# IDEALS IN A RING OF EXPONENTIAL POLYNOMLALS 

# Dedicated to the memory of Hanna Neumann 

P. G. LAIRD

(Received 5 June 1972)
Communicated by M. F. Newman

## 1

An exponential polynomial is a finite linear combination of terms $u_{n} e_{a}: t \rightarrow t^{n} e^{a t}$ where $n$ is any non-negative integer and $a$ is any complex number. The set $X$ of exponential polynomials is clearly a vector space over the field of complex numbers $\mathbb{C}$ and this set is identical with the set of solutions to all homogeneous linear ordinary differential equations with constant coefficients.

With the truncated convolution product of two functions $x$ and $y$ defined by

$$
x * y: t \rightarrow \int_{0}^{t} x(t-r) y(r) d r
$$

$X(+, *)$ is a commutative ring and an algebra over $\mathbb{C}$. An ideal $I$ of $X$ is a subspace of $X$ that contains $x * y$ whenever $y$ belongs to $I$ and $x$ is an exponential polynomial.

As usual $D^{k} x$ denotes the $k$ th derivative of $x$ so that $D^{k} x$ is an exponential polynomial when $x$ is one. We define the degree of an exponential polynomial $x$ to be zero if $x(0) \neq 0$ and $n$ if $D^{k} x(0)=0$ for $k=0,1,2, \cdots, n-1$ but $D^{n} x(0) \neq 0$. Also we define the set $Y_{n}$ as

$$
Y_{n}=\left\{y \in X: D^{k} y(0)=0 \quad \text { for } k=0,1, \cdots, n\right\} .
$$

It is clear that for a fixed non-negative integer $n, Y_{n}$ is a subspace of $X$ and $Y_{n}$ consists of all exponential polynomials of degree greater than $n$. Moreover, each $Y_{n}$ is an ideal and

$$
. . . \subset Y_{n} \subset Y_{n-1} \subset . . \subset Y_{1} \subset Y_{0} \subset X .
$$

Our main result (Theorem 6) is that any non-trivial proper ideal $I$ is equal to $Y_{n}$ for some non-negative integer $n$. Thus, the set of all ideals of $X$ forms a single descending chain.

To show this, we will employ the space $C(R)$ of all continuous complex-valued functions defined on the real line $R$ and taken with the topology of convergence uniform on all compact subsets of $R$. Also, we will be concerned with the two kinds of integral equations of convolution type.

As well, it is possible to construct from the ring $X$, a field of convolution quotients in a manner innovated by Mikusinski (see, for example, Erdélyi, [1]).

## 2

Under the operations of addition and truncated convolution, $C(R)$ is a commutative ring and an algebra over $\mathbb{C}$ (see Erdélyi, [1], page 15 for details of $C[0, \infty)$ that apply to $C(R)$ ). Other elementary properties that Erdélyi shows (loc. cit., pages 43 and 45 ) for $C[0, \infty)$ that also hold for $C(R)$ are:
a) If $\left\{f_{n}\right\} \in C(R)$ and if $f_{n} \rightarrow f$ uniformly on all compact subsets of $R$ as $n \rightarrow \infty$ (hereafter referred to as locally uniform convergence), then $f \in C(R)$. Moreover, if $g \in C(R)$, then $f_{n} * g \rightarrow f * g$ locally uniformly as $n \rightarrow \infty$.
b) If $f \in C(R)$ and if $f^{* n}$ is defined by $f^{* 1}=f$ and $f^{* n}=f^{*(n-1)} * f$ for $n=2,3, \cdots$, then $f^{* n} \rightarrow 0$ locally uniformly as $n \rightarrow \infty$.
It follows from a) and b) that if $f, g \in C(R)$ and if $f * g=f$, then $\mathrm{f}=0$, since $f=f * g^{* n}$ for any positive integer $n$. Thus $C(R)$ has no idempotents or identity.

Lemma 1. Let $f, g \in C(R)$. Then the integral equation

$$
x-x * f=g
$$

has a unique continuous solution.
Proof. A continuous solution to this equation is the limit in $C(R)$ of the Cauchy sequence $\left(g+f * g+\cdots+f^{* n} * g\right)$. If $y$ is the difference between any two contions, then $y=y * f$ and so $y=0$.

## 3

The remaining propositions will be stated in terms of exponential polynomials. By elementary calculus, it may be shown that

$$
u_{m} e_{a} * u_{n} e_{a}=A_{m, n} u_{m+n+1} e_{a}
$$

and

$$
u_{m} e_{a} * u_{n} e_{b}=P_{m} e_{a}+Q_{n} e_{b} \quad(a \neq b)
$$

where $A_{m \cdot n}$ is a complex number and $P_{m}$ and $Q_{n}$ are polynomials of degree $m$ and $n$. Hence the truncated convolution product of two exponential polynomials is an exponential polynomial, and so, $X$ is a commutative ring and an algebra over $\mathbb{C}$.

Lemma 2. $X$ has no non-zero divisors of zero.

