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A LOWER BOUND FOR THE VOLUME OF
HYPERBOLIC 3-MANIFOLDS

ROBERT MEYERHOFF

1. Introduction. The motivation for this paper was the work of Thurston
and Jorgensen on volumes of hyperbolic 3-manifolds. They prove, among
other things, that the set of all volumes of complete hyperbolic
3-manifolds is well-ordered. In particular, there is a hyperbolic 3-manifold
which has minimum volume among all complete hyperbolic 3-manifolds.
Further, there is a minimum volume member in the collection of complete
hyperbolic 3-manifolds with one cusp; and similarly for n cusps.
Computer studies to date show that the manifold obtained by performing
(5,1) Dehn surgery on the figure-eight knot in the 3-sphere is the leading
candidate for the minimum volume hyperbolic 3-manifold. Its volume is
about 0.98. The leading one-cusp minimum volume candidate is the
figure-eight knot complement in the 3-sphere. Its volume is about 2.03.

This paper gives an explicit construction for a solid tube around a short
geodesic in a complete hyperbolic 3-manifold. Using this construction and
a similar construction for cusp neighborhoods, the following theorems are
proved.

TueoreM 1. 0.00064 is a lower bound for the volume of a complete
hyperbolic 3-manifold.

THEOREM 2. In the “thick and thin” decomposition of a complete
hyperbolic 3-manifold, M = M., U M., = Myq U M, € can be
taken to be at least 0.104, i.e., the injectivity radius of the thick part is at least
0.052.

The construction of solid tubes around short geodesics in (complete)
hyperbolic 3-manifolds will be given in Sections 3 and 4. The elements of
PSL(2, C) act as isometries on the upper-half-space model of hyperbolic
3-space; and complete hyperbolic 3-manifolds correspond to discrete
torsion-free subgroups of PSL(2, C). Further a geodesic in a hyperbolic
3-manifold corresponds to an element in this subgroup, and length
information can be read from the trace of the matrix. In fact, the trace of
the matrix associated to a geodesic tells us not only the length of the
geodesic but also its “torsion” (or “holonomy’’) the amount of rotation a
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transverse disc undergoes when it is parallel translated once around the
geodesic; that is, the trace tells us the complex length of the geodesic.

In Section 3, Jorgensen’s trace inequality is exploited to give constraints
on the complex lengths of geodesics, thereby giving us a means of
constructing solid tubes around geodesics of small real length and small
holonomy. But we really want constraints in terms of the real length of the
geodesic, thereby giving us solid tubes around short geodesics. This
interplay between real and complex lengths is the essential difference
between the 2-dimensional case and the 3-dimensional case. The
2-dimensional case is covered in [11].

The pigeonhole principle can be used to overcome the real-complex
problem (and this was how I originally did it); however, a lemma pointed
out to me by Don Zagier improved on the pigeonhole principle results.
Thus, we present Zagier's Lemma and the rest of the solid tube
construction in Section 4. The pigeonhole principle approach will be put
in an appendix to Section 4; it turns out to be useful in [9]. It is important
to note that the shorter the geodesic, the larger (the volume of) the
constructed solid tube.

In Section 5, a standard construction of cusp neighborhoods is given;
and, as Troels Jorgensen pointed out to me, this leads to the following

3 . .
THEOREM. (%)n is a lower bound for the volume of a complete

hyperbolic 3-manifold with n cusps.

The existence of these neighborhoods and the solid tube construction
will be used in Section 6 to prove Theorem 1. The fact that all of the
relevant neighborhoods are disjoint is proved in Section 7 and 8, and is
used in Section 9 to prove Theorem 2.

Independent work on related topics has been done by Brooks and
Matelski [2], Buser [1], Gallo [3], and Waterman [13].

I would like to thank Bill Dunbar, Michael Handel, Troels Jorgensen,
Steve Kerckhoff, and Bill Thurston for helpful conversations.

2. Preliminaries. In this paper we will be dealing exclusively with
complete orientable hyperbolic 3-manifolds (Chapters 1 through 6 of
[12] is a good reference). A hyperbolic manifold is a differentiable mani-
fold with a Riemannian metric of constant sectional curvature —1.
Complete means complete as a metric space.

An important model for hyperbolic 3-space is the upper-half-space
model, H.

