x′
j(t))| � r(t) for a.e.

t ∈ J and each j ∈ N, and so {Bj} is bounded where Bj is the unique solution of the
equation p(c; λj , xj , µj) = 0. Hence

{∫ t

0
g−1

(
Bj + µj

(
(λj − 1)s + λj

∫ s

0
fn(τ, xj(τ), x′

j(τ)) dτ

))
ds

}

is bounded in C1(J ; R) and

{
Bj + µj

(
(λj − 1)t + λj

∫ t

0
fn(s, xj(s), x′

j(s)) ds

)}

https://doi.org/10.1017/S0013091503000774 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091503000774


10 R. P. Agarwal, D. O’Regan and S. Staněk

is equicontinuous on J . So {H(λj , xj , µj)} is relatively compact in C1(J ; R) × R by the
Arzelà–Ascoli theorem and the Bolzano–Weierstrass theorem. Finally, let

H(λ0, x0, µ0) = (x0, µ0)

for some (λ0, x0, µ0) ∈ [0, 1]×∂Ω. Then from the definition of the operator H we deduce
that

(g(x′
0(t)))

′ = µ0[λ0 − 1 + λ0fn(t, x0(t), x′
0(t))] for a.e. t ∈ J, (2.21)

x0(0) = 0, x0(T ) = 0 (2.22)

and

λ0[max{x0(t) : t ∈ J} + min{x0(t) : t ∈ J}] + (1 − λ0)x0( 1
2T ) = 0. (2.23)

If µ0 > 0, then (2.21) gives (g(x′
0))

′ < 0 a.e. on J , and using (2.22) we get x0 > 0 on
(0, T ), contrary to (see (2.23))

0 = λ0[max{x0(t) : t ∈ J} + min{x0(t) : t ∈ J}] + (1 − λ0)x0( 1
2T )

= λ0 max{x0(t) : t ∈ J} + (1 − λ0)x0( 1
2T ) > 0.

Let µ0 < 0. Then from (2.21) it follows that (g(x′
0))

′ > 0 a.e. on J which, together with
(2.22), yields x0 < 0 on (0, T ), contrary to (see (2.23))

0 = λ0[max{x0(t) : t ∈ J} + min{x0(t) : t ∈ J}] + (1 − λ0)x0( 1
2T )

= λ0 min{x0(t) : t ∈ J} + (1 − λ0)x0( 1
2T ) < 0.

Hence µ0 = 0 and then from (g(x′
0))

′ = 0 a.e. on J and (2.22) we see that x0 = 0,
contrary to (0, 0) = (x0, µ0) ∈ ∂Ω. We have proved that H(λ, x, µ) 
= (x, µ) for λ ∈ [0, 1]
and (x, µ) ∈ ∂Ω. Therefore, by the Borsuk antipodal theorem, D(I − H(0, ·, ·), Ω, 0) 
=
0, where ‘D’ stands for the Leray–Schauder degree and I is the identity operator on
C1(J ; R) × R. In addition,

D(I − H(1, ·, ·), Ω, 0) = D(I − H(0, ·, ·), Ω, 0)

by the homotopy invariance property. Consequently,

D(I − H(1, ·, ·), Ω, 0) 
= 0. (2.24)

Finally, define the operator K : [0, 1] × Ω̄ → C1(J ; R) × R by

K(λ, x, µ) =
{∫ t

0
g−1

(
C + µ

∫ s

0
fn(τ, x(τ), x′(τ)) dτ

)
ds,

max{x(t) : t ∈ J} + min{x(t) : t ∈ J} − λA + µ

}
,
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where the constant C = C(λ, x, µ) is the unique solution of the equation

r(c; λ, x, µ) = 0 (2.25)

with

r(c; λ, x, µ) =
∫ T

0
g−1

(
c + µ

∫ t

0
fn(s, x(s), x′(s)) ds

)
dt. (2.26)

