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Abstract

We present a Mordell–Weil sieve that can be used to compute points on certain bielliptic modular curves
X0(N) over fixed quadratic fields. We study X0(N)(Q(

√
d)) for N ∈ {53, 61, 65, 79, 83, 89, 101, 131} and

|d| < 100.
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1. Introduction

There has been a lot of recent interest in computing low-degree points on modular
curves and, in particular, in computing quadratic points on the curves X0(N). Comput-
ing such points gives much insight into the arithmetic of elliptic curves and has direct
applications in the resolution of Diophantine equations (see [8, page 888] or [10] for
such examples).

As we range over all quadratic fields, a curve X0(N) will either have finitely many
or infinitely many quadratic points. For those curves X0(N) that have finitely many
quadratic points, these points have been computed in many cases, such as when the
genus of X0(N) is ≤ 5, or when X0(N) is bielliptic [5, 12, 14]. If X0(N) has genus
≥ 2 and has infinitely many quadratic points (so that X0(N) is either hyperelliptic, or
bielliptic with an elliptic quotient of positive rank over Q), a geometric description of
all the quadratic points has been given in these cases [5, 6, 12].

There are precisely 10 values of N such that the modular curve X0(N) is bielliptic
with an elliptic quotient of positive rank [3, pages 26–28]. For two of these values of

The author is supported by an EPSRC studentship and has previously used the name Philippe
Michaud-Rodgers.
© The Author(s), 2023. Published by Cambridge University Press on behalf of Australian Mathematical
Publishing Association Inc. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted
re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

6

https://doi.org/10.1017/S0004972723000333 Published online by Cambridge University Press

http://dx.doi.org/10.1017/S0004972723000333
https://orcid.org/0000-0001-9415-8519
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0004972723000333&domain=pdf
https://doi.org/10.1017/S0004972723000333


[2] Points on bielliptic modular curves 7

N, namely 37 and 43, the methods we present will not work (see Remark 2.2), and so
we will consider the remaining eight values of N, which are

N ∈ N := {53, 61, 65, 79, 83, 89, 101, 131}.

For each N ∈ N , the elliptic curve X+0 (N) = X0(N)/wN has rank 1 over Q. In [5,
12], it is proven that every quadratic point on X0(N) arises as the pullback of a
rational point on X+0 (N) (via the natural degree 2 quotient map). However, this
classification does not describe X0(N)(K) for a given quadratic field K. The purpose
of this paper is to introduce a Mordell–Weil sieve that can be used to check, for
N ∈ N , whether X0(N)(K) = X0(N)(Q) for a given quadratic field K. The sieve uses
information on the splitting behaviour of primes in K together with the structure
of the Mordell–Weil group of X+0 (N)(Q) modulo these primes. The sieve builds on
ideas present in the author’s work in [10, pages 338–340]. We prove the following
result.

THEOREM 1.1. Let N ∈ {53, 61, 65, 79, 83, 89, 101, 131} and let d ∈ Z such that
|d| < 100. Then, X0(N)(Q(

√
d)) � X0(N)(Q) if and only if d ∈ DN, where

D53 = {−43,−11,−7,−1},
D61 = {−19,−3,−1, 61},
D65 = {−79,−1},
D79 = {−43,−7,−3},
D83 = {−67,−43,−19,−2},
D89 = {−67,−11,−2,−1, 89},
D101 = {−43,−19,−1},
D131 = {−67,−19,−2}.

Although we have considered integers d satisfying |d| < 100 here, there are no
apparent obstructions to proving analogous results for any integer d.

For certain (but not all) integers d, the results of Theorem 1.1 could be achieved by
applying [13, Theorem 1.1] or some of the techniques described in [2]. In Section 3, we
compare (for N = 53) our results with those one can obtain by applying [13, Theorem
1.1], and use this to provide an example of a curve that violates the Hasse principle.

We note that results of a similar nature to Theorem 1.1 (obtained using different
techniques) are proven in [11] for hyperelliptic curves X0(N).

The Magma [4] code used to support the computations in this paper is available at
https://github.com/michaud-jacobs/bielliptic.

2. A Mordell–Weil sieve

In this section, we present a Mordell–Weil sieve and apply it to prove Theorem 1.1.
We first describe how to obtain a suitable model for X0(N) for N ∈ N . Let g denote

the genus of the modular curve X0(N). We start by computing a basis f1, . . . , fg of
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8 P. Michaud-Jacobs [3]

cusp forms for S2(Γ0(N)) with integer Fourier coefficients such that the Atkin–Lehner
involution wN satisfies wN( f1) = f1 and wN( fi) = − fi for 2 ≤ i ≤ g (we refer to such a
basis as a diagonalised basis). For each N ∈ N , the curve X0(N) is nonhyperelliptic
of genus > 2 and we may obtain a nonsingular model for X0(N) over Q in Pg−1

x1,...,xg as
the image of the canonical embedding on the cusp forms f1, . . . , fg. The details of this
(standard) procedure are described in [9, pages 17–38], and the Magma code we used
to do this is adapted from [14].

