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A LOWER BOUND FOR THE VOLUME OF 
HYPERBOLIC 3-MANIFOLDS 

ROBERT MEYERHOFF 

1. Introduction. The motivation for this paper was the work of Thurston 
and J0rgensen on volumes of hyperbolic 3-manifolds. They prove, among 
other things, that the set of all volumes of complete hyperbolic 
3-manifolds is well-ordered. In particular, there is a hyperbolic 3-manifold 
which has minimum volume among all complete hyperbolic 3-manifolds. 
Further, there is a minimum volume member in the collection of complete 
hyperbolic 3-manifolds with one cusp; and similarly for n cusps. 
Computer studies to date show that the manifold obtained by performing 
(5,1) Dehn surgery on the figure-eight knot in the 3-sphere is the leading 
candidate for the minimum volume hyperbolic 3-manifold. Its volume is 
about 0.98. The leading one-cusp minimum volume candidate is the 
figure-eight knot complement in the 3-sphere. Its volume is about 2.03. 

This paper gives an explicit construction for a solid tube around a short 
geodesic in a complete hyperbolic 3-manifold. Using this construction and 
a similar construction for cusp neighborhoods, the following theorems are 
proved. 

THEOREM 1. 0.00064 is a lower bound for the volume of a complete 
hyperbolic 3-manifold. 

THEOREM 2. In the "thick and thin" decomposition of a complete 
hyperbolic 3-manifold, M = Mthick U Mthin = M,0^ U M ( € I 0 0 ) , € can be 
taken to be at least 0.104, i.e., the injectivity radius of the thick part is at least 
0.052. 

The construction of solid tubes around short geodesies in (complete) 
hyperbolic 3-manifolds will be given in Sections 3 and 4. The elements of 
PSL(2, C) act as isometries on the upper-half-space model of hyperbolic 
3-space; and complete hyperbolic 3-manifolds correspond to discrete 
torsion-free subgroups of PSL(2, C). Further a geodesic in a hyperbolic 
3-manifold corresponds to an element in this subgroup, and length 
information can be read from the trace of the matrix. In fact, the trace of 
the matrix associated to a geodesic tells us not only the length of the 
geodesic but also its "torsion" (or "holonomy") the amount of rotation a 
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transverse disc undergoes when it is parallel translated once around the 
geodesic; that is, the trace tells us the complex length of the geodesic. 

In Section 3, J0rgensen's trace inequality is exploited to give constraints 
on the complex lengths of geodesies, thereby giving us a means of 
constructing solid tubes around geodesies of small real length and small 
holonomy. But we really want constraints in terms of the real length of the 
geodesic, thereby giving us solid tubes around short geodesies. This 
interplay between real and complex lengths is the essential difference 
between the 2-dimensional case and the 3-dimensional case. The 
2-dimensional case is covered in [11]. 

The pigeonhole principle can be used to overcome the real-complex 
problem (and this was how I originally did it); however, a lemma pointed 
out to me by Don Zagier improved on the pigeonhole principle results. 
Thus, we present Zagier's Lemma and the rest of the solid tube 
construction in Section 4. The pigeonhole principle approach will be put 
in an appendix to Section 4; it turns out to be useful in [9]. It is important 
to note that the shorter the geodesic, the larger (the volume of) the 
constructed solid tube. 

In Section 5, a s tandard construction of cusp neighborhoods is given; 
and, as Troels J0rgensen pointed out to me, this leads to the following 

T H E O R E M . I \n is a lower bound for the volume of a complete 

hyperbolic 3-manifold with n cusps. 

The existence of these neighborhoods and the solid tube construction 
will be used in Section 6 to prove Theorem 1. The fact that all of the 
relevant neighborhoods are disjoint is proved in Section 7 and 8, and is 
used in Section 9 to prove Theorem 2. 

Independent work on related topics has been done by Brooks and 
Matelski [2], Buser [1], Gallo [3], and Waterman [13]. 

I would like to thank Bill Dunbar , Michael Handel, Troels J0rgensen, 
Steve Kerckhoff, and Bill Thurston for helpful conversations. 

