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This paper presents an analytical solution of the Burnett equations for gaseous flow in a
long microchannel. A non-dimensional analysis is first undertaken to reduce the governing
equations into somewhat simplified differential equations, which are solved to obtain
the pressure and velocity fields. The exact solution for pressure has been obtained by
solving the cross-stream momentum equation, while the solution for velocity is obtained
from the streamwise momentum equation. The required boundary conditions are obtained
from the direct simulation Monte Carlo (DSMC) method. The obtained analytical solution
is compared with the available DSMC and perturbation based solutions, and found to
agree well. The work is particularly significant because analytical solutions of the Burnett
equations are currently known in only a very few cases. The present analytical solution
opens the possibility for further analysis by employing the expressions for pressure and
velocity provided here.

Key words: non-continuum effects

1. Introduction

The flow of a gas in a microchannel usually falls into the slip or the transition regime. The
gaseous flow in a microchannel is dependent on non-dimensional numbers: the Knudsen
(Kn), Mach (Ma) and Reynolds (Re) numbers, out of which only two are independent while
the third number can be calculated from Kn = √

(πγ /2)(Ma/Re), where γ is described
as the ratio of specific heat of the gas. The Knudsen number becomes relatively large
at the microscale because of the small characteristic length scale. The Navier–Stokes
equations are no longer valid for flow in microchannels (Singh, Dongari & Agrawal
2014), micro-devices (Gad-el Hak 1999) or in hypersonic flows of space vehicles in low
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Earth orbits (Ivanov & Gimelshein 1998). The Knudsen number for such flows lies in the
continuum-transition regime (Agarwal, Yun & Balakrishnan 2001; Agrawal, Kushwaha &
Jadhav 2020).

To model such flows, extended hydrodynamics equations have been proposed over
the last fifty years. One of these models is the Burnett equation derived from the
Chapman–Enskog expansion of the Boltzmann equation. Burnett (1935) derived the
original Burnett equation. However, there are a few limitations (Garcia-Colin, Velasco
& Uribe 2008) of the Burnett equations, and Bobylev (1982) reported one of them –
known as Bobylev’s instability. Due to a very cumbersome form of the original Burnett
equations and the limitations with their stability, several variations to the original form of
the Burnett equations have since been proposed in the literature. For example, Chapman
& Cowling (1970) presented the conventional Burnett equations; Zhong, MacCormack &
Chapman (1993) presented the augmented Burnett equations for application to hypersonic
flows, while Balakrishnan and Agarwal came up with the Bhatnagar–Gross–Krook
(BGK)–Burnett equations (Balakrishnan 1999). Recently, Singh, Jadhav & Agrawal (2017)
derived the OBurnett equations, a stable set of Burnett equations for rarefied flows using
the Onsager-reciprocity principle. Despite the complex nature of the Burnett equations,
attempts have been made to solve the various forms of these equations.

The improvements to the original Burnett equations over the past few decades have made
possible a comparison of the available forms of the Burnett equations. Yun, Agarwal &
Balakrishnan (1998) compared the BGK–Burnett equations and the augmented Burnett
equations with the Navier–Stokes solutions. They reported that, for very high Knudsen
number (Kn = 0.1), the difference between the augmented Burnett equations is significant,
whereas, the solutions of the BGK–Burnett equations are close to the Navier–Stokes
equation. Fiscko & Chapman (1989) compared the direct simulation Monte Carlo (DSMC)
results to the solution of the Navier–Stokes, Burnett and super-Burnett equations for a
one-dimensional shock structure. The solutions were presented for a hard-sphere gas,
argon and a Maxwellian gas from Ma = 1.3 to 50. They found that solution of the Burnett
equations is in much closer agreement to both the Monte Carlo and the experimental
results as compared to that from the Navier–Stokes equations. However, they found that
the conventional Burnett equations suffer from instability for a very fine grid. Zhong
et al. (1993) corrected this instability by adding higher-order terms from the super-Burnett
equations to the Burnett equations. Recently, Jadhav & Agrawal (2020) proposed Grad’s
second problem, a new problem to test various forms of the Burnett equations and other
higher-order equations. The solution of the conventional Burnett equations was found
to compare well with the available DSMC data. The analytical solutions of the Burnett
equations in cylindrical coordinates were given by Singh & Agrawal (2014). Agrawal
et al. (2020) discussed various forms of the Burnett equations, the challenges involved
in solving the cumbersome Burnett equations and the available solutions obtained using
analytical and numerical approaches in the past decades to the various forms of the Burnett
equations.