The existence and uniqueness of a solution of (2.25) can be verified in the same way as
that for (2.19). Arguing as in the case of the operator H, it may be proved that K is a
compact operator. Assume that K(λ∗, x∗, µ∗) = (x∗, µ∗) for a (λ∗, x∗, µ∗) ∈ [0, 1] × ∂Ω.
Then

(g(x′
∗(t)))

′ = µ∗fn(t, x∗(t), x′
∗(t)) for a.e. t ∈ J, (2.27)

x∗(0) = 0, x∗(T ) = 0 (2.28)

and
max{x∗(t) : t ∈ J} + min{x∗(t) : t ∈ J} = λ∗A. (2.29)

If µ∗ � 0, then (g(x′
∗))

′ � 0 a.e. on J by (2.27), and using (2.28) we deduce that x∗ � 0
on J . Hence max{x∗(t) : t ∈ J} = 0 and (see (2.29))

0 � λ∗A = max{x∗(t) : t ∈ J} + min{x∗(t) : t ∈ J} = min{x∗(t) : t ∈ J}

leads to x∗ = 0. Then µ∗ = 0, which follows from (2.1) and (2.27), contrary to (0, 0) =
(x∗, µ∗) ∈ ∂Ω. Whence µ∗ > 0, and then, from (g(x′

∗))
′ < 0 a.e. on J and (2.28), we

conclude that x∗ > 0 on (0, T ) and (2.29) yields max{x∗(t) : t ∈ J} = λ∗A. So x∗
is a solution of BVP (2.3), (1.2), (2.8) (with µ = µ∗ in (2.3) and λ = λ∗ in (2.8)).
Consequently,

‖x′
∗‖ < P, |µ∗| � 1

a

(
A

(
1 +

1
β

))β(
2
T

)1+β

by Lemma 2.2, and ‖x∗‖ = λ∗A � A. Hence (x∗, µ∗) 
∈ ∂Ω and we have proved that
K(λ, x, µ) 
= (x, µ) for λ ∈ [0, 1] and (x, µ) ∈ ∂Ω. Now, by the homotopy invariance
property,

D(I − K(0, ·, ·)Ω, 0) = D(I − K(1, ·, ·)Ω, 0),

and since H(1, ·, ·) = K(0, ·, ·), (2.24) gives

D(I − K(1, ·, ·), Ω, 0) 
= 0.

Then there exists a fixed point (x̂, µ̂) of the operator K(1, ·, ·) and it is easy to check that
x̂ is a solution of BVP (2.3), (1.2), (1.3) with µ = µ̂ in (2.3). �

Lemma 2.5. Let A ∈ R+ and let xn be a solution of BVP (2.3), (1.2), (1.3) with n ∈ N

in (2.3) and let ξn ∈ (0, T ) be the (unique) zero of x′
n. Then there exist 0 < c1 < c2 < T

such that
c1 < ξn < c2 for n ∈ N. (2.30)
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Proof. By Lemma 2.2, there exists a positive constant P such that ‖x′
n‖ < P for

n ∈ N. Since xn(ξn) = A, we have

A = xn(ξn) − xn(0) = x′
n(τn)ξn, A = xn(ξn) − xn(T ) = x′

n(�n)(ξn − T ),

where 0 < τn < ξn < �n < T . Then

P > x′
n(τn) =

A

ξn
, P > −x′

n(�n) =
A

T − ξn
,

and so
A

P
< ξn < T − A

P
for n ∈ N.

Hence (2.30) holds with c1 = A/P and c2 = T − A/P . �

Lemma 2.6. Let A ∈ R+. For each n ∈ N, let xn be a solution of BVP (2.3), (1.2),
(1.3) with n ∈ N and µ = µn in (2.3). Then the sequence

{fn(t, xn(t), x′
n(t))} ⊂ L1(J)

is uniformly absolutely continuous (UAC) on J , that is, for each ε > 0 there exists δ > 0
such that ∫

M
|fn(t, xn(t), x′

n(t))| dt < ε

for n ∈ N whenever M ⊂ J is a measurable set and µ(M) < δ.