With this procedure, the Atkin–Lehner involution wN on this model is given by the
map (x1 : x2 : · · · : xg) �→ (−x1 : x2 : · · · : xg). We denote by ψ : X0(N)→ X+0 (N) the
degree 2 map induced by quotienting by wN . In each case, we found that the projection
map onto the coordinates x2, . . . , xg had degree 2 and image X+0 (N) (and not some
quotient of X+0 (N)), so that the map ψ is given by

ψ : X0(N) −→ X+0 (N)
(x1 : x2 : · · · : xg) �−→ (x2 : · · · : xg).

In fact, we then obtained a Weierstrass model for X+0 (N) and composed ψ with this
transformation (see the example in Section 3). The reason for using a diagonalised
model for X0(N) is twofold. First, it forces the coordinates of a quadratic point to be
of a certain shape, as we see below. Second, it greatly speeds up the computations we
perform in the sieving step.

Let K = Q(
√

d) be a quadratic field and write σ for the generator of Gal(K/Q).
Suppose that P ∈ X0(N)(K)\X0(N)(Q) (equivalently, P is a noncuspidal quadratic
point). In projective coordinates, we may write

P = (a1 + b1
√

d : a2 + b2
√

d : · · · : ag + bg
√

d),

wN(P) = (−a1 − b1
√

d : a2 + b2
√

d : · · · : ag + bg
√

d), and

Pσ = (a1 − b1
√

d : a2 − b2
√

d : · · · : ag − bg
√

d),

where ai, bi ∈ Z for 1 ≤ i ≤ g.
As discussed in the introduction, thanks to the work of Box, and Najman and Vuko-

repa in [5, 12], we know that ψ(P) = ψ(Pσ) ∈ X+0 (N)(Q), or equivalently, wN(P) = Pσ.
It follows that

P = (b1
√

d : a2 : · · · : ag),

with b1 � 0, and we may assume that gcd(b1, a2, . . . , ag) = 1 by rescaling if necessary.
We now present the sieve in the case that N � 65. In the case where N = 65, we will

need to adapt the sieve slightly, and we discuss this case in the proof of Theorem 1.1.
For each N � 65, we have X+0 (N)(Q) � Z, and we let R denote a generator of the
Mordell–Weil group, so that

ψ(P) = m · R for some m ∈ Z.
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[4] Points on bielliptic modular curves 9

Let � be a prime of good reduction for our models of X0(N) and X+0 (N), and consider
the following commutative diagram, where ∼ denotes reduction mod �, or a prime of
K above �:

X0(N) X+0 (N)

˜X0(N) ˜X+0 (N)

ψ

∼ ∼

ψ�

By commutativity, ψ�(˜P) = m ·˜R, so that ˜P ∈ ψ−1
� (m ·˜R). Write G� for the order of

˜R in the group ˜X+0 (N)(F�). Then,

ψl(˜P) = m ·˜R = m0 ·˜R

for some integer m0 satisfying 0 ≤ m0 < G� and m ≡ m0 (mod G�). We note that
ψ−1
� (m ·˜R) = ψ−1

� (m0 ·˜R). For each integer m1 with 0 ≤ m1 < G�, we explicitly com-
pute the set ψ−1

� (m1 ·˜R) ⊂ ˜X0(N)(F�2 ). There are three cases.

(i) The set ψ−1
� (m1 ·˜R) consists of a pair of distinct points defined over F�.

If � is inert or ramifies in K, then ψ−1
� (m ·˜R) will not consist of a pair of distinct

points defined over F�, and so m � m1 (mod G�).
(ii) The set ψ−1

� (m1 ·˜R) consists of a pair of points defined over F�2 (with each point
not defined over F�).
If � splits or ramifies in K, then ψ−1

� (m ·˜R) will not consist of a pair of points
defined over F�2 , and so m � m1 (mod G�).

(iii) The set ψ−1
� (m1 ·˜R) consists of a single point defined over F�.

Verifying the splitting behaviour of the prime � in cases (i) and (ii) leaves us with a
list of possible values for m (mod G�).

We may then repeat this process with a list of primes �1, . . . , �s. For each i
with 1 ≤ i ≤ s, we obtain a list of possibilities for m (mod G�i ). This gives a
system of congruences that we may solve using the Chinese remainder theorem
to obtain a list of possibilities for m (mod lcm(G�i )1≤i≤s)). If no solution exists
to this system of congruences, then we obtain a contradiction and conclude that
X0(N)(K) = X0(N)(Q).