The aim of this paper is to derive an analytical solution of the conventional
Burnett equations for the plane Poiseuille flow problem. The study of gaseous flow
in microchannels has relevance to the design of microdevices, which find numerous
applications. Therefore, an ample amount of work has been done in the past to describe
the flow characteristics in a microchannel. Aoki, Takata & Nakanishi (2002) solved the
BGK–Burnett equations for flow between parallel plates driven by an external body force.
They presented an asymptotic analysis as well as a numerical study. Jadhav, Singh &
Agrawal (2017) solved the same problem using the OBurnett equations; a good agreement
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of these new equations against benchmark data was noted. Cercignani & Daneri (1963)
solved the Poiseuille flow of a rarefied gas numerically and showed that the volume flow
rate versus pressure obtained using the BGK model fits well with the experimental results.
Xu & Li (2004) and Bao & Lin (2008) investigated the transition flows in microchannels
by solving the Burnett equations numerically. The DSMC technique was employed to
investigate the flows in microelectromechanical devices to obtain insights which could
facilitate the design and optimization of the mass flow rate (Piekos & Breuer 1996; Cheng
& Liao 2000). Singh et al. (2014) provided an analytical solution using the augmented
Burnett equations to investigate low-speed isothermal microscale gas flows. They also
presented the results for normalized mass flow rate, friction factor and axial velocity
profile. A perturbation based solution for gaseous flow in a long microchannel using a
two-dimensional conventional Burnett equation was presented by Rath, Singh & Agrawal
(2018). The study was an analytical investigation, which provided the solutions for the
pressure distribution and velocity distribution inside a microchannel. These solutions
were compared to the DSMC solutions obtained by Xu & Li (2004). There have been
experimental investigations carried out to find the pressure distribution in gaseous slip flow
in a long microchannel (Pong et al. 1994), to find the value of the tangential momentum
accommodation coefficient (Ewart et al. 2007; Hemadri, Bhandarkar & Agrawal 2018)
and to show the existence of choking in a microchannel (Garg & Agrawal 2019), among
other studies.

In the present work, we solve a two-dimensional conventional Burnett equation which
involves solving the partial differential equation analytically. The primary outcome is the
derivation of a closed-form analytical expression for the pressure distribution, obtained
by solving the cross-stream momentum equation inside a long microchannel in terms of
the characteristics of the gas and the microchannel through which the flow is happening.
The streamwise momentum equation has also been solved analytically for the velocity
distribution in a microchannel. The solution was compared with numerical data and
perturbation based analysis results obtained by Rath et al. (2018) and found to be in close
agreement. The novelty in the work is in obtaining a closed-form analytical expression for
pressure that can be used in future analysis.

2. Governing equations

The governing equations for flow in a microchannel are given by the standard mass and
momentum equations

⎡
⎣1 0 0

0 ρu 0
0 0 ρu

⎤
⎦
⎡
⎢⎢⎢⎢⎢⎢⎣

∂(ρu)

∂x
∂u
∂x
∂v

∂x

⎤
⎥⎥⎥⎥⎥⎥⎦

+
⎡
⎣1 0 0

0 ρv 0
0 0 ρv

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂(ρv)

∂y
∂u
∂y
∂v

∂y

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

0
∂( p + σxx)

∂x
∂(σxy)

∂x

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

0
∂(σxy)

∂y
∂( p + σyy)

∂y

⎤
⎥⎥⎥⎥⎦ = 0 (2.1)
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Figure 1. Microchannel schematic showing the x–y axis and streamwise velocity for steady two-dimensional
and isothermal flow.

where u and v represent the streamwise and cross-streamwise velocities, respectively, x
and y are the directions defined in figure 1, σij is the viscous stress tensor, p is the pressure
and T is the absolute temperature. The pressure and temperature are related by the ideal
gas law, i.e. p = ρRT , where R is the ideal gas constant, and ρ is the density of ideal gas.

