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The theory of quadratic congruences modulo an integer is dominated by the Quadratic
Law of Reciprocity (see § 1), which makes it possible to decide in a very short time whether
a quadratic congruence

x2 = a(m)
is solvable or not. The law was first proved by Gauss.* It took him over a year to obtain his
first proof, which depends on a tedious lemma in elementary number theory. He subsequently
obtained seven further proofs, and today more than fifty proofs are known, most of them
based on the ideas of Gauss. The object of the present paper is to present a proof which is a
modernised version of Gauss's seventh proof, applying the ideas of that proof to & finite set of
objects, the elements of a finite or Galois field.

The first section of this paper gives a group-theoretic treatment of the elementary
properties of Legendre's symbol. In the second section we introduce Gaussian sums in finite
fields. A comparison of two different expressions for these yields the quadratic law of recipro-
cities.

We conclude this introduction by giving a summary of the properties of Galois fields
required in the course of the proof of the quadratic law of reciprocity.

1. The multiplicative group of a Galois field of N elements is a cyclical group of order
N-l.

2. A Galois field has for its characteristic a prime number p, and therefore for its prime
field a field isomorphic with Fv. the field of residue classes of the integers modulo p. We
shall denote any field isomorphic with this field by Fv. The number of elements in any Galois
field of characteristic p is of the form pr where r is a positive integer. Conversely, correspond-
ing to any prime number p and any positive integer r, there is a Galois field of characteristic
p and with pr elements. This Galois field, which is denoted by OF(pr), is uniquely determined
up to isomorphism as a minimal splitting field of the polynomial tvT -t over the field Fv.

3. The prime field F^ of GF(pr) consists of the set of p elements of GF(pr) which satisfy
the equation

xv=x.
4. The correspondence o- defined by

x-+x»=x°, xeGF{pr),
is an automorphism of GF(pr).

The proofs of these properties of Galois fields will be found in books on Modern Algebra
or in the introduction to another paper in this number of these proceedings. (A Group-
theoretic Proof of a Theorem of Maclagan-Wedderburn, pp. 53-63).

§ 1. The Legendre Symbol.
The Legendre symbol arises in connection with the problem of solving a quadratic con-

gruence

* Gauss, Disquisitiones Arithmeticae. Proof 1 : Vol. I, p. 135 ; proof 7 : Vol. II, p. 234.

https://doi.org/10.1017/S2040618500035486 Published online by Cambridge University Press

https://doi.org/10.1017/S2040618500035486


QUADRATIC LAW OF RECIPROCITY 65

i.e., of finding an integer x which satisfies this relation. I t can be shown that this problem can
be reduced to that of solving a quadratic congruence of the form

*2 = d(p), (1)
where p is an odd prime.

It is much more important to establish a means of determining whether (1) has a solution
than to find its set of solutions if it has any. To deal with the former problem, Legendre

introduced a symbol ( - 1 > defined in the following way :

- 1 = 1 if <i=|=0 (p), but (1) has a solution ;

- ) = - 1 if (1) has no solution ;

This Legendre symbol is defined for every integer d in the numerator and for every prime
greater than 2 in the denominator. Its value, for a given d and p, is either 1, - 1 or 0. Ob-
viously, from (1), its value is unaltered when d is replaced by any integer congruent to d
modulo p. Thus its value depends only on the residue class Rd of integers modulo p to which
d belongs. Thus we can define uniquely, by

the Legendre symbol of each element of Fp, the field of residue classes of the integers modulo
p. Further, if we observe that, if any integer x satisfies (1), so do all the integers congruent to
x modulo p, we see that the problem of solving the congruence (1) in the domain of all integers
is equivalent to that of solving the equation

*2 = a, ....(2)
where a is an element of Fv, in the field F^. In consequence of this, the definition of the

Legendre symbol ( - ) , where a is an element of Fv, can be restated thus :

( - ) = 1 if a is not 0, the zero element of Fp, and is the square of an element of Fv ;

I - ) = - 1 if a is not the square of any element of Fv ;

Since p is an odd prime, the elements 1, - 1 and 0 of Fp are distinct, so the values of the Le-
gendre symbol, hitherto considered as the integers 1, - 1 and 0, may equally well be con-
sidered as the elements 1 , - 1 and 0 of Fv. This interpretation is frequently more convenient,
for it often allows congruences to be replaced by equations. This is the case in the following
important theorem of Euler.

/~\
(3)

Proof: If a. = 0, both sides of (3) are zero, and therefore (3) is true.
To deal with the case in which a^O, consider the correspondence
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66 HANS J. ZASSENHAUS

where £ is a non-zero element of Fp. This correspondence is an operator of the multiplicative
group of FP, i.e., it is a homomorphism of this group onto a subgroup ; for (£17)2 = |2i72. The
kernel of this homomorphism is the set of elements of FP for which | 2 = 1, i.e., since Fp is a
field, it is the two elements + 1 and - 1 of Fp. By the fundamental theorem on homomor-
phisms, it follows that the image of FP under the homomorphism, i.e., the set of elements of Fv

which are non-zero and the squares of elements of Fv, forms a multiplicative group Sp iso-
morphic with the factor group of the multiplicative group of FP over the normal divisor
consisting of the pair of elements ± 1 • The order of SP is therefore half that of the multipli-
cative group of Fv, i.e.,

S,: l=l(3>-1).

Now, for each non-zero element of FP, we have, by Fermat's theorem,

i.e.,
Hence (3) is true for all elements of 8P. Further, since the equation îfo-1^ = 1 cannot be satisfied

by more than \{p -1) elements of F, it follows that, if (±\ = - 1 , then (-H*-1^!. But, if

= 1 and therefore fib-1* = ± 1. Hence,

if (i)=-l, then I*"-1) = - 1 .

