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On Certain Multivariable Subnormal
Weighted Shifts and their Duals
Ameer Athavale and Pramod Patil

Abstract. For every subnormal m-variable weighted shift S (with bounded positive weights), there is
a corresponding positive Reinhardt measure µ supported on a compact Reinhardt subset of Cm. We
show that, for m ≥ 2, the dimensions of the 1-st cohomology vector spaces associated with the Koszul
complexes of S and its dual S̃ are different if a certain radial function happens to be integrable with
respect to µ (which is indeed the case with many classical examples). In particular, S cannot in that
case be similar to S̃. We next prove that, for m ≥ 2, a Fredholm subnormal m-variable weighted shift
S cannot be similar to its dual.

1 Introduction

If H is a complex infinite-dimensional separable Hilbert space, then we use B(H) to
denote the algebra of bounded linear operators on H. An m-tuple S = (S1, . . . , Sm)
of commuting operators Si in B(H) is said to be subnormal if there exist a Hilbert
space K containing H and an m-tuple N = (N1, . . . ,Nm) of commuting normal
operators Ni in B(K) such that NiH ⊂ H and Ni/H = Si for 1 ≤ i ≤ m. Every
subnormal operator tuple has a “minimal” normal extension that is unique up to
unitary equivalence (see [11]). If N = (N1, . . . ,Nm) (with Ni in B(K)) is the mini-
mal normal extension of a subnormal tuple S = (S1, . . . , Sm) (with Si in B(H)), and
H⊥ ≡ K 	H is the orthocomplement of H in K, then one defines the dual S̃ of S
to be the subnormal tuple S̃ = (S̃1, . . . , S̃m), where S̃i = N∗i /H

⊥.
Suppose S = (S1, . . . , Sm) is a tuple of commuting operators in B(H) and T =

(T1, . . . ,Tm) a tuple of commuting operators in B(J). If there exists a bounded lin-
ear operator X : H → J such that XSi = TiX for each i, then X is said to be an
intertwining operator (for S and T), and we denote this fact by XS = TX. The op-
erator tuple S is said to be similar (resp. unitarily equivalent) to T if one can find an
invertible (resp. a unitary) intertwining operator for S and T. A subnormal tuple S is
said to be self-dual if it is unitarily equivalent to its dual.

If {en = en1,...,nm}n∈Nm with N = {0, 1, 2, . . . } is an orthonormal basis for H

and {w(i)
n : n ∈ Nm, 1 ≤ i ≤ m} is a bounded subset of the complex plane C,

an m-variable weighted shift T = (T1, . . . ,Tm) acting on H is defined through the
relations Tien = w(i)

n en+ε(i), where ε(i) is the m-tuple with 1 in the i-th place and
zeros elsewhere. We will always assume that the weights w(i)

n are positive. The various
properties of multivariable weighted shifts, and in particular of subnormal weighted
shifts, that are relevant here can be found in [6, 7, 12].
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In [4], Conway showed that a subnormal 1-variable weighted shift S of norm 1 is
self-dual if and only if the weights of S are either w0 = 1,w1 = 1,w2 = 1, . . . , or
w0 =

√
1/2,w1 = 1,w2 = 1, . . . . Using a result of Curto and Yan in [7], we show

that, for m ≥ 2, an m-variable subnormal weighted shift S (with positive weights)
is not similar to its dual if a certain radial function is integrable with respect to the
Reinhardt measure associated with S (which is the case with many classical exam-
ples). The main idea of the proof is to show that, under the conditions stated, the
dimensions of the first cohomology vector spaces associated with the cochain Koszul
complexes of the subnormal weighted shift S and its dual S̃ are different (cf. [3, Propo-
sition 2.2]). In the same spirit, we also show that a Fredholm subnormal m-variable
weighted shift S cannot be similar to its dual for m ≥ 2.

2 Preliminaries

Let e0 = 1 ∈ C and let {e1, . . . , em} be the standard basis of Cm. By the exterior
algebra Γ over Cm we understand the vector space direct sum Γ = Γ0 ⊕ · · · ⊕ Γm,
where Γ0 = C = lin{e0}, where Γp = lin{ei1 ∧ · · · ∧ ei p : 1 ≤ i1 < · · · < i p ≤ m}
(1 ≤ p ≤ m), and where the multiplication∧ in Γ is bilinear, associative, and satisfies
the relations 1 ∧ γ = γ ∧ 1 = γ (γ ∈ Γ), ei ∧ e j + e j ∧ ei = 0 (1 ≤ i, j ≤ m). One
can think of Γ as an orthogonal direct sum of Hilbert spaces with the inner product
〈 · , · 〉p on Γp (p ≥ 1) defined by 〈ei1 ∧ · · · ∧ ei p , e j1 ∧ · · · ∧ e j p〉p = det(〈eik , e jl〉).
For 0 ≤ i ≤ m, the operators Ei on Γ are defined by Eiγ = ei ∧ γ (γ ∈ Γ).