2.1. Stress and heat flux terms
The stress and heat flux terms are divided into Navier–Stokes- and Burnett-order terms.
The stress and heat flux terms are therefore given as

σij = σN−S
ij + σB−E

ij , (2.2)

qi = qN−S
i + qB−E

i . (2.3)

The combined Burnett and Navier–Stokes stress and heat flux terms are substituted in
(2.1).

The Navier–Stokes terms on the right-hand side of (2.2) and (2.3) are given as

σN−S
ij = 2μ

[
1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
− 1

3
δij

∂uk

∂xk

]
, (2.4)

qN−S
i = −κ

∂T
∂xi

. (2.5)

The Burnett terms in the right-hand side of (2.2) and (2.3) in the conventional Burnett
equations for hard-sphere gas molecules are given below. However, these expressions are
general for all interatomic potentials and the effect of the type of molecule is expressed
solely through the Burnett coefficients

σB−E
ij = k1

μ2

p
∂uk

∂xk

∂u〈i
∂xj〉

+ k2
μ2

p

[
−
(

∂

∂x〈i

[
1
ρ

∂p
∂xj〉

]
+ ∂uk

∂x〈i
∂uj〉
∂xk

+ 2
∂uk

∂x〈i
Sj〉k

)]

+ k3
μ2

ρT
∂2T

∂x〈i∂xj〉
+ k4

μ2

ρ2RT2
∂T
∂x〈i

∂p
∂xj〉

+ k5
μ2

ρT2
∂T
∂x〈i

∂T
∂xj〉

+ k6
μ2

p
∂uk

∂x〈i
∂uj〉
∂xk

,

(2.6)

qB−E
i = θ1

μ2

ρT
∂uk

∂xk

∂T
∂xi

+ θ2
μ2

ρT

[
−2

3
∂

∂xi

(
T

∂uk

∂xk

)]
+ θ2

μ2

ρT

(
−2

∂uk

∂xi

∂T
∂xk

)

+ θ3
μ2

ρp

(
∂u〈i
∂xk〉

∂p
∂xk

)
+ θ4

μ2

ρ

(
∂

∂xk

∂u〈i
∂xk〉

)
+ 3θ5

μ2

ρT

(
∂u〈i
∂xk〉

∂T
∂xk

)
, (2.7)
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where Sij is the symmetric and trace free part of the velocity gradient tensor and is defined
as

Sij = ∂u〈i
∂xj〉 = 1

2
∂ui

∂xj
+ 1

2
∂uj

∂xi
− 1

3
∂uk

∂xk
δij, (2.8)

where δij is the Kronecker delta. Although the original Burnett equations were given
by Burnett (1935), these were modified to derive the conventional Burnett equations.
Specifically, Chapman & Cowling (1970) replaced the material derivative terms using the
Euler equations and also obtained the above mentioned Burnett stress and heat flux terms.

3. Solution

The solution is obtained under the following assumptions: the flow is assumed to be
isothermal, two-dimensional, with no external body force applied to it. The gaseous flow
is considered to have a low Reynolds number and a low Mach number, while the Knudsen
number is of order unity. Arkilic, Schmidt & Breuer (1997) also employed a similar set of
conditions to perform a two-dimensional analysis of gaseous flow in a long microchannel
using the Navier–Stokes equation. Similarly, Rath et al. (2018) solved the gaseous flow
in a long microchannel using two-dimensional Burnett equations under the same set of
assumptions.

The governing equations are the equations of mass and momentum containing the terms
of the Navier–Stokes and the Burnett order, and thus (2.4) and (2.6) have to be substituted
in (2.1). The full form of the governing equations obtained after substituting the stress and
heat flux terms are rather cumbersome; these equations are given in Rath et al. (2018) but
not reproduced here for brevity. The further steps involved in the derivation are as follows:
first, the variables involved in the governing equation are non-dimensionalized as

x∗ = x
L

, y∗ = y
H

, u∗ = u
Uout

, p∗ = p
pout

, ρ∗ = ρ

ρout
, v∗ = v

Uout
, (3.1a–f )

where L and H are respectively the length and height of the microchannel, and ‘out’
denotes the reference location (taken at the exit of the microchannel). Therefore, pout is
the reference pressure used to normalize the pressure; similarly, uout is used to normalize
the velocity. Next, since this problem concerns gaseous flow in a long microchannel, a
smallness parameter ε = H/L has been employed. This helps us to identify terms with a
small magnitude; such terms can then be discarded.