2. Preliminaries. In this paper we will be dealing exclusively with 
complete orientable hyperbolic 3-manifolds (Chapters 1 through 6 of 
[12] is a good reference). A hyperbolic manifold is a differentiable mani
fold with a Riemannian metric of constant sectional curvature — 1. 
Complete means complete as a metric space. 

An important model for hyperbolic 3-space is the upper-half-space 
model, H. 

H = { (x, y, t):x, y, t are real numbers and / is positive}, 

the Riemannian (hyperbolic) metric is 

ds2 = (dx2 + dy2 + dt2)/t2. 
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The boundary of H is the Riemann sphere {z = x -f iy) U {00}, and the 
orientation-preserving isometries of H correspond to elements of 

PSL(2, C) = {2 X 2 complex matrices of determinant l}/:±Id. 

These matrices act on the bounding Riemann sphere by 

z -> (az + 6)/(cz -f d), 

i.e., they are Moebius transformations (which take circles to circles), and 
this action can be extended to H (taking hemispheres to hemispheres) by 
using a hemisphere associated to a circle in the bounding complex plane. 
A complete orientable hyperbolic 3-manifold M can be described as 
M = H/T where T is a discrete, torsion-free subgroup of PSL(2, C). 

The short geodesic which we will put a solid tube around will be 
denoted g. Lifts of g to H will be studied, and after a suitable conjugation 
one such lift will be the /-axis. The isometry which fixes this axis and 
yields the short geodesic will be denoted X. So, 

\p 0 
X = 0 / > - • 

wherep e C and \p\ ¥= 0 or 1. 

The complex length of X, which we denote by lh(X), is defined to be 
ln(p ) = 2ln(p) which is a complex number, say x = xx + ix2. The 
complex length describes the action of X on a totally geodesic disc perpen
dicular to the axis of X; the disc is moved a distance xx along the axis of X 
and spun through an angle of x2 radians. (Warning: If a capital letter, say 
X or C, is used to represent a matrix, then the associated lower-case letter, 
say x or c, will automatically represent the complex length associated with 
that matrix.) 

In our study of lengths of geodesies by traces of matrices the following 
formulas will be useful. 

(0) tx(X) = p + p ' = t r aced) 

(1) tr(X)2 - 4 = (/> - p~1)2 

(2) 2(cosh(x) - 1) = ex + e'x - 2 = p2 + p~2 

= (p -p~])2 = tr(X)2 - 4 . 

Since trace (X) is a conjugacy invariant, complex length makes sense for 
the geodesic g and we define lh(g) to equal 

lh(X) = xx + ix2. 

Further, xx is the length of g determined by the Riemannian metric; we 
will denote this length by 1(g) or l(X). Here, we are assuming that X is a 
primitive generator of g. 

In constructing solid tubes around geodesies we will need to study the 
distance between axes corresponding to loxodromic transformations X 
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and y acting on H. (In some references, "loxodromic" transformations are 
called "hyperbolic" transformations.) In particular, we will study the 
hyperbolic isometry C taking the axis of X to the axis of Y for which 
the axis of C is their unique common perpendicular. Such a C exists if X 
and Y have no common fixed point on the bounding Riemann sphere (at 
the end of this section we will point out why this is the relevant case for 
our purposes). 

Up to normalization to have determinant 1, C is given by 

C2 = (X - X~l)(Y - Y~]). 

This equation can be seen geometrically as follows: 

X - X~] = (P - P ~ 1 ) o 
0 (p'] -p)\ 

is a 180° rotation about the axis of X (this can be seen by checking fixed 
points). Similarly, Y — Y~ is a 180° rotation about the axis of Y. Now, it 
can be seen geometrically that composing a 180° rotation about the axis of 
X with a 180° rotation about the axis of Y yields a loxodromic trans
formation whose axis is the unique common perpendicular from X to F, 
and that this transformation is, in fact, C . 