H = {(x, y, t):x, y, t are real numbers and ¢ is positive},
the Riemannian (hyperbolic) metric is
ds* = (dx> + dv* + di*)/i.

https://doi.org/10.4153/CJM-1987-053-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1987-053-6

1040 ROBERT MEYERHOFF

The boundary of H is the Riemann sphere {z = x + iy} U {oc0}, and the
orientation-preserving isometries of H correspond to elements of

PSL(2, C) = {2 X 2 complex matrices of determinant 1}/=+1d.
These matrices act on the bounding Riemann sphere by
z > (az + b)/(cz + d),

i.e., they are Moebius transformations (which take circles to circles), and
this action can be extended to H (taking hemispheres to hemispheres) by
using a hemisphere associated to a circle in the bounding complex plane.
A complete orientable hyperbolic 3-manifold M can be described as
M = H/T where I is a discrete, torsion-free subgroup of PSL(2, C).

The short geodesic which we will put a solid tube around will be
denoted g. Lifts of g to H will be studied, and after a suitable conjugation
one such lift will be the z-axis. The isometry which fixes this axis and
yields the short geodesic will be denoted X. So,

X = [g 2*1] where p € Cand |p| # O or 1.

The complex length of X, which we denote by /A(X), is defined to be
In( pz) = 2In(p) which is a complex number, say x = x; + ix,. The
complex length describes the action of X on a totally geodesic disc perpen-
dicular to the axis of )X; the disc is moved a distance x, along the axis of X
and spun through an angle of x, radians. (Warning: If a capital letter, say
X or C, is used to represent a matrix, then the associated lower-case letter,
say x or ¢, will automatically represent the complex length associated with
that matrix.)

In our study of lengths of geodesics by traces of matrices the following
formulas will be useful.

0) tr(X) =p + p ! = trace(X)

() u(X)? —4=(p-p 'Y

(2) 2cosh(x) — 1) =¢e"+e ¥ —2=p>+p 22
=(p—p )V =uXxy -4

Since trace (X) is a conjugacy invariant, complex length makes sense for
the geodesic g and we define /A(g) to equal

Ih(X) = x, + ix,.

Further, x, is the length of g determined by the Riemannian metric; we
will denote this length by /(g) or /(X). Here, we are assuming that X is a
primitive generator of g.

In constructing solid tubes around geodesics we will need to study the
distance between axes corresponding to loxodromic transformations X
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and Y acting on H. (In some references, “loxodromic” transformations are
called “hyperbolic” transformations.) In particular, we will study the
hyperbolic isometry C taking the axis of X to the axis of Y for which
the axis of C is their unique common perpendicular. Such a C exists if X
and Y have no common fixed point on the bounding Riemann sphere (at
the end of this section we will point out why this is the relevant case for
our purposes).
Up to normalization to have determinant 1, C s given by

CP=x-X"Wy -y
This equation can be seen geometrically as follows:

1 _[p=p"H o0

X 0 (r ' =p)
is a 180° rotation about the axis of X (this can be seen by checking fixed
points). Similarly, ¥ — Y~ !is a 180° rotation about the axis of Y. Now, it
can be seen geometrically that composing a 180° rotation about the axis of
X with a 180° rotation about the axis of Y yields a loxodromic trans-
formation whose axis is the unique common perpendicular from X to Y,
and that this transformation is, in fact, C 2

It can be computed that

+4a —dp —p Y
(p—p N((a+dP—4

a b
d

(3) tr(CH? =

where Y = ; and

L6 xyx 'y — 2)

N
@ e (tr(X)? — 4)(t(Y) — 4)°

Setting k(X) = éltr(X Y — 4| will be convenient.
Some hyperbolic trigonometric formulae will be used:
(5) |cosh(a + ib) — 1| = cosh(a) — cos(b)
therefore,
k(X) = cosh(x;) — cos(x,).

For notational convenience we will generally write k(X) as k.

1 172
(6) cosh(a) = (E(COSh(za) + 1))

(7) sinh*(a/2) = %(Cosh(a) —1).
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Again, because trace is a conjugacy invariant all relevant formulas are
independent of the choice of X as having axis the f-axis.
Finally, Jorgensen’s trace inequality (see [S5] ) will be crucial.

THEOREM [5]. If X and Y generate a non-elementary discrete subgroup of
SL(2, C), then

@) JrXYxX 'y — 21 =1 — jt(X)? — 4.