PROOF OF THEOREM 1.1 FOR N � 65. Let N ∈ N\{65}. We start by proving that if
d ∈ DN , then X0(N)(Q(

√
d)) � X0(N)(Q). We computed the preimages ψ−1(t · R) for

t ∈ Z with |t| ≤ 5 and verified the field of definition of the points we obtained. For each
d ∈ DN , we found a pair of quadratic points in X0(N)(Q(

√
d)).

For the converse, we suppose that |d| < 100 with d � DN and aim to prove
that X0(N)(Q(

√
d)) = X0(N)(Q). We note that this is immediate if Q(

√
d) = Q, so

we assume that Q(
√

d) is a quadratic field. Suppose, for a contradiction, that
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10 P. Michaud-Jacobs [5]

P ∈ X0(N)(Q(
√

d))\X0(N)(Q). We applied the Mordell–Weil sieve described above
with the following (ordered) choice of primes (we discuss this choice in Remark 2.1):

L = {� | d : � � 2N} ∪ {� < 1000 : � � 2N and q � G� for primes q > 7}. (2.1)

In each case, this led to a contradiction. �

PROOF OF THEOREM 1.1 FOR N = 65. The proof of the theorem in this case is very
similar to the case where N � 65. The key difference is that X+0 (N)(Q) � Z ⊕ Z/2Z. We
write Q for the 2-torsion point and choose a point R such that any point in X+0 (N)(Q)
may be expressed as m · R + n · Q for some m ∈ Z and n = 0 or 1. For our choice of
R, we found that ψ−1(−R) and ψ−1(−2R) consisted of pairs of quadratic points defined
over Q(

√
−1) and Q(

√
−79), respectively, proving one direction of the theorem.

For the converse, let d � DN be such that Q(
√

d) is a quadratic field and |d| < 100.
Suppose, for a contradiction, that there exists a point P ∈ X0(N)(Q(

√
d))\X0(N)(Q).

Either ψ(P) = m · R or m · R + Q. In the first case, we apply the sieve exactly as in
the proof for N � 65 (with the same choice of primes) to achieve a contradiction.
In the second case, we again apply the sieve in the same way, except that we
work with the point m · R + Q instead. To be precise, for each prime �, we have
˜P ∈ ψ−1

� (m ·˜R + ˜Q), and so we compute ψ−1
� (m1 ·˜R + ˜Q) for 0 ≤ m1 < G�. By consid-

ering each preimage and the splitting behaviour of � in the quadratic field Q(
√

d), we
obtain a list of possibilities for m (mod G�). As in the previous case, we achieved a
contradiction for each d. �

The total computation time for the proof of Theorem 1.1 was 2500 seconds running
on a 2200 MHz AMD Opteron.

REMARK 2.1. We discuss the choice of primes L used in the proof of the theorem.
We start by choosing the primes that ramify as these usually eliminate the greatest
number of possibilities for m (mod G�). We then choose primes � such that the values
G� are small and share many prime factors. There are two reasons for doing this.
First, when solving each system of congruences, we are more likely to obtain fewer
solutions and ultimately a contradiction. Second, we avoid (or reduce the likelihood)
of a combinatorial explosion, since the lowest common multiple of the G� can grow
very quickly if the primes � are not chosen carefully. We note that the largest prime �
we in fact ended up reaching was � = 593 in the case where N = 101 and d = 31.

REMARK 2.2. As discussed in the introduction, we have not considered the curves
X0(37) or X0(43). The curve X0(37) is bielliptic with an elliptic quotient of positive
rank, but it is also hyperelliptic, and therefore has two sources of infinitely many
quadratic points, meaning the sieve we have presented would not work. The reason
the sieve does not work for the curve X0(43) is due to the fact that X0(43) has a
noncuspidal rational point that is fixed by the Atkin–Lehner involution w43. The sieve
cannot distinguish between this rational point and a putative quadratic point.
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[6] Points on bielliptic modular curves 11

Although we have presented this sieve for certain specific bielliptic modular curves
X0(N), the sieve could be suitably adapted to compute quadratic points on a wider
range of curves. Indeed, it should even be possible to apply a similar sieve to compute
quadratic points on any curve X with a degree 2 quotient of genus ≥ 1, if there are
finitely many quadratic points on X not arising as pullbacks of rational points on
this quotient, and that these have all been computed. Although, as in the X0(43) case
discussed above, there may be obstructions to the sieving process succeeding.