Hence, after implementing the aforementioned assumptions, and upon neglecting the
higher-order terms of the small parameter ‘ε’, the following equations are obtained:

ε
∂(ρu)

∂x
+ ∂(ρv)

∂y
= 0, (3.2)

−2k2

3p2
ε

Re
∂3p

∂x∂2y
− 2k2

p4
ε

Re
∂p
∂x

(
∂p
∂y

)2

+ k2

3p3
ε

Re
∂2p
∂x∂y

∂2p
∂y2

+7k2

3p3
ε

Re
∂p
∂y

∂2p
∂x∂y

+ Re
γ

ε

Ma2
∂p
∂x

= ∂2u
∂y2 , (3.3)

8k2

3Re
p
∂p
∂y

∂2p
∂y2 − 2k2

3Re
p2 ∂3p

∂y3 − 2k2

Re

(
∂p
∂y

)3

+ Re
Ma2

p4

γ

∂p
∂y

= 0. (3.4)

Note that all the terms in the equation have already been non-dimensionalized; however,
for simplicity, the variables involved are written after dropping ‘∗’. The term γ in (3.3)
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and (3.4) represents the ratio of specific heat capacities of the gas, as already mentioned
above. The momentum equations involve two variables of interest, i.e. velocity ‘u’ and
pressure ‘p’. We employ an analytical approach to find these variables.

3.1. Solution for pressure field
For obtaining the final solution of the pressure field from (3.4), multiple arrangements
have been performed during the entire solution process, as explained below. In the first
step, we re-arrange (3.4) by dividing the equation by p4 to obtain

8k̂2

3p3
∂p
∂y

∂2p
∂y2 − 2k̂2

3p2
∂3p
∂y3 − 2k̂2

p4

(
∂p
∂y

)3

+ 1
γ

∂p
∂y

= 0, (3.5)

where,

k̂2 = k2Ma2

Re2 . (3.6)

Note that (3.5) is a non-standard nonlinear differential equation. Such equations need
special mathematical techniques, involving combining of some terms in the equation to
make it simpler to deal with it.

Hence, in order to solve (3.5) we split the left-hand side of the equation into two parts:
one part consists of all the terms independent of 1/γ , while the second part contains terms
with 1/γ . Accordingly,

(a) = 8k̂2

3p3
∂p
∂y

∂2p
∂y2 − 2k̂2

3p2
∂3p
∂y3 − 2k̂2

p4

(
∂p
∂y

)3

(b) = ∂p
∂y

.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.7)

It is evident that part (a) of (3.5) has a term consisting of a third-order derivative, a
second-order derivative term of p and the first-order term of third degree, respectively.
The presence of a third-order partial differential equation with a constant coefficient
k̂2 multiplied by all three terms of part (a) gives us a hint and motivation to exploit
the equation to reduce the terms in (3.5). The expression is independent of x, and
the arrangement of the derivatives of p shows symmetry and encourages us to use the
differential formula with two terms to retain the third term. Finally, by using a trial and
error method, we came up with an expression denoted by F and given as

F = 2k̂2

3

[
1
p3

(
∂p
∂y

)2

− 1
p2

∂2p
∂y2

]
. (3.8)

Taking the y-derivative of (3.8) gives part (a) of (3.5) as shown below,

∂

∂y

(
2k̂2

3

(
1
p3

(
∂p
∂y

)2

− 1
p2

∂2p
∂y2

))
= 8k̂2

3p3
∂p
∂y

∂2p
∂y2 − 2k̂2

3p2
∂3p
∂y3 − 2k̂2

p4

(
∂p
∂y

)3

. (3.9)
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Adding the second part, i.e. (1/γ )(∂p/∂y) to both sides of (3.9) gives,

∂

∂y

[
2k̂2

3

(
1
p3

(
∂p
∂y

)2

− 1
p2

∂2p
∂y2

)]
+ 1

γ

∂p
∂y

= 8k̂2

3p3
∂p
∂y

∂2p
∂y2 − 2k̂2

3p2
∂3p
∂y3

− 2k̂2

p4

(
∂p
∂y

)3

+ 1
γ

∂p
∂y

. (3.10)