It can be computed that 

(3) t r ( C ^ = ±«° ~ MP ~ P~lf 
(P - P~X)\(a + df - 4 ) 

where Y 
a b 
c d 

; and 

(4) t r ( C 2 ) 2 - 4 ^ ± = 1 6 ( t r ( X y X ' l y " 1 ) ~ 2 ) 

(tr(X)2 - 4)(tr(7)2 - 4) ' 
1 9 

Setting k(X) = - |tr(X) ~ 4| will be convenient. 

Some hyperbolic trigonometric formulae will be used: 

(5) |cosh(<2 + ib) — 1| = cosh(tf) — cos(b) 

therefore, 

k(X) = cosh(X]) — cos(x2). 

For notational convenience we will generally write k(X) as k. 

\ \xn 

\ 2 ( (6) cosh(tf) = (-(cosh(2a) + 1) ) 

(7) sinh2(tf/2) = -(cosh(a) - 1). 
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Again, because trace is a conjugacy invariant all relevant formulas are 
independent of the choice of X as having axis the /-axis. 

Finally, J0rgensen's trace inequality (see [5] ) will be crucial. 

THEOREM [5]. If X and Y generate a non-elementary discrete subgroup of 
SX(2, C), then 

(8) \tv(XYX~xY~x) - 2| S 1 - |tr(X)2 - 4|. 

Actually, J0rgensen proves more, but for our purposes this is sufficient. 
Also, since we will be dealing with torsion-free groups "non-elementary" 
can be replaced by "non-abelian." Further, although our X and Y are 
elements of PSL(2, C) there are no problems, according to J0rgensen,s 
proof, as long as our lift of XYX~ XY~X is the one forced by the lifts of X 
and Y (from PSL(2, C) to SL(2, C) ). 

As mentioned before, the perpendicular bisector construction only 
works if X and F have disjoint fixed points. But this is the case if X and Y 
generate a non-abelian discrete group (see [8] p. 15) and in what follows 
we restrict our attention to this case. 

3. The solid tube construction — part I; the radius of the solid tube in 
terms of complex length. 

Definition. A solid tube of radius r around a geodesic g in a hyperbolic 
3-manifold M is the set of all points in M which are a distance less than or 
equal to r from the (core) geodesic g. We will focus our attention on 
embedded (i.e., non-self-intersecting) solid tubes. The length of the tube is 
defined to be the (real) length of the geodesic g. If the radius is zero then 
the solid tube is actually the core geodesic. Sometimes it is helpful to think 
of the sold tube dynamically: pump air into the geodesic (zero radius tube) 
in a uniform fashion until a tube of the desired radius is obtained. 

THEOREM. If g is a geodesic in a complete hyperbolic 3-manifold M, with 
complex length lh(g) = x = xx + ix2 satisfying 

cosh^j) — cos(x2) < s/2 — 1 

then there exists a solid tube aroung g with radius r satisfying 

sinh (r) = - I — 1 where k = cosh^j) — cos(x2). 

Proof We will be working in H which is the universal cover of M and we 
will be focusing on a particular lift of g to H. As in Section 2, this lift will 
be the axis of some hyperbolic transformation X. Dynamically construct
ing a solid tube around g in M by gradually increasing the radius 
corresponds to the following picture in H. Infinitely long tubes of the 
same radius will be growing around Axis (X) and all of its images under 
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the action of T(M = H/T). The tube in M will fail to be embedded as soon 
as the tube around Axis (X) in H intersects the tube around some image 
Axis (Y) of Axis (X) in H(X and Y are conjugate under T). The radius of 
the solid tube when it first bumps into itself is cxl2 where cx is the (real) 
length of the unique common perpendicular to Axis (X) and Axis (Y) (see 
Section 2 where the matrix C associated with this perpendicular is 
described; the complex length of C is cx -f ic2) See Figure 1. 

Figure 1 

So, the construction of a solid tube around g reduces to estimating the 
(real) length of C. 

Since Fis conjugate to X, tr(Y) = tr(X) = p + p_1 and the derivation 
of a constraint on sinh (cx/2) is as follows: 

2|cosh(2c) - 1| = |tr(C2)2 - 4| 

- \6\\x(XYJTxY"x) - 2|/(|tr(X)2 

- 4||tr(y)2 - 4 |) . 