Let T be an m-tuple of commuting operators in B(J). Let Γ(J) be the Hilbert
space tensor product J⊗Γ = J⊗Γ0⊕· · ·⊕J⊗Γm (≡ Γ0(J)⊕· · ·⊕Γm(J)), and let
∂T : Γ(J) → Γ(J) be defined by ∂T =

∑m
i=1 Ti ⊗ Ei . It is easy to check that ∂2

T = 0.
The Koszul complex K(T) is the cochain complex

K(T) : 0
∂T,−1

−→ Γ0(J)
∂T,0

−→ Γ1(J)
∂T,1

−→ · · ·
∂T,m−1

−→ Γm(J)
∂T,m

−→ 0,

where ∂T,−1 and ∂T,m are zero maps and ∂T,p (0 ≤ p ≤ m − 1) are defined by
∂T,p = ∂T/Γ

p(J). The coboundary map ∂T,0 is given by f 7→ (T1 f ,T2 f , . . . ,Tm f ),
f ∈ J. The coboundary map ∂T,1 is given by ( f1, f2) 7→ T1 f2 − T2 f1 ( f1, f2 ∈ J) in
case m = 2, and by

( f1, f2, . . . , fm) 7→ (T1 f2 − T2 f1,T1 f3 − T3 f1, . . . ,T1 fm − Tm f1,T2 f3 − T3 f2, . . . ,

Tm−1 fm − Tm fm−1)( fi ∈ J)

in case m ≥ 3.
For any tuple T of commuting operators Ti in B(J) and for any λ = (λ1, . . . , λm)

in Cm, we use T−λ to denote the tuple (T1−λ1IJ, . . . ,Tm−λmIJ), where IJ stands
for the identity operator on the Hilbert space J. The coboundary maps ∂T,p give rise
to the cohomology vector spaces

H(p)(T) =
Ker(∂T,p)

Ran(∂T,p−1)
(0 ≤ p ≤ m).
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The tuple T is said to be Fredholm if the Betti numbers βp(T) = dim(H(p)(T)) are
all finite, and in that case the Fredholm index ind(T) of T is defined to be the Euler
characteristic of K(T), viz, ind(T) =

∑m
p=0(−1)pβp. The essential Taylor spectrum

σess(T) of T is the set σess(T) = {λ ∈ Cm : T − λ is not Fredholm}. For T Fredholm,
the coboundary maps ∂T,p have closed ranges, and T = (T1, . . . ,Tm) is Fredholm
if and only if T∗ = (T∗1 , . . . ,T

∗
m) is. The basic properties of σess(T) and Fredholm

tuples are discussed in [5].
A subset E of Cm is a Reinhardt set if, for every z = (z1, . . . , zm) in E and every

tuple (θ1, . . . , θm) of real θi , eiθz ≡ (eiθ1 z1, . . . , eiθm zm) lies in E. A Reinhardt measure
µ is a compactly supported finite positive Borel measure satisfying µ(E) = µ(eiθE)
for every Borel subset E of Cm. An m-variable subnormal weighted shift S (with
positive weights) is unitarily equivalent to the tuple M(µ)

z of multiplications by co-
ordinate functions zi on P2(µ), the closure of m-variable polynomials in L2(µ), for
some Reinhardt measure µ supported on the Reinhardt set supp(µ); in particular,
µ satisfies dµ(r1eiθ1 , . . . , rmeiθm ) = dν(r1, . . . , rm) dθ1

2π · · ·
dθm
2π with ν being a “radial”

measure and θi , for any i, being the arc-length measure on the unit circle T (refer
to [7]). The minimal normal extension of M(µ)

z is the tuple N(µ)
z of multiplications

by zi on L2(µ) and the dual of M(µ)
z is the tuple of multiplications by the conjugate

coordinate functions z̄i on the Hilbert space L2(µ)	 P2(µ).