Hence, (3.5) can also be written as

∂F
∂y

+ 1
γ

∂p
∂y

= 0, (3.11)

which is in a readily integrable form. Integrating (3.11) with respect to y gives,

2k̂2

3

[
1
p3

(
∂p
∂y

)2

− 1
p2

∂2p
∂y2

]
= c(x) − p

γ
, (3.12)

where c is the integration constant and is a function of x. The resulting equation (3.12)
is a second-order differential equation. Solving (3.12) for p(x, y), generates two more
integration constants which are a function of x. The analytical expression for p(x, y) is
given by

p(x, y) = 8c1(x)2c2(x)γ 2k̂2
2ec1(x)y

36c(x)2γ 4k̂2
2 − 24c1(x)2γ 3k̂3

2 + 12c(x)c2(x)γ 2k̂2ec1(x)y + c2(x)2e2c1(x)y
.

(3.13)

Writing (3.13) in a slightly simpler way gives the following closed-form analytical
expression:

p(x, y) = 8c1(x)2c2(x)γ 2k̂2
2ec1(x)y(

6c(x)γ 2k̂2 + c2(x)ec1(x)y
)2 − 24c1(x)2γ 3k̂3

2

. (3.14)

The above expression is an exact analytical solution for the pressure field for fluid flow
in a long microchannel, to which different boundary conditions can be applied for the
purpose of evaluating the constants of integration involved in the above expression. The
novelty in this solution is coming up with the form of F, which allowed us to obtain the
above analytical solution. In a subsequent subsection, we will show the applicability of the
solution obtained above.

3.2. Solution for velocity field
The velocity equation has been obtained from the non-dimensional x-momentum equation
(3.3), which is derived from (2.1) after the non-dimensionalization of the field variables.

912 A53-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

11
66

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1166


A. Rath, U. Yadav and A. Agrawal

Once again, upon simplifying and substituting (3.3) gives

−2k̂2

3p2
∂3p

∂x∂y2 − 2k̂2

p4
∂p
∂x

(
∂p
∂y

)2

+ k̂2

3p3
∂p
∂x

∂2p
∂y2 + 7k̂2

3p3
∂p
∂y

∂2p
∂x∂y

+ 1
γ

∂p
∂x

= ∂2u
∂y2

Ma2

εRe
.

(3.15)

The procedure to solve (3.15) takes into account the form of (3.14). Therefore, (3.14) is
written in an alternate form

p(x, y) = fec1y

−F3 + (F4 + c2ec1y)2 , (3.16)

where,

f = 8c1(x)2γ 2k̂2
2c2(x),

F3 = 24c1(x)2γ 3k̂3
2,

F4 = 6c(x)γ 2k̂2.

⎫⎪⎪⎬
⎪⎪⎭ (3.17)

Substituting (3.16) in (3.15) and then integrating the equation yields

du
dy

= 1
(3f (X)2)γ ReMa2

∫
ITerm dy + 3F5(x)f (x)2Reγ Ma2, (3.18)

where F5 is the constant of integration and ITerm is given by (3.19)

ITerm = (([[−(24γ )k̂2Ma2c1(x)2(−F4(x)2/3 + F3(x))c2(x)2 + (6Re2)f (x)2]F4(x)′F4(x)

− (4c1(x)2)c2(x)Ma2k̂2γ (2F4(x)2 + F3(x))(−F4(x)2 + F3(x))c2(x)′

+ ((6γ )k̂2Ma2c1(x)2(F4(x)2/3 + F3(x))c2(x)2 − (3Re2)f (x)2)F3(x)′] f (x)

− (8f (x))(k̂2c1(x)γ Ma2(c1(x)yF3(x) − (29F4(x)2)/8 + (13F3(x))/8)c2(x)2

− (3y)Re2f (x)2/8)(−F4(x)2 + F3(x))c1(x)′ − 4(γ k̂2Ma2c1(x)2(−2F4(x)2

+ F3(x))c2(x)2 − (3Re2)f (x)2/4)(−F4(x)2 + F3(x))f (x)′) exp(c1(x)y)