Actually, Jorgensen proves more, but for our purposes this is sufficient.
Also, since we will be dealing with torsion-free groups “non-elementary”
can be replaced by “non-abelian.” Further, although our X and Y are
elements of PSL(2, C) there are no problems, according to Jargensen’s
proof, as long as our lift of XYX 'y~ is the one forced by the lifts of X
and Y (from PSL(2, C) to SL(2, C)).

As mentioned before, the perpendicular bisector construction only
works if X and Y have disjoint fixed points. But this is the case if X and Y
generate a non-abelian discrete group (see [8] p. 15) and in what follows
we restrict our attention to this case.

3. The solid tube construction — part I; the radius of the solid tube in
terms of complex length.

Definition. A solid tube of radius r around a geodesic g in a hyperbolic
3-manifold M is the set of all points in M which are a distance less than or
equal to r from the (core) geodesic g. We will focus our attention on
embedded (i.e., non-self-intersecting) solid tubes. The length of the tube is
defined to be the (real) length of the geodesic g. If the radius is zero then
the solid tube is actually the core geodesic. Sometimes it is helpful to think
of the sold tube dynamically: pump air into the geodesic (zero radius tube)
in a uniform fashion until a tube of the desired radius is obtained.

THEOREM. If g is a geodesic in a complete hyperbolic 3-manifold M, with
complex length lh(g) = x = x, + ix, satisfying

cosh(x;) — cos(x,) < /2 — 1

then there exists a solid tube aroung g with radius r satisfying

1(@

sinh? = -
") .

3 — 1) where k = cosh(x;) — cos(x,).

Proof. We will be working in H which is the universal cover of M and we
will be focusing on a particular lift of g to H. As in Section 2, this lift will
be the axis of some hyperbolic transformation X. Dynamically construct-
ing a solid tube around g in M by gradually increasing the radius
corresponds to the following picture in A. Infinitely long tubes of the
same radius will be growing around Axis (X) and all of its images under
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the action of I'(M = H/T’). The tube in M will fail to be embedded as soon
as the tube around Axis (X) in H intersects the tube around some image
Axis (Y) of Axis (X) in H(X and Y are conjugate under I'). The radius of
the solid tube when it first bumps into itself is ¢;/2 where ¢, is the (real)
length of the unique common perpendicular to Axis (X) and Axis (Y) (see
Section 2 where the matrix C associated with this perpendicular is
described; the complex length of Cis ¢; + ic;). See Figure 1.

2
/

Figure 1

So, the construction of a solid tube around g reduces to estimating the
(real) length of C.

Since Y is conjugate to X, tr(Y) = tr(X) =p + p
of a constraint on sinhz(cl/ 2) is as follows:

"and the derivation

2lcosh(2c) — 1] = |tr(C*)? — 4
= 16/tr(XYX 'Y — 21/( |tre(X)?
— 4l (Y)? — 4)).

But by (8),

tr(XYX 'Y ™y — 21 =1 — |ir(X)> — 4] = 1 — 2k
so that |

2lcosh(2c) — 1| = 4(1 — 2k)/(K*)

cosh(2¢;) — cos(2c,) = 2(1 — 2k)/ (k%)
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cosh(2¢;) + 1 = 2((1 — 2k)/k*)
1 172
cosh(c,) = (E(cosh(2c1) + 1)) = ((1 — 2k)kH"?
= (1~ 26)""/k
sinh*(¢,/2) = —;—(cosh(c,) - = -;-(((1 —26)%/k) — D).

This completes the proof of the theorem.
So, given that
0 < k(X) = cosh(x;) — cos(xy) < V2 — 1,

which is a constraint on the complex length of g, we have obtained some
control over ¢;/2, the radius of the solid tube. However, we need
this control in terms of x;, not k. In particular, a short g, i.e., a small x,,
could have a large

k = cosh(x;) — cos(x,)

if x5 were close to #/2, say. This problem will be dealt with in the next
section, but first we prove the following.

CoRrOLLARY. The theorem holds if k = cosh(nx|) — cos(nx,), where n is
a positive integer.