Remark 2.1 The requirement that the weights w(i)
n associated with an m-variable

subnormal weighted shift S (= M(µ)
z ) be positive guarantees in particular that µ can-

not have its support contained in V , the union of the hyperplanes zi = 0. It was
shown by Curto and Yan in [7, Proposition 1.14] that, provided a Reinhardt measure
µ does not have its support contained in V , the multiplication tuple S = M(µ)

z on
P2(µ) satisfies

∑m
i=1 ‖Si f ‖2 ≥ δ‖ f ‖2 for some positive δ and for all f in P2(µ); in

particular, Ran(∂S,0) is closed.

3 Main Results

The argument required to prove Proposition 3.1 is well known (see, for example, [10,
Proposition 2.6] or [8, Theorem 2.3]); it depends on the closedness of Ran(∂S,0) and
the exactness of the Koszul complex at the stage p = 1 (≤ m− 1) for the polynomial
ring C[z]. In case S is Fredholm, Ran(∂S,p) is closed for each p and H(p)(S) turns out
to be zero-dimensional for any p ≤ m− 1.

Proposition 3.1 If S is an m-variable subnormal weighted shift acting on H with
m ≥ 2, then β1(S) = 0, that is, H(1)(S) is zero-dimensional.

Proposition 3.2 Let S be an m-variable subnormal weighted shift acting on H with
m ≥ 1 and such that the corresponding Reinhardt measure µ is given by

dµ(r1eiθ1 , . . . , rmeiθm ) = dν(r1, . . . , rm)
dθ1

2π
· · · dθm

2π
.

If 1/(r2
1 + · · · + r2

m) is µ-integrable, then β1(S̃) ≥ 1, that is, H(1)(S̃) has dimension at
least 1.
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Proof We identify S with M(µ)
z on P2(µ) where the measure µ is as described in the

statement of the proposition. It is easy to see that the vector space dimension of
H(1)(S̃) is at least as big as that of Ker(∂S̃,1) ∩ (Ran(∂S̃,0))⊥ (where S̃ is the tuple of

multiplications by the conjugate coordinate functioins z̄i on the Hilbert space L2(µ)	
P2(µ)). Let |z| =

√
|z1|2 + · · · + |zm|2 =

√
r2

1 + · · · + r2
m. The µ-integrability of

1/(r2
1 + · · · + r2

m) guarantees that the functions gi = z̄i/|z|2 are in L2(µ) for 1 ≤ i ≤
m; further, it is easy to see that each gi is orthogonal to any polynomial in C[z] and
hence lies in L2(µ)	P2(µ). It further follows from the definition of ∂S̃,1 that the tuple

g = (g1, . . . , gm) lies in Ker(∂S̃,1). We now check that g also lies in (Ran(∂S̃,0))⊥. Any

element in Ran(∂S̃,0) is (z̄1 f , . . . , z̄m f ) for some f in L2(µ)	 P2(µ), and we have

〈
g, (z̄1 f , . . . , z̄m f )

〉
=

∫
supp(µ)

f̄ dµ(z).

The last integral, being simply the inner product of the polynomial 1 in P2(µ) with
f ∈ L2(µ) 	 P2(µ), is zero. Thus g lies in Ker(∂S̃,1) ∩ (Ran(∂S̃,0))⊥, and this shows

that H(1)(S̃) has dimension at least 1.

Examples 3.3 (a) Consider the reproducing kernel Hilbert spaces H(m; n) (n ∈
N, n ≥ m) corresponding to the positive definite kernels

κ(m; n) =
1

(1− z̄1w1 − · · · − z̄mwm)n
(n ∈ N, n ≥ m)

on B2m × B2m, where B2m is the open unit ball in Cm centered at the origin. Mod-
ulo constants, κ(m; m) and κ(m; m + 1) are the reproducing kernels for the Hardy
space of B2m and the Bergman space of B2m, respectively. We observe that the spaces
H(m; n) are spaces P2(µm;n) with the Reinhardt measures µm;n having their support
in the closure of B2m; indeed, modulo constants, µm;n can be described as follows:
µm;m is the Haar measure on S2m−1, the topological boundary of B2m; µm;m+1 is the
volumetric measure v in Cm = R2m restricted to B2m; µm;n (n > m + 1) is the mea-
sure (1− r2

1 − · · ·− r2
m)n−m−1µm;m+1 (refer to [1]). In the case of P2(µm;m), the radial

function 1/(r2
1 + · · · + r2

m) reduces to the constant function 1. Also, in polar coordi-
nates one has dµm;m+1(z) = r1dr1dθ1 . . . rmdrmdθm so that the µm;n-integrability of
1/(r2

1 + · · · + r2
m), for m ≥ 2 and n ≥ m + 1, is an easy consequence of the inequality

r1r2 . . . rm

r2
1 + · · · + r2

m

≤ 1

(which holds everywhere except at the origin). Thus, the conclusions of Propositions

3.1 and 3.2 hold for the m-tuples S = M(µm;n)
z in case m ≥ 2.