But by (8), 

\tr(XYX~]Y~l) - 2| ^ 1 - |tr(X)2 — 4| = 1 — 2A: 

so that 

2|cosh(2c) - 1| â 4(1 - 2k)/(k2) 

cosh(2c!) - cos(2c2) ^ 2(1 - 2k)/(k2) 
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cosh(2c1) + 1 ^ 2((1 - 2k)/k2) 

cosh(c{) = l-(cosh(2c1) + 1) ) ^ ((1 - 2k)/k2)V2 

= (1 - 2k)xl2/k 

sinh2(c1/2) = -(cosh(q) - 1) ^ - ( ( (1 - 2k)xi2/k) - 1). 

This completes the proof of the theorem. 

So, given that 

0 < k(X) = coshO^) - cos(x2) < v ^ — 1, 

which is a constraint on the complex length of g, we have obtained some 
control over q / 2 , the radius of the solid tube. However, we need 
this control in terms of xx, not k. In particular, a short g, i.e., a small Xj, 
could have a large 

k = cosh^j) — cos(x2) 

if x2 were close to 77/2, say. This problem will be dealt with in the next 
section, but first we prove the following. 

COROLLARY. The theorem holds if k = cosh(nxx) — cos(«x2)' where n is 
a positive integer. 

Proof. In computing the distance between Axis (X) and Axis (Y) in H 
we could have used the matrix Xn in place of X because the axes of Xn and 
its conjugates are the same as the axes of X and its conjugates. And in 
applying J0rgensen's trace inequality we would use 

ix{Xnf - 4 = 2(cosh(rtx) - 1) 

because 

lh(Xn) = nlh(X) = nxx + inx2 = nx. 

Finally, it should be noted that the cases where J0rgensen's trace 
inequality do not apply can be handled by elementary means. 

4. The solid tube construction — part II; radius of the solid tube in terms 
of length. The solid tube construction of Section 3 only works if 

k = k(X) = cosh(xj) — cos(x2) < \ /2 — 1; 

but X! small does not ensure that k is small because x2 may be "large". To 
overcome this problem we need to take iterates Xn of X until the angle of 
the iterate Xn is small (mod 2TT), while at the same time not taking too 
many iterates in which case the real length of Xn would be too long. That 
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is, we want to find an integer n so that 

k(Xn) = cosh(«Xj) — cos(/ix2) < \ /2 ~~ 1 

and then use the corollary in Section 3. 
Our original approach to finding n was to use a pigeonhole principle 

technique (outlined in the appendix to this section). Later, Don Zagier 
showed us the following lemma which improves on the pigeonhole 
principle results. 

LEMMA. For xx and x2 with 0 < xx < IT\/3, there exists an integer n 
greater than or equal to one for which 

cosh(«Xj) — cos(nx2) = coshl y—-p-l — 1 
V3 

Proof. Let u = x2/2nr and v = xx/2
rn, then there exist integers m and n 

such that 

(nu - mf + J I V ^ 2v/V3. 

(This is true because the modular group has a fundamental domain with 
all points having imaginary part at least \ /3 /2 ; thus, there exists an ele
ment A in SL(2, Z) with bottom row (n, —m) such that the imaginary part 
of A(u + iv) is at least \ /3 /2 . But this imaginary part is 

? 9 9 

v/[ (nu — m) 4- « v ], 
and the result follows.) Here, Xj < TT\/3 implies v < \ /3 /2 which forces 
« to be non-zero. Now, 

cosh(nx}) — cos(nx2) = cosh(nx{) — cos(nx2 ~ 2min) 

CO , 

^ 2 —-[(nx,f r - (-\)r{nx2 - 2mm)lr\ 
r=i (2r)! 

2 — - [ («x,)2 + («x, - 2ifw)2r 
/•=! (2r)! 

{Amxxly/yf J,/*™ ^ 2 1-^,/VJJ = c o s h 
M 

(2r)! \ V ^ 3 / 

COROLLARY. The longest short geodesic obtainable by using the lemma 
has length 

^ [ l o g ( V 2 + l ) ] 2 , 

which is a bit more than 0.107. 
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Proof. To construct a non-trivial solid tube we need k < \fl — 1. 
But 

xx = ^ W V 2 + l)]2 

477 

yields 

k = cosh^Xj) — cos(7Dc2) = coshl y—~ — 1 
V3 

= cosh(log(V2 + 1)) - 1 = V5 - 1. 