Proof. In computing the distance between Axis (X) and Axis (Y) in H
we could have used the matrix X" in place of X because the axes of X" and
its conjugates are the same as the axes of X and its conjugates. And in
applying Jergensen’s trace inequality we would use

tr(X")?> — 4 = 2(cosh(nx) — 1)
because
Ih(X") = nlh(X) = nx, + inx, = nx.
Finally, it should be noted that the cases where Jorgensen’s trace
inequality do not apply can be handled by elementary means.
4. The solid tube construction — part II; radius of the solid tube in terms
of length. The solid tube construction of Section 3 only works if
k = k(X) = cosh(x,) — cos(x,) < V2 — 1;

but x; small does not ensure that k is small because x, may be “large”. To
overcome this problem we need to take iterates X" of X until the angle of
the iterate X" is small (mod 2#), while at the same time not taking too
many iterates in which case the real length of X" would be too long. That
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1s, we want to find an integer n so that
k(X") = cosh(nx;) — cos(nx,) < /2 — 1

and then use the corollary in Section 3.

Our original approach to finding n was to use a pigeonhole principle
technique (outlined in the appendix to this section). Later, Don Zagier
showed us the following lemma which improves on the pigeonhole
principle results.

LEMMA. For x; and x, with 0 < x; < m\/3, there exists an integer n
greater than or equal to one for which

cosh(nx,) — cos(nx,) = cosh( \/477—\/);1) - 1.

Proof. Let u = x,/2m and v = x;/2m, then there exist integers m and n
such that

(nu — m)2 + nh? = 2v//3.
(This is true because the modular group has a fundamental domain with
all points having imaginary part at least \/3/2; thus, there exists an ele-
ment 4 in SL(2, Z) with bottom row (n, —m) such that the imaginary part
of A(u + iv) is at least \/3/2. But this imaginary part is

v/[ (hu — m)2 + nzvz],
and the result follows.) Here, x; < #1/3 implies v << 1/3/2 which forces
n to be non-zero. Now,

cosh(nx;) — cos(nx,) = cosh(nx;) — cos(nx, — 2mm)

S |
= % (2r)'[(nxl)2’ — (= 1Y (nxy — 2mm)*]
= ;l il (nx))* + (nx, — 2mm)’Y

= § @g}%\v/—i =‘ cosh(\/F—\—/);i) - 1.

r=1

CoROLLARY. The longest short geodesic obtainable by using the lemma
has length

V3

4—[log(\ﬁ + D

which is a bit more than 0.107.
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Proof. To construct a non-trivial solid tube we need k < /2 — 1.
But

x| = \ﬁllog(\/i +DF

T 4

yields

k = cosh(nx|) — cos(nx,) = cosh( \/%) —

= cosh(log(n/2 + 1)) — 1 = 2 — L
Using the lemma and the theorem in Section 3, we have

THEOREM. Let g be a geodesic in a complete hyperbolic 3-manifold. If the
(real) length [(g) of g is less than

V3

T

[log(/2 + 1)} = 0.107,

then there exists an embedded solid tube around g whose radius r satisfies

V1 — 2%k /4
sinh?r = —l-(———~—~ — l) where k = Cosh( —z[—(—gz) — 1.
2 k V3

CoRrROLLARY 1. For r and k as in the theorem, r is a decreasing function of
I(g). That is, as the geodesic shrinks the solid tube grows.

Proof.

k = cosh( \/47:1/(‘;)) — 1

is an increasing function of /(g); and r as in the theorem is a decreasing
function of k, at least for 0 < k < /2 — 1.

COROLLARY 2. As the length of the geodesic approaches zero the radius of
the solid tube approaches infinity.

CoROLLARY 3. For geodesics g with

3
I(g) < %llog(\ﬁ + D

the volume of the solid tube constructed in the theorem increases when I(g)
decreases.

Proof. The volume of a solid tube is w[(g)sinhz(r) which, in our case,
1s
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wl(g)(ﬂ;——%f - 1)/2.

As in Section 2, we will use x; in place of /(g). So, we must show that

o[ ) <

—|x
dx, k
That is,
V1 — 2%k k—1 \dk
(A g
k V1 — 2k dx,
dk \(1 — k
1 — 2k — kV1 ——2k<(x1———)( )?
dx, k
This holds if
k
xld— > k.
X1
But,
4mrx
k= cosh( ——') -1
V3
SO

xlgiil = X ( \/%)sinh( \/Z%)

and expanding in power series shows that

dk
x— > k.
X1
Example. If we have a geodesic of length /(g) = 0.10695 then the
volume of an embedded solid tube around g can be computed. In

particular,

k = cosh( 4_771(_gl) — 1 = .4137166 ...
V=3

and the volume of the solid tube is

7l(g) (V1 — 2k/k — 1)/2 = 0.0006882 . . .