+ ((((−(20γ )Ma2(−(3F4(x)2)/5 + F3(x))k̂2c1(x)2c2(x)2 + (6Re2)f (x)2)F4(x)′

+ (4c1(x)2)c2(x)2F3(x)′Ma2k̂2γ F4(x))c2(x) + (−(12γ )k̂2Ma2c1(x)2(−F4(x)2

+ F3(x))c2(x)2 + (6Re2)f (x)2)c2(x)′F4(x))f (x) + ((12γ )k̂2Ma2c1(x)2(−F4(x)2

+ F3(x))c2(x)2 − (6Re2)f (x)2)c2(x)f (x)′F4(x) + (36c1(x))c2(x)3Ma2k̂2γ f (x)

× F4(x)(−F4(x)2 + F3(x))c1(x)′) exp((2c1(x))y) + (((−(12γ )Ma2(−(2F4(x)2)/3

+ F3(x))k̂2c1(x)2c2(x)2 + (6Re2)f (x)2)c2(x)′ + (2c1(x)2)c2(x)3Ma2k̂2

× γ ((4F4(x)′)F4(x) + F3(x)′))f (x) + (−(8k̂2)c1(x)γ Ma2(c1(x)yF3(x)
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Analytical solution of the Burnett equations

+ (29F4(x)2)/8 − (13F3(x))/8)c2(x)2 + (3y)Re2f (x)2)f (x)c2(x)c1(x)′

+ ((4γ )k̂2Ma2c1(x)2(−2F4(x)2 + F3(x))c2(x)2 − (3Re2)f (x)2)c2(x)f (x)′)

× c2(x) exp((3c1(x))y) − (2γ )Ma2c2(x)4(((−c2(x)F4(x)′ − c2(x)′F4(x))f (x)

+ c2(x)f (x)′F4(x))c1(x) + (7c2(x))c1(x)′f (x)F4(x))k̂2c1(x) exp((4c1(x))y)

− (2γ )Ma2(−F4(x)2 + F3(x))2(((−c2(x)F4(x)′ − c2(x)′F4(x))f (x)

+ c2(x)f (x)′F4(x))c1(x) + (7c2(x))c1(x)′f (x)F4(x))k̂2c1(x)

+ (3c1(x))c1(x)′Ma2k̂2γ f (x)(−F4(x)2 + F3(x))3 exp(−c1(x)y)

− (3k̂2) exp((5c1(x))y)c1(x)′c2(x)6c1(x)f (x)γ Ma2)ε1/(−(2c2(x)2)(−3F4(x)2

+ F3(x)) exp((2c1(x))y) + (4 exp((3c1(x))y))c2(x)3F4(x) + exp((4c1(x))y)c2(x)4

− 4(exp(c1(x)y)F4(x)c2(x) + F4(x)2/4 − F3(x)/4)(−F4(x)2 + F3(x))). (3.19)

Equation (3.18) can be integrated again to obtain the analytical expression for velocity.

4. Results

In this section, we present our results and benchmark them with the available solutions in
the literature.

4.1. Solution for pressure
In order to find the constants present in (3.14), the required boundary conditions are
obtained as follows:

(i) Due to the symmetry of the flow, the normal pressure gradient at the centreline is
zero, (

∂p
∂y

)∣∣∣∣
y=0

= 0. (4.1)

(ii) Pressure at the centreline ( p|y=0 = pc) is obtained from DSMC data.
(iii) The second-order curvature of pressure is also obtained from DSMC data, and given

as a,
∂2p
∂y2

∣∣∣∣
y=0

= a. (4.2)

Using the above boundary conditions the constants of integration are deduced as
follows:

c(0) = −2aγ k̂2 − 3p3
c

3γ p2
c

,

c1(0) =
√

3p3
c − 4aγ k̂2

2γ k̂2pc
,

c2(0) = −4γ 2k̂2
2a

p2
c

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.3)
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Figure 2. Pressure distribution plotted against the wall-normal position in a long microchannel. The Knudsen
number is 0.1.

Substituting the above constants for the expression of pressure, we get the closed-form
solution for pressure in its simplest form.