Proof. By Lemma 2.2 (for n ∈ N),

xn(t) �

⎧⎪⎪⎨
⎪⎪⎩

A

ξn
t for t ∈ [0, ξn],

A

T − ξn
(T − t) for t ∈ (ξn, T ],

where ξn ∈ (0, T ) is the unique zero of x′
n and

g(x′
n(t)) � aµn(ξn − t) for t ∈ [0, ξn],

g(|x′
n(t)|) � aµn(t − ξn) for t ∈ (ξn, T ].

Next, by Lemmas 2.2, 2.3 and 2.5, there exist positive constants P , µA and 0 < c1 <

c2 < T such that (for n ∈ N)

‖x′
n‖ < P,

µA � µn � 1
a

(
A

(
1 +

1
β

))β(
2
T

)1+β

(2.31)

and
c1 < ξn < c2. (2.32)
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Set

∆ = min
{

A

c2
,

A

T − c1
, aµA

}
.

Then (for n ∈ N)

xn(t) �
{

∆t for t ∈ [0, ξn],

∆(T − t) for t ∈ (ξn, T ],
(2.33)

and
g(x′

n(t)) � ∆(ξn − t) for t ∈ [0, ξn],

g(|x′
n(t)|) � ∆(t − ξn) for t ∈ (ξn, T ].

}
(2.34)

Next (2.2) gives

|fn(t, xn(t), x′
n(t))| � ‖ϕ‖∞[S1 + h2(xn(t))][S2 + ω2(g(|x′

n(t)|))]

for a.e. t ∈ J and each n ∈ N, where

S1 = h1(A), S2 = ω1(g(P )).

Hence to prove our lemma it suffices to verify that the sequences

{h2(xn(t))}, {ω2(g(|x′
n(t)|))}, {h2(xn(t))ω2(g(|x′

n(t)|))} (2.35)

are UAC on J . From the structure of measurable sets in R we deduce that the sequences
(2.35) are UAC on J if for each ε > 0 there exists δ > 0 such that for any at-most-
countable set {(aj , bj)}j∈J of mutually disjoint intervals (aj , bj) ⊂ J ,

∑
j∈J

(bj − aj) < δ,
we have

∑
j∈J

∫ bj

aj

h2(xn(t)) dt < ε,
∑
j∈J

∫ bj

aj

ω2(g(|x′
n(t)|)) dt < ε,

∑
j∈J

∫ bj

aj

h2(xn(t))ω2(g(|x′
n(t)|)) dt < ε

for each n ∈ N.
For this, let {(aj , bj)}j∈J be an at-most-countable set of mutually disjoint intervals

(aj , bj) ⊂ J . We first show that {h2(xn(t))} is UAC on J . Set

J
1
n = {j : j ∈ J, (aj , bj) ⊂ (0, ξn)}, J

2
n = {j : j ∈ J, (aj , bj) ⊂ (ξn, T )}

for n ∈ N. Then for j ∈ J1
n and i ∈ J2

n we have (see (2.33))

∫ bj

aj

h2(xn(t)) dt �
∫ bj

aj

h2(∆t) dt =
1
∆

∫ ∆bj

∆aj

h2(t) dt, (2.36)

∫ bi

ai

h2(xn(t)) dt �
∫ bi

ai

h2(∆(T − t)) dt =
1
∆

∫ ∆(T−ai)

∆(T−bi)
h2(t) dt. (2.37)
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If J 
= J1
n ∪ J2

n and {j0} = J \ (J1
n ∪ J2

n), that is aj0 < ξn < bj0 , then∫ bj0

aj0

h2(xn(t)) dt �
∫ ξn

aj0

h2(∆t) dt +
∫ bj0

ξn

h2(∆(T − t)) dt

=
1
∆

[∫ ∆ξn

∆aj0

h2(t) dt +
∫ ∆(T−ξn)