Appendix (To Section 4): The Pigeonhole Principle. Originally, the results
of Section 4 were proved by using the pigeonhole principle (some of the
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results were weaker). The advantage of this approach is that it is geometric
and “hands-on.” In particular, it is well-suited to the needs of [9]. The
disadvantage is that the results obtained are not quite as good as those
obtained via Zagier’s lemma. For example, the longest short geodesic from
the pigeonhole principle has length roughly equal to 7/50; whereas the
Zagier long short geodesic has length roughly equal to 0.107.

We will now sketch the original pigeonhole principle proof of the
theorem; but we will not prove the corollaries; the arguments are
essentially the same.

THEOREM. Let g be a geodesic in a complete hyperbolic 3-manifold. If the
length of g is less than or equal to m/50 then there exists an embedded solid
tube around g whose radius r satisfies

V1 — 2%k
k

1

2
sinh?r = —( - 1) where k = cosh(—w) - cos(—)
2 M

M
and M is the positive integer such that

27 - 27
(M +1) M

Proof. We will exploit the corollary in the previous section. Assume the
length of g which, as usual, we denote x is 27/ M. Break the unit disc into
M wedges each of 27/ M radians. Then by the pigeonhole principle there
exists an integer N = M such that

2
cos(Nx,) = cos(—ﬂ). Thus
M

2
k(xXV) = cosh(Vx;) — cos(Nx,) = cosh(Mx,) — COS(A—Z)

(57) — ()
cosh{— ] — cos{— .
M M

By the corollary of the previous section, taking

k = cosh(—zz) — cos(z—w)
M M

yields a solid tube of radius r satisfying

1

sinhz(r) = E(@ — 1)

k
and M = 10 makes k < /2 — 1. Now assume
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2 2
M+ N T

and use the M pigeonhole principle again. Since

2
Mx, <—7Z
M

and V1 — 2k/k is a decreasing function of k, we get the desired r.

5. Cusp neighborhoods.

THEOREM. (\/3/4)n is a lower bound for the volume of a complete
hyperbolic 3-manifold with n cusps.

Proof. As usual, we will be working in H.

We want to put embedded horoball neighborhoods around the cusps.
The problem is to decide how big one horoball neighborhood should be as
compared to the size of another. The solution is to demand that each
horosphere boundary of the horoball neighborhood of a cusp have
minimum translation length equal to one. This translation length is
measured in the induced metric on the horosphere boundary. These
horoball neighborhoods do not intersect: Conjugate the group so that one
cusp is at infinity with parabolics

(11 , (1w . - .
X—(O 1) andX—(0 1) with w| = 1;

and another cusp is at the origin with matrix

=)

Here the boundary of the cusp neighborhood at infinity is at height one.
Jorgensen’s trace inequality applied to X and Y forces ¢ to have absolute

value at least one. Conjugating by (? é) interchanges the two cusps by
rotating 180 degrees about the axis through +1 and — 1. In particular, Y
is conjugated to ( (1) i) and we see that a horoball neighborhood of the

cusp with minimum translation length one must be at height |c| which is
greater than or equal to one. Thus, no two cusp neighborhoods
intersect.

The torus determined by the horosphere boundary is characterized by
the complex numbers 1 and w. The fact that the minimum translation
distance is 1 forces w to have imaginary part at least \/3/2. That is, in
Figure 2 (which is a view from the cusp at co) we see that if the imaginary
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part of w were less than \/3/2 then we could translate back into the unit
disc. This is a contradiction. Hence, the volume contribution of the cusp at
infinity is at least (1/2)(\/3/2) = /3/4.

Figure 2

This analysis also holds for the other cusps and the volume of the entire
manifold is at least (1/3/4)n.

6. Lower bound for volume.

THeOREM 1. 0.00064 is a lower bound for the volume of a complete
hyperbolic 3-manifold.

Proof. If the manifold has a cusp then we are done by the result of
Section 5. If not then the manifold has the property that all non-trivial
closed loops correspond to geodesics (see Proposition 5.3.1 of [12]) and
the length of the geodesic is less than the length of the loop. In light of
this, there are two possibilities

(1) The manifold has a geodesic of length less than or equal to 0.10695
in which case the example in Section 4 shows that the geodesic has an
embedded solid tube of volume greater than 0.00064.