Figure 2 shows the pressure distribution with the wall-normal position inside a long
microchannel. The Knudsen number is taken as 0.1 and pout = 6.05 × 10−4 Pa, as used by
Zheng, Garcia & Alder (2002). The two boundary conditions of second-order curvature
(∂2p/∂y2) and centreline pressure (pc), are obtained from Xu (2003) for calculating the
variation of pressure across the microchannel. The analytical pressure obtained from
(3.14) matches with the DSMC solutions obtained by Zheng et al. (2002) and Xu (2003)
for monoatomic gases having γ = 5/3. Zheng et al. (2002) and Xu (2003) used the
super-Burnett and BGK–Burnett equation solutions and compared against the numerical
solution from DSMC. The result obtained from the present analytical approach has also
been compared against the perturbation solution of Rath et al. (2018) in the same figure,
and the solution overlaps with that of Rath et al. (2018).

The green line in the figure corresponds to the Navier–Stokes solution; as we know,
the cross-stream Navier–Stokes equation simplifies to dp/dy = 0. Therefore, according to
the Navier–Stokes equation, the pressure should not vary across the cross-section. This
limitation of the Navier–Stokes equation is also pointed out in the literature (Mansour,
Baras & Garcia 1997; Uribe & Garcia 1999; Aoki et al. 2002), that is, the Navier–Stokes
equations cannot produce a non-uniform variation of pressure across the microchannel
even after modifying the equation in different ways. However, pressure does vary with in
the cross-stream direction at high Knudsen numbers as evident from the DSMC data in
figure 2.

The DSMC results obtained from Zheng et al. (2002), Xu & Li (2004) use a hard-sphere
fluid with particle mass m = 1 and diameter d = 1, the thermal wall length is 1860 and the
reference fluid speed uout = 1, speed of sound = 0.91 and γ = 5/3 for a monoatomic gas.
The reference pressure is 6.05 × 10−4, pressure inlet and pressure outlet are respectively
(1

2 )pref and (3
2 )pref . The Knudsen number is 0.1 at the x = 0.

Further comparison has also been carried out using the DSMC results of Mansour
et al. (1997). Table 1 presents the non-dimentionalized parameters used for plotting the
pressure and velocity profiles. The simulated fluid used by Mansour et al. (1997) is
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Analytical solution of the Burnett equations

Parameter pc a pref

Zheng et al. (2002), Xu & Li (2004) 1.099 0.0114 6.05 × 10−4

Mansour et al. (1997) 1 0.35 6.76 × 10−4

Table 1. Table presenting the values of the parameters.
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Garcia (1999) (DSMC)
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Figure 3. Pressure distribution plotted against the wall-normal position in a long microchannel. The Knudsen
number is 0.1 and Ma = 1.5480.

dilute gas with particle mass m = 1 and diameter d = 1. They have an acceleration-driven
flow; therefore, the speed of sound is 0.9129, which gives Ma = u/c = 1.548, and the
Knudsen number is 0.1. The thermal wall length is 1860. The reference fluid speed is 1.
Figure 3 presents the comparison of the analytical pressure with the DSMC results of
Mansour et al. (1997). The deviation between the analytical result and the DSMC result is
plotted in the error percentage graph shown in figure 4. The error percentage is calculated
as ( pana − pDSMC)/pDSMC × 100. The maximum error recorded is less than 0.7 %. The
discrepancy at the wall is observed because we have a pressure-driven flow, whereas,
Mansour et al. (1997) have an acceleration-driven flow.

The value of pc is the non-dimensionalized value of pressure at the centreline; a is
the curvature obtained by curve fitting with the obtained DSMC data points; pref is the
reference pressure.

4.2. Solution for velocity
The expression for velocity is difficult to obtain because the x-momentum equation is
lengthy and cumbersome compared to the y-momentum equation. However, we solved
(3.15) by substituting the pressure expression obtained in (3.14) and integrating it once.
The boundary conditions required to find the constants of integration are as follows:

(i) The symmetrical condition at the centreline (∂u/∂y|y=0 = 0).
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Figure 4. Error in the percentage distribution between the analytical pressure and DSMC results obtained by
Mansour et al. (1997) with respect to the normal-wall position. The Knudsen number is 0.1 and Ma = 1.5480.
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Figure 5. Velocity distribution plotted against the wall-normal position in a long microchannel, all
non-dimensionalized. The Knudsen number is 0.1.