Proof. Suppose that $x, y \in X$ and $x * y=0$. Suppose also that $y \neq 0$. With

$$
0=D(x * y)=x(0) y+(D x) * y
$$

and $y \neq 0$, it follows that $x(0)=0$. Inductively, $D^{n} x(0)$ is zero for $n=0,1,2, \cdots$ and since any exponential polynomial is an entire function, $x=0$. Hence $X$ has no non-zero divisors of zero.

Proposition 3. Let $f, g$ be exponential polynomials. Then the integral equation

$$
x-x * f=g
$$

has a unique exponential polynomial solution.
Proof. By Lemma 1, this equation has an unique continuous solution. With $f$ being continuously differentiable, $x * f$ along with $g$ is continuously differentiable. Thus $x$ is continuously differentiable. By induction, and as $f$ and $g$ are indefinitely differentiable, it follows that $x$ is indefinitely differentiable.

Since $f$ is an exponential polynomial, there is a linear differential operator, $L(D)$, with constant coefficients, such that $L(D) f=0$. Using

$$
D^{k}(f * x)=f(0) D^{k-1} x+\cdots D^{k-1} f(0) x+\left(D^{k} f\right) * x
$$

we see that

$$
L(D)(f * x)=M(D) x
$$

and so

$$
(L(D)-M(D)) x=L(D) g
$$

where $M(D)$ is a linear differential operator with order less than that of $L(D)$. Since $L(D) \neq M(D)$ and $L(D) g \in X, x$ is an exponential polynomial.

Proposition 4. Let f,g be exponential polynomials where fis not identically zero. Then the integral equation $x * f=g$ has an unique exponential polynomial as a solution if, and only if, the degree of $g$ exceeds the degree of $f$.

Proof. Let the degree of $f$ be $n$. Since $f$ is a non-identically zero entire function, $n$ is finite. If $n=0$ and the degree of $g$ is positive, then $f(0) \neq 0$ and $g(0)=0$. By Proposition 3, there exists an $x \in X$ such that

$$
f(0) x+x * D f=D g
$$

Using $e * D f=f-f(0) e$ where $e: t \rightarrow 1$, we obtain

$$
f(0) x * e+x *(e * D f)=e * D g \quad \text { or } \quad x * f=g
$$

Now if $n>0$ and the degree of $g$ exceeds $n, D^{k} f(0)=0$ for $k=0,1, \cdots, n-1$, $a=D^{n} f(0) \neq 0$ and $D^{n} g(0)=0$. Again, by Proposition 3, there exists an $x \in X$ such that

$$
a x+x * D^{n+1} f=D^{n+1} g
$$

and so,

$$
a x * e+x *\left(D^{n} f-a e\right)=D^{n} g \quad \text { or } \quad x * D^{n} f=D^{n} g
$$

On repeated integration, with

$$
D^{k} f(0)=0=D^{k} g(0) \quad \text { for } \quad k=0,1, \cdots, n-1
$$

we obtain $x * f=g$.
Conversely, suppose that $m$ is the degree of $g$ and that $m$ does not exceed the degree of $f$. Suppose also that there is exponential polynomial $x$ for which $x * f=g$.

If $m$ is zero so that $g(0)$ is non-zero, there is a contradiction of $x * f(0)=0$. If $m$ is positive, the relation $x * f=g$ leads, after differentiating $m$ times, to a similar contradiction. Hence it is necessary that the degree of $g$ exceeds the degree of $f$ for $x * f=g$ to have a solution in $X$.

The uniqueness of any exponential polynomial solution follows from Lemma 2.

Remarks. Since the set $X(+, *)$ is a commutative ring with no non-zero divisors of zero, it is possible to construct a field $F_{X}$ of convolution quotients of exponential polynomials in the same manner that Mikusinski constructed the field of convolution quotients $F$ from the ring $C[0, \infty)$. One difference between the two fields is that $F_{X}$ is not complete whereas $F$ is complete.

The equation $x * f=g$ where $f, g \in X$ and $f \neq 0$ always admits a solution in $F_{X}$. Moreover, if

$$
p=\text { degree } f-\text { degree } g+1
$$

is a positive integer, by the above Proposition, there is an exponential polynomial $y$ satisfying $y * f=g * e^{* p}$ where $e: t \rightarrow 1$. Thus if $s$ is the inverse of $e$ in $F_{X}$, then $x=s^{* p} * y$ satisfies $x * f=g$ and so this equation has a $p$ th extended derivative (Erdélyi, [1], page 29) of an exponential polynomial as a solution.

Proposition 5. Let $f$ be an exponential polynomial of degree $n$ and

$$
I_{f}=\{h=f * g: g \in X\}
$$

Then $I_{f}=Y_{n}$.
Proof. To show that $I_{f} \subset Y_{n}$, one may make use of the formula

$$
D^{k}(f * g)(0)=\sum_{l=0}^{k} D^{k-l} f(0) \cdot D^{l-1} g(0)
$$

The reverse inclusion follows from Proposition 4.