Using the lemma and the theorem in Section 3, we have 

THEOREM. Let g be a geodesic in a complete hyperbolic 3-manifold. If the 
(real) length 1(g) of g is less than 

^ W v ^ + 1)]2« 0.107, 
477 

then there exists an embedded solid tube around g whose radius r satisfies 

sinh2r = - I - l ) where k = coshf y ^ ^ ) - 1. 

COROLLARY 1. For r and k as in the theorem, r is a decreasing function of 
1(g). That is, as the geodesic shrinks the solid tube grows. 

Proof. 

is an increasing function of 1(g); and r as in the theorem is a decreasing 
function of k, at least for 0 < k < \fî — 1. 

COROLLARY 2. As the length of the geodesic approaches zero the radius of 
the solid tube approaches infinity. 

COROLLARY 3. For geodesies g with 

% ) < ^ [ l o g ( V 2 + I)]2, 
477 

the volume of the solid tube constructed in the theorem increases when 1(g) 
decreases. 

Proof. The volume of a solid tube is 77/(g)sinh (r) which, in our case, 
is 
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vl(g)( ~ " l ) / 2 . 

As in Section 2, we will use x, in place of 1(g). So, we must show that 

dxx 

That is, 

d f (V\ -2k , , , n xA - 1| | < 0 . 

Vl - 2k I k - 1 \ dk 
i + xA—== — < o? 

k W l - 2k,dx\ 
1 - 2k - kVT^Tk < ( X l | L ) ( : L L ^ 

This holds if 

dk 
xx > k 

dxx 
But. 

k = cosh vf) - 1 

so 

dk 
xx = x 

dxx 

- sinh !vf dk 
xx = x 

dxx 
• ( V ^ - sinh !vf 

• ) 

and expanding i n power series shows that 

dk 
xx > k 

dxx 

Example. If we have a geodesic of length 1(g) — 0.10695 then the 
volume of an embedded solid tube around g can be computed. In 
particular, 

* = c o s h ( y ^ M ) - l =.4137166... 
W V3 / 

and the volume of the solid tube is 

*7(g)( Vl - 2k/k - l)/2 = 0.0006882 . . . 

Appendix (To Section 4): The Pigeonhole Principle. Originally, the results 
of Section 4 were proved by using the pigeonhole principle (some of the 

https://doi.org/10.4153/CJM-1987-053-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-053-6


1048 ROBERT MEYERHOFF 

results were weaker). The advantage of this approach is that it is geometric 
and "hands-on." In particular, it is well-suited to the needs of [9]. The 
disadvantage is that the results obtained are not quite as good as those 
obtained via Zagier's lemma. For example, the longest short geodesic from 
the pigeonhole principle has length roughly equal to 77/50; whereas the 
Zagier long short geodesic has length roughly equal to 0.107. 

We will now sketch the original pigeonhole principle proof of the 
theorem; but we will not prove the corollaries; the arguments are 
essentially the same. 

THEOREM. Let g be a geodesic in a complete hyperbolic 3-manifold. If the 
length of g is less than or equal to 77/50 then there exists an embedded solid 
tube around g whose radius r satisfies 

sinh r = - I — 1 where k = cosh — — cos — 
2\ k I \M! \MI 

and M is the positive integer such that 

277 _ 277 

(M+l)2 l M2' 

Proof We will exploit the corollary in the previous section. Assume the 
length of g which, as usual, we denote jtj is ITT/M2. Break the unit disc into 
M wedges each of lu IM radians. Then by the pigeonhole principle there 
exists an integer N ^ M such that 

cos(Nx2) = cos I— - Thus 

k(XN) = cosh(Nxx) - cos(Nx2) ^ cosh(Mxx) - cosl—I 

= cosh — — cos — . 