(ii) Maxwell slip boundary condition at the wall

u|wall =
(

2 − σ

σ

)
Kn

∂u
∂y

∣∣∣∣
wall

. (4.4)

The velocity has been benchmarked using the above boundary conditions with the
DSMC solution obtained previously and the perturbation solution proposed by Rath et al.
(2018).

Figure 5 shows the velocity distribution along the wall-normal direction, which has
been obtained after solving (3.18) numerically. The value of the tangential momentum
coefficient, σ employed in the calculations is unity. The analytical solution presented here

912 A53-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

11
66

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1166


Analytical solution of the Burnett equations

corresponds to the flow with Mach number, Ma = 1.0989, and Reynolds number, Re =
17.7. The configurations of the microchannel used have been taken from Xu & Li (2004).
A comparison of results is made against the DSMC solution obtained by Xu (2003) and
Zheng et al. (2002) and the perturbation solution presented by Rath et al. (2018). Figure 5
reveals that the result shown in the current paper is consistent with the previously reported
results across the entire cross-section of the microchannel.

5. Discussion

Fluid flow in a long channel has always been an area of interest in both the academic
and industrial fields. With the advancement in technology, manufacturing of long
microchannels using micro-machining has become a reality, which led to extensive
research on understanding the physics of gas flow in a microchannel in recent years.
This extensive research has provided experimental results (Pong et al. 1994; Arkilic
et al. 1997), analytical solutions of the Navier–Stokes equations (Arkilic et al. 1997;
Dongari, Agrawal & Agrawal 2007) and numerical solutions of the Burnett equation
(Zheng et al. 2002; Xu & Li 2004) for gas flow in a microchannel. The applicability of the
analytical solutions of the Navier–Stokes equations, even after using different slip models,
is limited to relatively small Knudsen number (Agrawal et al. 2020). This limitation of the
Navier–Stokes equations led to the derivation of the Burnett equation, with a potentially
larger envelop of Knudsen number (Agarwal et al. 2001). However, the complexity of
the Burnett equations and the highly nonlinear characteristics acted as an obstacle to
progress in obtaining the analytical solution of these equations in the past. So although
limited numerical solutions for flow in microchannels are available, analytical solutions are
missing from the literature due to the cumbersome nature of the Burnett equations. Singh
et al. (2014) obtained a first analytical solution to the conventional Burnett equations for
any configuration. They proposed and utilized a novel iterative approach, where physical
insights about the flow were employed, along with the mathematical procedure to obtain
the solution. Their novel approach was later employed to obtain solution for gas flow
in a microtube by Singh & Agrawal (2014). Although Rath et al. (2018) derived an
analytical expression for fluid flow in a long microchannel, their solution was based upon
the perturbation method and is therefore still an approximation to the governing equations.
In the current study, we have derived an exact analytical expression for both the pressure
and velocity fields of a gas flowing in a long microchannel by using the conventional
Burnett equations and approximations from Arkilic et al. (1997). Hence, the result
presented is a significant breakthrough in the area of analytical solution of the Burnett
equations.

The solution presented here opens the possibility for further interesting investigations as
we now have a closed-form analytical expression for the pressure distribution inside a long
microchannel. For example, the variation of flow-induced stresses and entropy generation
in microchannels of different sizes can be estimated using the expression provided here.
A study which arrives at the optimum size of the microchannel by minimizing entropy
production is available in Pallavi & Mahulikar (2018). The other advantage is that it is
significantly more convenient to benchmark data against the analytical solution presented
here as compared to DSMC. Further, these results might change the perception about the
Burnett equations in the community (Garcia-Colin et al. 2008), and are expected to inspire
additional studies to find the analytical solution for other variants of the Burnett equations
using similar or alternative approaches.
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6. Conclusions

In this work, the conventional Burnett equations have been solved analytically to obtain
the pressure and velocity fields for gas flow in a microchannel. The analytical expression
presented in the current manuscript is valid for low Reynolds and Mach numbers. The
obtained expressions for pressure and velocity have been validated against DSMC data
and theoretical results available in the literature.

Our analysis has brought out the complete solution of the Burnett equations within
an analytical framework, thereby putting the solution on a par with that obtained from
the Navier–Stokes equations. The derived solution can be advantageously utilized, for
example, in deriving solutions for heat transfer, entropy generation and undertaking other
analyses in the future.
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