(2) The manifold has an embedded sphere of radius 0.10695/2. Since
the volume of a hyperbolic sphere is #(sinh(2r) — 2r), plugging in
r = 0.10695/2 yields a volume just barely greater than 0.00064.

Note. If we had chosen a number less than 0.10695 then the volume of
the solid tube would have been bigger, but the volume of the embedded
ball would have been smaller. In fact, 0.10695 is the optimal “trade-off”
length.
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7. Multiple short geodesics.

THEOREM. The solid tubes constructed previously about different short
geodesics do not intersect.

Proof. We want to prove Figure 3 is correct. That is, is /;/2 + L,/2 = 1},
where /}, is the distance between X and Y?

Figure 3

For notational convenience let k = k(XN) and k' = k(YM) where M
and N are any positive integers. We will thus be proving the theorem
independent of the choices of N and M, that is, we are working in the
context of Section 3, not Section 4.

By construction,

cosh(/; + ;) = cosh(/}) cosh(/,) + sinh(/,) sinh(/,)
V1 — 2k V1 — 2

k k'

N V1 — 2k — K2 V1 — 2K — (k)
k K

and

Bt XYX 'y ) — 2 [= 20 -2k

cosh(2/,,) = =
(24) ltr(X)? — 4|ltr(Y)? — 4 kk'

1.
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(Here we are using the fact that Jergensen’s trace inequality works for Y
and X as well as for X and Y (since tr(XYX_lY_l) = tr(YXYA’Xfl) ) so
we can switch k and &’ in the numerator of the cosh(2/;,) formula.) So,

1 — 2k (1—2k )
+ - 1)

cosh(2/,,) =
(2h2) Kk’ Kk’

Assume k = k’ hence

\/1—2k\/1—2k’<1—2k
k % = kk

1 —2k=1-—2k and

So to show that cosh(/; + /,) = cosh(2/,) it remains to show that

VI—2% — VI -2k — (K) _ 1 — 2k — kK
k k' - kk'

or, better, to show that
(1 — 2%k — A1 — 2K — K3 = (1 — 2k — ki'X1 — 2K — kK.
Multiplying out we have to show
1 — 2k — k' — 2k + 4kk' + 2kk’* — I* + 2k*K + KK'?
=1 — 2K — kk' — 2k + 4kk' + 2K°k" — kk' + 2kk' + Kk
That is, is —k> — k> = —2kk’? Yes, since 0 = (k — k)%
So, /; + I, = 2[,, and the individual solid tubes work as embedded
simultaneous collars.

8. Non-intersection of cusp neighborhoods and solid tubes.

THEOREM. The solid tubes of the corollary of Section 3, and the cusp
neighborhoods of Section 5 do not intersect.

Proof. This is an application of Jorgensen’s trace formula. After suitable
conjugacy we can think of the cusp as defined by the matrices

(11 , (1w . - 1.
X—(O 1) and X—(O 1) with [w| = 1;

and the short geodesic as defined by

a bd
Y= (d/b a )
where
Virn(Y)y?: — 4
a = tr(Y)/2, d= —
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and ==b are the fixed points of Y in the bounding Riemann sphere (see
Figure 4, which is a “side-view” of H with the dotted semi-circle
representing the axis of Y).

Thus

2
tr(XYX 'y — 2| = \ (‘—;) and |tr(X)* — 4 = 0,

and by the trace inequality

)

ie. | = |d|* So,

=1,

tr(Y)> — 4
4
We are now concerned with whether the solid tube for Y reaches above

height 1. The “highest point” of the tube of radius r round the axis of Y is
|ble", which we need to control (see figure 4).

b]* = Jdf* = ‘ = k(Y)/2 = k/2.

height 1

(0, 0, ble")

Figure 4
But,

" = cosh(2r) + sinh(2r)
\/1—2k+\/1—2kka
k k

Q
Il

= %\/1 — 2k and

bR = %‘(%Vl . 2k) =V1-2%<1.

Thus, in this set-up the solid tube never reaches above height 1. The solid
tubes and the cusp neighborhoods do not intersect.
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Also, by the corollary of Section 3, this works for k = k(Y") where N is
a positive integer.