3. Example computations

In this section, we provide some details of computations in the case where N = 53.
We start by obtaining a model for the genus 4 curve X0(53) on which the Atkin–Lehner
involution acts diagonally. By searching for relations between a diagonalised basis of
cusp forms, we obtain the following model in P3

x1,x2,x3,x4
:

x2
1 − x2

2 + 2x2x3 − 6x2x4 + 11x2
3 − 6x3x4 − x2

4 = 0,

x3
1 − x1x2

2 + 2x1x2x3 − 6x1x2x4 + 11x1x2
3 − 6x1x3x4 − x1x2

4 = 0,

x2
1x2 − x3

2 + 2x2
2x3 + 5x2x2

3 + 5x2x2
4 − 6x2

3x4 + 6x3
4 = 0,

x2
1x3 − x2

2x3 + 2x2x2
3 − 6x2x3x4 + 11x3

3 − 6x2
3x4 − x3x2

4 = 0,

x2
1x4 − x2x2

3 + 3x2x3x4 − 5x2x2
4 + 10x2

3x4 − 6x3x2
4 = 0,

x2
2x4 − x2x2

3 + x2x3x4 + x2x2
4 − x2

3x4 + x3
4 = 0.

The equations for the Atkin–Lehner involution on this particular model are given by
w53 : (x1 : x2 : x3 : x4) �→ (−x1 : x2 : x3 : x4). The degree 2 map to the elliptic curve
X+0 (53) is then simply given by the projection map (x1 : x2 : x3 : x4) �→ (x2 : x3 : x4).
We then apply a transformation to take the image of this projection map to the
following Weierstrass form:

X+0 (53) : Y2Z + XYZ + YZ2 = X3 − X2Z.

The map ψ is given by

ψ : X0(53) −→ X+0 (53)

(x1 : x2 : x3 : x4) �−→ (x2x3 + x3x4 : x2
2 + x2x4 − x3x4 + x2

4 : x3x4).

We choose R = (0 : −1 : 1) ∈ X+0 (53)(Q) as a generator of the Mordell–Weil group.
We now exhibit some steps in the sieving process for d = −47. As in the previous

section, we will assume that P ∈ X0(53)(Q(
√

d))\X0(53)(Q) and write ψ(P) = m · R.
We apply the sieve with the primes � = 5, 7 and 11. The prime � = 5 is inert in
Q(
√

d) and we find that m ≡ 3 or 5 (mod 6). Next, � = 7 splits and we find that
m ≡ 0, 3, 4, 7 or 11 (mod 12). Combining this with the previous condition, we have
m ≡ 3 or 11 (mod 12). Finally, the prime � = 11 is inert and we find that m ≡ 1, 2, 5, 7
or 10 (mod 12), which is a contradiction. We conclude that X0(53)(Q(

√
−47)) =

X0(53)(Q).
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12 P. Michaud-Jacobs [7]

We have in fact proven that X0(53)(K) = X0(53)(Q) for any quadratic field K in
which 5 and 11 are inert and 7 splits. In a similar vein, when d = 3, we achieved a
contradiction using only the prime � = 3, and this proves that X0(53)(K) = X0(53)(Q)
for any quadratic field K in which 3 ramifies. This type of result is similar to those
appearing in [11], and we could seek to prove more results along these lines, but we
do not pursue this here.

To verify that the sieve is working as expected, we can try applying it for a value
d ∈ D53. For example, applying the sieve with d = −11 ∈ D53 and the primes in L
(defined as in (2.1)) outputs a list of possibilities for m (mod lcm(G�)�∈L), where
lcm(G�)�∈L = 63504000. We find that either m = 1 or that m ≥ 1905121. The fact that
m = 1 remains as a possibility is because ψ−1(1 · R) consists of a pair of quadratic
points defined over Q(

√
−11).

It is interesting to consider how the results of Theorem 1.1 overlap with the results
one may obtain by applying the techniques of [13], which give a criterion for testing
whether X0(N)(Q(

√
d)) = X0(N)(Q) by checking local points on the curve X(d)

0 (N).
This curve is the quadratic twist of X0(N) by the Atkin–Lehner involution wN and
the quadratic extension Q(

√
d)/Q (see [7, page 628] for a precise definition). For

N = 53, in Theorem 1.1, we prove that X0(N)(Q(
√

d)) = X0(N)(Q) for 117 values of
d, with d squarefree and |d| < 100. Applying [13, Theorem 1.1], we reproduced these
results for 94 of these values. (As discussed in [1, page 39], some care is needed
to interpret correctly parts (5) and (6) of [13, Theorem 1.1].) For some values of d,
where our sieving method works, but applying [13, Theorem 1.1] fails, we can often
obtain examples of curves that violate the Hasse principle. Continuing our example
with d = −47, we find that X(−47)

0 (53)(Q) has points everywhere locally by applying
[13, Theorem 1.1]. However, X(−47)

0 (53)(Q) = ∅, as proven above. Similar examples are
considered in [13, pages 344–346], where a standard Mordell–Weil sieve is applied to
twists of a hyperelliptic curve.
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