(b) Consider the reproducing kernel Hilbert spaces H(m; n1, . . . , nm) (ni ≥ 1) cor-
responding to the positive definite kernels

κ(m; n1, . . . , nm) =
m∏

i=1

1

(1− z̄iwi)ni
(ni ∈ N, ni ≥ 1)
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on Dm ×Dm, where Dm is the open unit polydisk in Cm centered at the origin. Mod-
ulo constants, κ(m; 1, . . . , 1) and κ(m; 2, . . . , 2) are the reproducing kernels for the
Hardy space of Dm and the Bergman space of Dm, respectively. We observe that
the spaces H(m; n1, . . . , nm) are spaces P2(µm;n1,...,nm ) with the Reinhardt measures
µm;n1,...,nm having their support in the closure of Dm and being the products of ap-
propriate measures µ1;n (refer to (a) above). In the case of P2(µm;1,...,1), the radial
function 1/(r2

1 + · · · + r2
m) reduces to the constant function 1/m. The µm;n1,...,nm -

integrability of 1/(r2
1 + · · · + r2

m), for m ≥ 2 and (n1, . . . , nm) 6= (1, . . . , 1), is clear
in view of our discussion in part (a) above. Thus, the conclusions of Propositions 3.1

and 3.2 hold for the m-tuples S = M
(µm;n1 ,...,nm )
z in case m ≥ 2.

Examples 3.4 Let m ≥ 2 and let K be any compact Reinhardt subset of the clo-
sure of Dm with v(K) > 0, where v is the volumetric measure in Cm = R2m. If
w(r1, . . . , rm) is any bounded positive Borel function of ri (0 ≤ ri ≤ 1) and if vK,w

is the measure w(r1, . . . , rm)v/K, then the conclusions of Propositions 3.1 and 3.2

hold for S = M
(vK,w)
z . We note that, for m ≥ 2, M(µm;n)

z (n ≥ m + 1) and M
(µm;n1 ,...,nm )
z

(ni ≥ 2) of Examples 3.3 are special cases of S = M
(vK,w)
z .

Examples 3.5 Let m ≥ 2 and let K be any compact Reinhardt subset of Cm such
that K is not contained in the union of the hyperplanes zi = 0, K is the support of
a positive Reinhardt measure µ, and K does not include the origin 0 of Cm. Then
1/(r2

1 + · · · + r2
m) is clearly µ-integrable, and the conclusions of Propositions 3.1 and

3.2 hold for S = M(µ)
z .

Proposition 3.6 Let S be an m-variable subnormal weighted shift acting on H with
m ≥ 2 and such that the corresponding Reinhardt measure µ is given by

dµ(r1eiθ1 , . . . , rmeiθm ) = dν(r1, . . . , rm)
dθ1

2π
. . .

dθm

2π
.

If 1/(r2
1 + · · · + r2

m) is µ-integrable, then S is not similar to its dual S̃.

Proof If there were to exist an invertible intertwining operator X for S and S̃ so that
XS = S̃X, then the map φ : H(1)(S)→ H(1)(S̃) given by

φ(( f1, . . . , fm) + Ran(∂S,0)) = (X f1, . . . ,X fm) + Ran(∂S̃,0),

where ( f1, . . . , fm) ∈ Ker(∂S,1), would be a well-defined linear isomorphism of

H(1)(S) onto H(1)(S̃), and that would force β1(S) = β1(S̃). This is not possible in
view of Propositions 3.1 and 3.2.