Theorem 6. Let I be any non-trivial proper ideal of $X$. Then $I=Y_{n}$, where

$$
Y_{n}=\left\{y \in X: D^{k} y(0)=0 \quad \text { for } k=0,1,2, \cdots, n\right\}
$$

for some non-negative integer $n$.
Proof. It is trivial that each $Y_{n}$ is an ideal of $X$. If $J$ is any ideal of $X$ that contains an element $x$ for which $x(0) \neq 0$ and $z(0)=b x(0)$ where $z$ is any element of $X$, then, by Proposition 3, the equation $D z-b D x=(D x) * y+x(0) y$ has a solution $y$ in $X$. On integration, this equation yields $z=b x+x * y$ and so $z \in J$. Hence $J=X$.

Let $I$ be any non-trivial proper ideal of $X$ and $x$ be any element of $I$ so that $x(0)=0$. Thus $x=e * D x$ and so $x \in I_{D_{x}}$.

Now let $h \in I_{D_{x}}$ with $h=g * D x$ where $g \in X$. With $x(0)=0$,

$$
h=g * D x=D(g * x)=g(0) x+(D g) * x
$$

and so $h \in I$. Thus $x \in I_{D_{x}} \subset I$ for all $x \in I$.
By Proposition 5, $I_{D_{x}}=Y_{n(x)}$ for some non-negative integer $n(x)$. Hence $I=\bigcup_{x \in I} Y_{n(x)}$ and as

$$
\cdots \subset Y_{m} \subset Y_{m-1} \cdots \subset Y_{1} \subset Y_{0}
$$

we see that $I=Y_{n}$ for some non-negative integer $n$.

## 4

Other aspects of the ring structure of $X$ may be of interest. With the observations that $Y_{n}=I_{u_{n}}$ where $u_{n}: t \rightarrow t^{n}$ and that the trivial ideal is none other than $I_{0}$, we see that any proper ideal is of the form $I_{f}=\{g * f: g \in X\}$ for some $f \in X$.

It is clear that no non-trivial proper ideal of $X$ is prime since for any $f, I_{f}$ contains $f * f$ but not $f$.

However, if $I$ is a non-trivial proper ideal of $X$ so that $I=Y_{n}$ for some nonnegative integer $n$, it can be shown that $x^{*(n+2)}$ belongs to $Y_{n}$ for all $x \in X$. Adopting the definition of the radical of an ideal given by Jacobson ([2], page 173) as the set

$$
\left\{x \in X: x^{* m} \in I \quad \text { for some positive integer } m\right\}
$$

we see that the radical of any non-trivial ideal is $X$, so all ideals of $X$ are primary.
The ring $X$ may be embedded in a ring $U$ consisting of ordered pairs ( $a, x$ ) where $a \in \mathbb{C}$ and $x \in X$ and where addition and multiplication are defined in the usual manner (Jacobson, [2], page 85) for embedding a ring without identity into a ring with identity. $U$ may easily be shown to be an integral domain and to have all ideals forming a single descending chain $\ldots \subset\left(0, Y_{n+1}\right) \subset \ldots \subset\left(0, Y_{0}\right) \subset(0, X)$ - $U$.

Moreover, $U$ may be shown to be an Euclidean Domain (loc. cit., page 122) by defining $\delta(a, x)$ to be 1 , if $a \neq 0,2^{(1+\operatorname{deg} x)}$ when $a=0$ and $x \neq 0$ and zero otherwise. These claims may be verified by use of the results in this note and the observation that for $x, y \in X$, degree $(x * y)=$ degree $x+$ degree $y+1$.

Note added in proof. These results may be viewed n two other ways that have been kindly suggested by Professor H. K. Farahat of the University of Calgary and Professor J.-P. Kahane of the University of South Paris respectively.

The first is that if $d(p)$ denotes the ordinary degree of a polynomial $p$ (that differs from our definition of the degree of an exponential polynomial), then

$$
T=\{p / q: p, q \text { are polynom als, } q \neq 0, d(p) \leqq d(q)\}
$$

with the operations of addition and multiplication is a ring. It may be shown that

$$
S=\{p / q \in T: d(p)<d(q)\}
$$

is a unique maximal ideal of $T . T$ is also a Euclidean Domain and the ideals of $T$ and $S$ form single descending chains.

The Laplace transform is an isomorphism between our ring $X\left(+,{ }^{*}\right)$ and $S$ whose elements are also rational functions. Also $U$ is isomorphic to $T$.

The second is that if $f$ is an exponential polynomial, it is entire. For $f(t)=\sum_{k=0}^{\infty} a_{k} t^{k} / k$ !, set $J f(\xi)=\sum_{k=0}^{\infty} a_{k} \xi^{k+1}$. Then $J$ is an isomorphism between $X\left(+,{ }^{*}\right)$ and a subring of the familiar ring of formal power series in one indeterminate.

The author would like to acknowledge the support of the National ReResearch Council of Canada provided through a Bursary and also grant \#A5593 of Dr. K. W. Chang at the University of Calgary. As well, his thanks are due to the referee for help in improving an earlier typescript.

## References

[1] A. Erdélyi, Operational Calculus and Generalised Functions, (Holt, Rinehart and Winston, 1962).
[2] N. Jacobson, Lectures in Abstract Algebra, (Van Nostrand, 1951).

University of Calgary
Alberta, Canada