By the corollary of the previous section, taking 

k = c o s h ( ^ ) - c o s ( ^ ) 
\MJ \MI 

yields a solid tube of radius r satisfying 

9 1 / Vl - 2k 
sinh2(r) =• - ~ 1 

2 \ k 
and M ^ 10 makes k < \fl — 1. Now assume 
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277 277 
< X , < 

(M + l)2 ] M2 

and use the M pigeonhole principle again. Since 

1 M 

and — 2k/k is a decreasing function of k, we get the desired r. 

5. Cusp neighborhoods. 

THEOREM. ( \ /3 /4)A? W a lower bound for the volume of a complete 
hyperbolic 3-manifold with n cusps. 

Proof. As usual, we will be working in H. 
We want to put embedded horoball neighborhoods around the cusps. 

The problem is to decide how big one horoball neighborhood should be as 
compared to the size of another. The solution is to demand that each 
horosphere boundary of the horoball neighborhood of a cusp have 
minimum translation length equal to one. This translation length is 
measured in the induced metric on the horosphere boundary. These 
horoball neighborhoods do not intersect: Conjugate the group so that one 
cusp is at infinity with parabolics 

X= (J J) and*' = (J ^) with M ^ 1; 

and another cusp is at the origin with matrix 

'1 0\ 
Y=\c 1 

Here the boundary of the cusp neighborhood at infinity is at height one. 
J0rgensen's trace inequality applied to X and Y forces c to have absolute 

value at least one. Conjugating by I . interchanges the two cusps by 

rotating 180 degrees about the axis through + 1 and — 1. In particular, Y 

is conjugated to L J and we see that a horoball neighborhood of the 

cusp with minimum translation length one must be at height |c| which is 
greater than or equal to one. Thus, no two cusp neighborhoods 
intersect. 

The torus determined by the horosphere boundary is characterized by 
the complex numbers 1 and w. The fact that the minimum translation 
distance is 1 forces w to have imaginary part at least \ /3 /2 . That is, in 
Figure 2 (which is a view from the cusp at oo) we see that if the imaginary 
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part of w were less than \ /3 /2 then we could translate back into the unit 
disc. This is a contradiction. Hence, the volume contribution of the cusp at 
infinity is at least ( l /2) ( \ /3 /2) = \ / 3 / 4 -

Figure 2 

This analysis also holds for the other cusps and the volume of the entire 
manifold is at least (^/3/4)n. 

6. Lower bound for volume. 

THEOREM 1. 0.00064 is a lower bound for the volume of a complete 
hyperbolic 3-manifold. 

Proof If the manifold has a cusp then we are done by the result of 
Section 5. If not then the manifold has the property that all non-trivial 
closed loops correspond to geodesies (see Proposition 5.3.1 of [12] ) and 
the length of the geodesic is less than the length of the loop. In light of 
this, there are two possibilities 

(1) The manifold has a geodesic of length less than or equal to 0.10695 
in which case the example in Section 4 shows that the geodesic has an 
embedded solid tube of volume greater than 0.00064. 

(2) The manifold has an embedded sphere of radius 0.10695/2. Since 
the volume of a hyperbolic sphere is 7i(sinh(2r) — 2r), plugging in 
r = 0.10695/2 yields a volume just barely greater than 0.00064. 

Note. If we had chosen a number less than 0.10695 then the volume of 
the solid tube would have been bigger, but the volume of the embedded 
ball would have been smaller. In fact, 0.10695 is the optimal "trade-off 
length. 
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7. Multiple short geodesies. 

THEOREM. The solid tubes constructed previously about different short 
geodesies do not intersect. 

Proof. We want to prove Figure 3 is correct. That is, is /j/2 + /2/2 ^ ln 

where /12 is the distance between X and Yl 

Figure 3 

For notational convenience let k = k(XN) and k = k(YM) where M 
and N are any positive integers. We will thus be proving the theorem 
independent of the choices of N and M, that is, we are working in the 
context of Section 3, not Section 4. 