∆(T−bj0 )
h2(t) dt

]
. (2.38)

Since h2 ∈ L1([0, ∆T ]) and∑
j∈J1

n

∆(bj − aj) +
∑
i∈J2

n

∆[(T − ai) − (T − bi)] + En = ∆
∑
j∈J

(bj − aj),

where

En =

{
0 if J = J1

n ∪ J2
n

∆(bj0 − aj0) if {j0} = J \ (J1
n ∪ J2

n),

we conclude from (2.36)–(2.38) that {h2(xn(t))} is UAC on J .
We are going to show that {ω2(g(|x′

n(t)|))} is UAC on J . For j ∈ J1
n and i ∈ J2

n, it
follows from (2.34) that∫ bj

aj

ω2(g(|x′
n(t)|)) dt �

∫ bj

aj

ω2(∆(ξn − t)) dt =
1
∆

∫ ∆(ξn−aj)

∆(ξn−bj)
ω2(t) dt, (2.39)

∫ bi

ai

ω2(g(|x′
n(t)|)) dt �

∫ bi

ai

ω2(∆(t − ξn)) dt =
1
∆

∫ ∆(bi−ξn)

∆(ai−ξn)
ω2(t) dt, (2.40)

and if {j0} = J \ (J1
n ∪ J2

n), then∫ bj0

aj0

ω2(g(|x′
n(t)|)) dt �

∫ ξn

aj0

ω2(∆(ξn − t)) dt +
∫ bj0

ξn

ω2(∆(t − ξn)) dt

=
1
∆

[∫ ∆(ξn−aj0 )

0
ω2(t) dt +

∫ ∆(bj0−ξn)

0
ω2(t) dt

]
. (2.41)

Since ω2 ∈ L1([0, ∆T ]) and∑
j∈J1

n

∆[(ξn − aj) − (ξn − bj)] +
∑
i∈J2

n

∆[(bi − ξn) − (ai − ξn)] + En = ∆
∑
j∈J

(bj − aj),

we see from (2.39)–(2.41) that {ω2(g(|x′
n(t)|))} is UAC on J .

Finally, we consider the third sequence in (2.35). Let

Λ = min{ 1
4c1,

1
4 (T − c2)}

and suppose that bj − aj � Λ for each j ∈ J. Set

I1 = {j : j ∈ J, aj � Λ},

I2 = {j : j ∈ J, bj � T − Λ},

X
1
n = {j : j ∈ J \ I1, (aj , bj) ⊂ (0, ξn)},

X
2
n = {j : j ∈ J \ I2, (aj , bj) ⊂ (ξn, T )}
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for n ∈ N. Then for each j ∈ I1, i ∈ I2, k ∈ X1
n and l ∈ X2

n, we have (see (2.33) and
(2.34))

∫ bj

aj

h2(xn(t))ω2(g(|x′
n(t)|)) dt � ω2(2Λ∆)

∫ bj

aj

h2(∆t) dt

=
ω2(2Λ∆)

∆

∫ ∆bj

∆aj

h2(t) dt, (2.42)

∫ bi

ai

h2(xn(t))ω2(g(|x′
n(t)|)) dt � ω2(2Λ∆)

∫ bi

ai

h2(∆(T − t)) dt

=
ω2(2Λ∆)

∆

∫ ∆(T−ai)

∆(T−bi)
h2(t) dt, (2.43)

∫ bk

ak

h2(xn(t))ω2(g(|x′
n(t)|)) dt � h2(Λ∆)

∫ bk

ak

ω2(∆(ξn − t)) dt

=
h2(Λ∆)

∆

∫ ∆(ξn−ak)

∆(ξn−bk)
ω2(t) dt, (2.44)

∫ bl

al

h2(xn(t))ω2(g(|x′
n(t)|)) dt � h2(Λ∆)