Remark 3.7 If an m-tuple S of operators Si in B(H) is similar to an m-tuple of
operators Ti in B(J), then one can check that H(p)(S) and H(p)(T) are isomorphic
vector spaces for 0 ≤ p ≤ m, and thus the vector space dimensions of H(p)(S) and
H(p)(T) must be the same; we considered the case p = 1 in Proposition 3.6. In
particular, if S is Fredholm and T is not, then S cannot be similar to T.
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It is clear from Proposition 3.6 that, in case m ≥ 2, none of the subnormal
m-tuples S discussed in Examples 3.3, 3.4, and 3.5 are similar to their duals. In fact,
in light of the results obtained in [2,3], it can be checked that, in case m ≥ 2, none of
the subnormal m-tuples discussed in Example 3.3 are even quasisimilar to their duals
(refer to [2, Theorems 2 and 3] and to [3, Proposition 2.2]).

Proposition 3.8 Let S be an m-variable subnormal weighted shift acting on H with
m ≥ 2. If S is Fredholm, then S is not similar to its dual S̃.

Proof We identify S with M(µ)
z for an appropriate µ. Consider, as in [9], the follow-

ing exact sequence of complexes:

0−→K(S)−→K(N)−→K(S̃∗)−→0,

where S̃∗ is ((S̃1)∗, . . . , (S̃m)∗), where the arrow between K(S) and K(N) is induced
by the inclusion of P2(µ) into L2(µ), and where the arrow between K(N) and K(S̃∗)
is induced by the orthogonal projection of L2(µ) onto L2(µ)	P2(µ). This short exact
sequence gives rise to the long exact sequence of cohomology

0→H(0)(S)→H(0)(N)→H(0)(S̃∗)→H(1)(S)→H(1)(N)→H(1)(S̃∗)→H(2)(S)→· · ·

→H(m−1)(S)→H(m−1)(N)→H(m−1)(S̃∗)→H(m)(S)→H(m)(N)→H(m)(S̃∗)→0.

Assume that S is similar to S̃. Then Remark 3.7 yields βp(S) = βp(S̃) for all p. The
ranges of the coboundary maps ∂S,p are closed so that, by our comments preceding

Proposition 3.1, one has βp(S) = 0 for 0 ≤ p ≤ m − 1. Since β1(S̃∗) = βm−1(S̃)

(refer to [3]), we have in effect dim(H(1)(S̃∗)) = β1(S̃∗) = 0. Combined with
dim(H(1)(S)) = β1(S) = 0, that leads to dim(H(1)(N)) = 0 in light of the long
exact sequence given above. If the origin 0 were to be an atom of the measure
µ, then the tuple f = ( f1, . . . , fm), with each fi being 1 at 0 and 0 elsewhere,
would be in Ker(∂N,1) but not in Ran(∂N,0), thereby forcing H(1)(N) to be non-
trivial. Thus 0 is not an atom of µ, and that obviously forces H(0)(N) to be triv-
ial. Further, it is easy to see that H(m)(S) = H

S1H+···+SmH
is one-dimensional. In

light of the long exact sequence given above, we are then led to the contradiction
0 = β0(N) = β0(S̃∗) = βm(S̃) = βm(S) = 1. Hence S cannot be similar to S̃.

Remark 3.9 If S and S̃ are both Fredholm subnormal m-tuples, then one has the
formula ind(S) = (−1)m+1 ind(S̃) (refer to [9]). In view of Remark 3.7, it then fol-
lows that a Fredholm subnormal m-tuple S with non-zero Fredholm index cannot be
similar to its dual S̃ if m is even. The analysis of Proposition 3.8, which occurs in the
context of weighted shifts, is based on examining individual Betti numbers (rather
than Fredholm indices) and holds for even m as well as for odd m > 1.

Finally, let us comment on the special case m = 2. Since supp(µ) is not contained
in the union of the hyperplanes z1 = 0 and z2 = 0 (see Remark 2.1), there is at
least one point (p, q) ∈ supp(µ) (⊂ C2) such that p 6= 0, q 6= 0. Then, as follows
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from the Maximum Modulus Theorem, the set {(z1, z2) : |z1| ≤ |p|, |z2| ≤ |q|} is
contained in the polynomial convex hull ̂supp(µ) of supp(µ); in particular, the origin
0 = (0, 0) of C2 does not belong to the topological boundary of ̂supp(µ) and the pair
S = (S1, S2) is Fredholm in view of [7, Theorem 3.5(iii)], which asserts that σess(S)
is the topological boundary of ̂supp(µ). The authors do not know whether a suitable
analog of [7, Theorem 3.5(iii)] is available for m ≥ 3 to enable one to deduce that,
even for m ≥ 3, every subnormal m-variable weighted shift with bounded positive
weights is Fredholm.
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