By construction, 

cosh(/j -f /2) = cosh(/]) cosh(/2) + sinh(/j) sinh(/2) 

Vl - 2k Vl - 2kf 

+ 
Vl - 2k - k2 Vl 2k' - (k'f 

k 

and 

cosh(2/12) 
%\\x{XYX T ') - 2| 

|tr(X)2 - 4||tr(y)2 - 4| 
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(Here we are using the fact that Jorgensen's trace inequality works for Y 
and X as well as for X and Y (since tr(XYX~ lY~l) = tr(YXY~lX~l) ) so 
we can switch k and k' in the numerator of the cosh(2/12) formula.) So, 

Assume k ^ k' hence 

V l - Ik V l - 2Â:' 1 - 2/c 
1 - 2Jfc â 1 - 2k' and ; ^ — . 

So to show that cosh^ + /2) = cosh(2/12) it remains to show that 

V l - 2k - ik2 V l - 2if - (£')2 < 1 - 2/c - kk' 

k le = ki? 

or, better, to show that 

(1 - 2k - ^)(1 - 2k' - k'2) ^ (1 - 2k - 4*0(1 - 2£' - JUf). 

Multiplying out we have to show 

1 - 2k' - k'2 - 2k + 4kk' + 2kk'2 - k2 + 2k2k' 4- k2k'2 

^ 1 - 2k? - kk' - 2k + 4M' + 2£2£' - kk' + 2M' + £2£'2. 

That is, is - £ 2 - £'2 ^ -2JUt'? Yes, since 0 S (fc - k'f. 
So, ^ + /2 = 2/12 and the individual solid tubes work as embedded 

simultaneous collars. 

8. Non-intersection of cusp neighborhoods and solid tubes. 

THEOREM. The solid tubes of the corollary of Section 3, and the cusp 
neighborhoods of Section 5 do not intersect. 

Proof. This is an application of J0rgensen's trace formula. After suitable 
conjugacy we can think of the cusp as defined by the matrices 

X= ( J J) and X' = ( J 'J') with M S l; 

and the short geodesic as defined by 

(a bd\ 
Y \d/b a 

where 

Vtr(y)2 

a = tr(Y)/2, d = — -

https://doi.org/10.4153/CJM-1987-053-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-053-6


HYPERBOLIC 3-MANIFOLDS 1053 

and ±b are the fixed points of Y in the bounding Riemann sphere (see 
Figure 4, which is a "side-view" of H with the dotted semi-circle 
representing the axis of Y). 

Thus 

\tr(XYX~lY~l) - 2| = 

and by the trace inequality 

(dV\ g 

d\2 

b 
and |tr(AT - 4| = 0, 

i.e. \b\2 â \d\2. So, 

l̂ l2 â |J|2 = tr(yr 
yt(r)/2 = k/i. 

We are now concerned with whether the solid tube for Y reaches above 
height 1. The "highest point" of the tube of radius r round the axis of Y is 
\b\er, which we need to control (see figure 4). 

But, 

Jr 

Figure 4 

cosh(2r) + sinh(2/-) 

Vl - 2k Vl - 2k - k2 2 i 
+ = ^ - V1 ~2k and 

k k k 

\b\2e2r r k l 2 l - V l - 2k\ = Vl - 2k < 1. 

Thus, in this set-up the solid tube never reaches above height 1. The solid 
tubes and the cusp neighborhoods do not intersect. 
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Also, by the corollary of Section 3, this works for k = k(Y ) where TV is 
a positive integer. 

9. The thick and thin decomposition. The Margulis lemma (see [12], 
5.10.1) is of great importance in understanding the structure of complete 
hyperbolic 3-manifolds. The most concrete form of this lemma is given 
in Theorem 5.10.2 of [12] which states that there exists an e such that for 
all complete hyperbolic 3-manifolds the thin part of the manifold is made 
up of non-intersecting solid tubes and cusp neighborhoods. In this section 
we prove that € = 0.104 works. That is, we will essentially reprove 
the Margulis lemma for complete hyperbolic 3-manifolds, but for a 
specific c. 