9. The thick and thin decomposition. The Margulis lemma (see [12],
5.10.1) is of great importance in understanding the structure of complete
hyperbolic 3-manifolds. The most concrete form of this lemma is given
in Theorem 5.10.2 of [12] which states that there exists an e such that for
all complete hyperbolic 3-manifolds the thin part of the manifold is made
up of non-intersecting solid tubes and cusp neighborhoods. In this section

we prove that € = 0.104 works. That is, we will essentially reprove
the Margulis lemma for complete hyperbolic 3-manifolds, but for a
specific e.

M = M(O,c] U M( Mthin U Mlhick

where M, is the set of all points p such that there exists a closed
(non-trivial) loop of length less than or equal to € through p. So p is in
Mg 4 if there exists an element X in I' = 7,(M) such that the distance
from p to X(p) is less than e. It follows (see the proof of 5.10.2 of [12] ) that
M 1s a collection of solid tubes and cusp neighborhoods. We have only
to prove that these solid tubes and cusp neighborhoods do not intersect
for € equal to 0.104.

The solid tubes constructed in Sections 3 and 4, and the cusp
neighborhoods constructed in Section 5 of this paper do not intersect (see
Sections 5, 7 and 8). If these solid tubes and cusp neighborhoods contain
the M, solid tubes and cusp neighborhoods then we will have the
desired proof of the non-intersection of the M, solid pieces. It is easy to
see that our cusp neighborhoods work, so we now restrict our attention
to X not parabolic. So, we need to prove

€,00) =

LEMMAL. If there exists X € T' = «r,(M) such that the distance from p to
X(p) is less than € = 0.104 (i.e., p € Mg ) then p is contained in a solid
tube around the axis of X constructed in Sections 3 and 4 of this paper.

Proof. First we will need the following lemma.

LEMMA 2. Let C = d(p, X(p) ) and s = distance from the axis of X to p,
and x = x| + ix, = [h(X) = complex length of X; then

cosh(C) = cosh(x;) + sinhz(s) - (cosh(x;) — cos(x,) ).
Thus,

—cosh(x;) + cosh(C)
cosh(x,) — cos(x,) ’

sinhz(s) =

Proof. (Lemma 2). Use hyperbolic trigonometry (see [12] Section 2.6) on
the triangle formed by the points p, X(p) and the point at infinity in the
upper-half-space model of hyperbolic 3-space. For simplicity, the axis of X
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can be taken to be the r-axis, and thus p and X(p) are the same distance
from the t-axis.

Proof (Lemma 1). We must show that s is less than the radius r of the
constructed solid tube. So, is sinhz(s) = sinhz(r)?

—cosh(x)) + cosh(C) _ 1(V1 — 2k(X") 1)9

cosh(x;) — cos(xy) 2 k(X")

The corollary of Section 3 implies that we are free to make use
of any n. Once we have an n we will set k equal to k(X") and

m = V1 — 2k/k.Then what we have to show is that

2 cosh(C) = (m — 1) cosh(x;) — (m — 1) cos(x,) + 2 cosh(x,)
or

2 cosh(C) = (m + 1) cosh(x}) — (m — 1) cos(x,)
where

C =0.104 and 2 cosh(C) = 2.01.

We will break this down into two cases:
Case 1. cos(x,) = 1 — x;. Then

k(X) = cosh(x;) — cos(x,)
and the k(X") which will be used is this one (n = 1). So,
k = k(X) = cosh(x,) — cos(x,)

and the desired inequality

2cosh(C) — cosh(x)) < V1 — 2%k B 1)
cosh(x;) — cos(x,) k
reduces to
2(cosh(C) — cosh(x))) = V1 — 2k — k,

which is easily seen to be true for x; = .104. The key to the proof of this
case is that we had the flexibility to take

k = k(X) = cosh(x;) — cos(x,)

not some other, inappropriate, k(X").

Case 2. cos(x;) = 1 — x,. In this case we will use the » found by
Zagier’s lemma in Section 4. Notationally, m is as before and we must
show that

2 cosh(C) = (m + 1) cosh(x)) — (m — 1)1 — x))
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= (m + 1) cosh(x;) — (m — 1) cos(x,).

Since we are dealing with x; small this essentially reduces to

201 = (m + DA + x3/2) — (m — DA — x)

=2+ (m+ (/2 + (m — Dx,.

But (m — 1)x; = (2/7) times the volume of the solid tube and when

X1
at

10.

11.
12.

= 0.104 we can compute that the volume of the associated solid tube is
least 0.017. So the inequality is easily satisfied.
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