∫ bl

al

ω2(∆(t − ξn)) dt

=
h2(Λ∆)

∆

∫ ∆(bl−ξn)

∆(al−ξn)
ω2(t) dt, (2.45)

and if ak0 < ξn < bk0 for some k0 ∈ J, then

∫ bk0

ak0

h2(xn(t))ω2(g(|x′
n(t)|)) dt

� h2(Λ∆)
[∫ ξn

ak0

ω2(∆(ξn − t)) dt +
∫ bk0

ξn

ω2(∆(t − ξn)) dt

]

=
h2(Λ∆)

∆

[∫ ∆(ξn−ak0 )

0
ω2(t) dt +

∫ ∆(bk0−ξn)

0
ω2(t) dt

]
. (2.46)

Since

∑
j∈I1

∆(bj − aj) +
∑
i∈I2

∆[(T − ai) − (T − bi)] +
∑

k∈X1
n

∆[(ξn − ak) − (ξn − bk)]

+
∑
l∈X2

n

∆[(bl − ξn) − (al − ξn)] + Hn = ∆
∑
j∈J

(bj − aj),

where

Hn =

{
0 if J = I1 ∪ I2 ∪ X1

n ∪ X2
n,

∆(bk0 − ak0) if {k0} = J \ (I1 ∪ I2 ∪ X1
n ∪ X2

n),
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it follows from (2.42)–(2.46) that

∑
j∈J

∫ bj

aj

h2(xn(t))ω2(g(|x′
n(t)|)) dt

� 1
∆

max{h2(Λ∆), ω2(2Λ∆)}
[∫

M1
n

(h2(t) + ω2(t)) dt +
∫

M2
n

(h2(t) + ω2(t)) dt

]
,

(2.47)

where Mi
n ⊂ (0, ∆T ) are measurable sets, µ(Mi

n) � ∆
∑

j∈J
(bj − aj), for i = 1, 2 and

each n ∈ N. We know that q2, ω2 ∈ L1([0, ∆T ]), and consequently (2.47) shows that the
sequence {q2(xn(t))ω2(g(|x′

n(t)|))} is UAC on J . �

3. Existence results and an example

Theorem 3.1. Let assumptions (H1)–(H3) be satisfied. Then for each A ∈ R+, there
exists a solution of BVP (1.1)–(1.3).

Proof. Fix A ∈ R+. By Lemma 2.6, for each n ∈ N, there exists a solution xn of
BVP (2.3), (1.2), (1.3) with µ = µn in (2.3). Consider the sequence {xn}. Applying
Lemmas 2.1–2.3 and 2.5 and arguing as in the proof of Lemma 2.6, there exist positive
constants P , ∆, µA and 0 < c1 < c2 < T such that the inequalities (2.31)–(2.34) are
satisfied for each n ∈ N, where ξn ∈ (0, T ) denotes the unique zero of x′

n. In addition, the
sequence {fn(t, xn(t), x′

n(t))} is UAC on J by Lemma 2.6, which implies that {g(x′
n(t))}

is equicontinuous on J and now the uniform continuity of g−1 on [−g(P ), g(P )] and

|x′
n(t1) − x′

n(t2)| = |g−1(g(x′
n(t1))) − g−1(g(x′

n(t2)))|, t1, t2 ∈ J, n ∈ N,

show that {x′
n(t)} is equicontinuous on J . The Arzelà–Ascoli theorem and the Bolzano–

Weierstrass theorem, going if necessary to subsequences, imply that we can assume
that {xn} is convergent in C1(J ; R) and {µn} and {ξn} are convergent in R. Let
limn→∞ xn = x, limn→∞ µn = µ and limn→∞ ξn = ξ. Then x ∈ C1(J ; R), x(0) = x(T ) =
0, max{x(t) : t ∈ J} = A and

c1 � ξ � c2, µA � µ � 1
a

(
A

(
1 +

1
β

))β(
2
T

)1+β

.