M = M(0,e] U ^(€,oo) = Mthin U Mthlck 

where M^ is the set of all points p such that there exists a closed 
(non-trivial) loop of length less than or equal to c through p. So p is in 
M(0,€] if there exists an element X in T = TTX(M) such that the distance 
from/? to X(p) is less than e. It follows (see the proof of 5.10.2 of [12] ) that 
M(0 ej is a collection of solid tubes and cusp neighborhoods. We have only 
to prove that these solid tubes and cusp neighborhoods do not intersect 
for € equal to 0.104. 

The solid tubes constructed in Sections 3 and 4, and the cusp 
neighborhoods constructed in Section 5 of this paper do not intersect (see 
Sections 5, 7 and 8). If these solid tubes and cusp neighborhoods contain 
the M(0 n solid tubes and cusp neighborhoods then we will have the 
desired proof of the non-intersection of the M,0 €, solid pieces. It is easy to 
see that our cusp neighborhoods work, so we now restrict our attention 
to X not parabolic. So, we need to prove 

LEMMA 1. If there exists X e Y = irx(M) such that the distance from p to 
X(p) is less than e = 0.104 (i.e., p e ^(o,el) tnen P ^s contained in a solid 
tube around the axis of X constructed in Sections 3 and 4 of this paper. 

Proof. First we will need the following lemma. 

LEMMA 2. Let C = d(p, X(p) ) and s = distance from the axis of X to p, 
and x = Xj + ix2 = lh(X) = complex length of X; then 

cosh(C) = cosh^j) + sinh (s) • (cosh(xj) — cos(x2) ). 

Thus, 

. t 1/ s — cosh(xi) + cosh(C) 
smlr(s) = . 

cosh(xj) — cos(x2) 
Proof. (Lemma 2). Use hyperbolic trigonometry (see [12] Section 2.6) on 

the triangle formed by the points/?, X(p) and the point at infinity in the 
upper-half-space model of hyperbolic 3-space. For simplicity, the axis of X 
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can be taken to be the /-axis, and thus/? and X(p) are the same distance 
from the /-axis. 

Proof (Lemma 1). We must show that s is less than the radius r of the 
constructed solid tube. So, is sinh2(s) ^ sinh2(r)? 

- c o s h e r ) + cosh(C) < wVl - 2k(X") _ \ 

coshCx,) - cos(x2)
 = 21 k(X") ) ' 

The corollary of Section 3 implies that we are free to make use 
of any n. Once we have an n we will set k equal to k(Xn) and 

m = — 2k/k.Then what we have to show is that 

2 cosh(C) ^ (m — 1) cosh(jcj) — (m — 1) cos(x2) + 2 cosh(xj) 

or 

2 cosh(C) ^ (m + 1) cosh(jcj) — (m — 1) cos(x2) 

where 

C = 0.104 and 2 cosh(C) « 2.01. 

We will break this down into two cases: 
Case 1. COS(JC2) = 1 — x^. Then 

k(X) = cosh(xj) — cos(x2) 

and the k(X") which will be used is this one (n = 1). So, 

k = k(X) = cosh^j) — cos(x2) 

and the desired inequality 

cosh(C) - c o s h ^ ) < / Vl - 2k \ 

cosh(xj) — cos(x2) \ k ! 

reduces to 

2(cosh(C) - cosh(x,)) ^ Vl - 2k - k, 

which is easily seen to be true for JCJ = .104. The key to the proof of this 
case is that we had the flexibility to take 

k = k(X) = cosh(xj) — cos(x2) 

not some other, inappropriate, k(Xn). 
Case 2. cos(x2) ^ 1 — xx. In this case we will use the n found by 

Zagier's lemma in Section 4. Notationally, m is as before and we must 
show that 

2 cosh(C) ^ (m + 1) cosh(x,) - (m - 1)(1 - xx) 
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S (m + 1) cosh^j) — (m — 1) cos(x2). 

Since we are dealing with xx small this essentially reduces to 

2.01 ^ (m + 1)(1 + JC?/2) - (m - 1)(1 - xx) 

= 2 + (m + l)(X|/2) + (m - l ) ^ . 

But (m — l)xj = (2/77) times the volume of the solid tube and when 
X! â 0.104 we can compute that the volume of the associated solid tube is 
at least 0.017. So the inequality is easily satisfied. 
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