Taking the limit as n → ∞ in (2.33) and (2.34), we get

x(t) �
{

∆t for t ∈ [0, ξ],

∆(T − t) for t ∈ (ξ, T ],

and

g(x′(t)) � ∆(ξ − t) for t ∈ [0, ξ],

g(|x′(t)|) � ∆(t − ξ) for t ∈ (ξ, T ].
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It follows from the construction of the functions fn ∈ Car(J × R2; R) that there exists
V ⊂ J , µ(V) = 0, such that fn(t, ·, ·) is continuous on R2 for t ∈ J \ V and n ∈ N. Then

lim
n→∞

fn(t, xn(t), x′
n(t)) = f(t, x(t), x′(t)) for t ∈ J \ (V ∪ {0, ξ, T}).

Consequently, f(t, x(t), x′(t)) ∈ L1(J) and

lim
n→∞

∫ t

0
fn(s, xn(s), x′

n(s)) ds =
∫ t

0
f(s, x(s), x′(s)) ds for t ∈ J

by Vitali’s convergence theorem. Finally, letting n → ∞ in the equalities

g(x′
n(t)) = g(x′

n(0)) + µn

∫ t

0
fn(s, xn(s), x′

n(s)) ds, t ∈ J, n ∈ N,

we have

g(x′(t)) = g(x′(0)) + µ

∫ t

0
f(s, x(s), x′(s)) ds, t ∈ J.

Hence g(x′) ∈ AC(J ; R) and x is a solution of (1.1). We have proved that x is a solution
of BVP (1.1)–(1.3). �

For the continuous function f in (1.1) the following corollary immediately follows from
Theorem 3.1 and the above considerations.

Corollary 3.2. Let f ∈ C0(J ×R+ ×R0; R) and assume that (H1)–(H3) are satisfied.
Then for each A ∈ R+, there exists a solution x of BVP (1.1)–(1.3). If ξ ∈ (0, T )
denotes the (unique) zero of x′, then g(x′) ∈ C1(J \ {0, ξ, T}; R) and (1.1) is satisfied for
t ∈ J \ {0, ξ, T}.

Example 3.3. Consider the differential equation

(|x′|p sgn x′)′ + µ

(
q1(t) + q2(t)xγ1 +

q3(t)
xγ2

+
q4(t)

xγ3 |x′|η1
+

q5(t)
|x′|η2

+ q6(t)|x′|η3

)
= 0, (3.1)

where p ∈ R+, q1 ∈ L1(J ; [a,∞)) with an a ∈ R+, qj ∈ L∞(J ; [0,∞)) (2 � j � 6),
γ1 ∈ [0,∞), γ2, γ3 ∈ (0, 1), η1, η2 ∈ (0, p) and η3 ∈ (0, 1+p). Equation (3.1) is the special
case of (1.1) with

g(u) = |u|p sgn u, u ∈ R,

and

f(t, u, v) = −
(

q1(t) + q2(t)uγ1 +
q3(t)
uγ2

+
q4(t)

uγ3 |v|η1
+

q5(t)
|v|η2

+ q6(t)|v|η3

)
for (t, u, v) ∈ J × R+ × R0. Let M = max{‖qj‖∞ : 1 � j � 6}. Then

a � −f(t, u, v) � 2M [h1(u) + h2(u)][ω1(g(|v|)) + ω2(g(|v|))]

for a.e. t ∈ J and each (u, v) ∈ R+ × R0, where

h1(u) = 1+uγ1 , h2(u) =
1

uγ2
+

1
uγ3

, ω1(u) = 1+uη3/p , ω2(u) = 1+
1

umax{η1,η2}/p
.
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Hence g satisfies assumption (H1) with β = p and f satisfies assumptions (H2) and
(H3) with ϕ(t) = 2M . By Theorem 3.1, for each A ∈ R+, there exists a solution of
BVP (3.1), (1.2), (1.3).
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