The formula (3) is thus estabKshed for all elements <x of Fp.
From (3) it follows that

.(*)-©(£) «4»
i.e., that, in FP,

0 . a = a . 0 = 0, '

where 0 is the zero element of Fv ; while, for non-vanishing products,

square x square = square,

square x non-square = non-square x square = non-square,
non-square x non-square = square.

It follows also that

( ^ ) = ( - l ) i ( 3 ' - 1 ) , (5)

i.e., that

( • ^ - l i f* -1 (4 ) ,

The quadratic law of reciprocity and its complements I and II state the following
properties of the Legendre symbols.

If p and q are different odd primes, then

) - g ) if , . , - , ,4).
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Complement I : ( — 1 = 1 if q = 1 (4),

; Complement I I : (-\ = 1 if q = ± 1 (8),

I These statements may be collected into the following more compact forms :
I The Quadratic Law of Reciprocity :

(6)qj \pj \ '

) Complement I : • (— \ = ( - 1 )*(«-!>• (7>

: Complement I I : (-)=(- l)ik^1} ; ...(8)

The relation (6) is obviously equivalent to the Quadratic Law of Reciprocity itself, the relation
• (7) is the same as (5) and has therefore been proved already. To prove the relation (8) we ex-
l press q in the form 81 + (2k +1), where k and I are integers, and observe that

i(?2 _ 1) =8l2 + 2l(2k +1) + \k(k + 1)
= \k(k + l) (mod 2)
= i{(2fc + l ) 2 - l } (mod 2).

Thus the value of ( - l)£(«2-i) depends only on the residue class of q modulo 8, and the value
i is 1 i f t f ^ i l (8) and - 1 ifgr=±3 (8).

If we introduce the symbol

e = (- l) i ( s

we may write (6) in the form

(*)(*)-
\gy \PJ \p,

and hence, after multiplication on both sides by ( _ ] , in the form
\pl

§ 2. Proof of the Quadratic Law of Reciprocity and its Second Complement.
Let p and q be two different positive prime numbers. Let / be the order of p modulo q,

i.e., let / be the positive integer for which q is a factor of pf - 1 but is not a factor of f>" - 1,
where 0<v</ . Then the multiplicative group of the Galois field OF(pf), being cyclical of
order 'pf -1, contains an element £ of order q and therefore such that

£9 = 1 but
Since

and £^1 , it follows that

i=0

https://doi.org/10.1017/S2040618500035486 Published online by Cambridge University Press

https://doi.org/10.1017/S2040618500035486


68 HANS J. ZASSENHAUS

Since, if a and b are two integers, £a = £6 if and only if a = b (q), it is possible to define £a,
where a is any residue class of the integers modulo q, thus :

£" = £°,
where a is any integer in the residue class a. As a result of this definition,

where a and jS are any residue classes of the integers modulo q, i.e., any elements of Fq.
We now define, for each prime number p and each element a of Fq, the Gaussian sum

<?(a, p), thus :
Q 2 t * (2)

where summation is over all elements | of Fq for which I - j = 1. The Gaussian sum is an element

•of GF(pf). If a=0 , the zero element of Fq, each of the \{q- 1) terms on the right side of (2) is

equal to 1, the unity element of GF(pf) and therefore G(0, p) is equal to \(q -1) times the unity

element of GF{pf). If a is not the zero element of Fq, G(oc, p) is equal to 2£f, summation being

over all elements B of Fq which have the same Legendre symbol as a. It follows that the Gaus-

sian sum depends only on p, q and the Legendre symbol ( - j of a. Suppressing p, we may

therefore introduce the notation

We note that the suffix ( -1 can only take the values 1, - 1 and 0. We now find the values of

Q, GLX and Go.
As we have just shown, Go, i.e., G(0, p), is equal to \{q -1) times the unity element of

<}F(pf) and therefore of its subfield Fv. Hence

G0=^(q - 1) times the unity element of Fv.

To evaluate Gx and G_lt we note that

= 2 £ * = - l , (3)

by (1), where 1 is the unity of GF(pf), i.e., of its subfield FP ; and that

OXQ_^ 2 fr 2 &

©-1 © - 1

2 £«+?= 2 nvt?, ...(4)

where, for each y in Fq, ny is the number of solutions (a, B) of the equation

y = a + B, with ( - 1 = - ( ^

Now if | is any element of Fq with ( - 1 = 1 , there is a one-one correspondence between the

solutions of (5) and the solutions a' =a | , 8' = |3 | of the equations

= a'+j8-, with (^)= - ( f ) = 1 (6)
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There is also, for each 8 for which ( - ) = ~ ( ) > a one-one correspondence between the solutions

of (5) and the solutions a" =fiy~x8, jS" = ocy~18 of the equation

8 = a " + | 3 " > w i t h ( ^ - / ) = - ^ = l (7)

Since, by suitable choices of £ and 8, y | and 8 can be made to be any elements of Fq with
Legendre symbols 1 and - 1 respectively, it follows that ny has the same value for all non-zero
elements y of Fa ; let this value be n.

If mo>O, then the equation

0 = a + J8, with @ = "( f )= - 1 <8>

has at least one solution. For any such solutions j8 = - a, i.e., - 1 =j8a~1, and therefore

Conversely, if ( J = - 1 and a is any element of Fa, and if |S= - a , then ( - ) = - 1 ; there

is thus one solution of (8) for every a for which ( - 1 = 1 . Hence

or, using the symbol

introduced earlier,
«0 = l(l-e).lto-l) (9)

Since, in the sum
E

the total number of terms is {^(q -1)}2, we have, from (4),

hence, using (9), we have

>u t , by (4),

= (n0 - n) times the unity element of the Fp in GF(pf).
Hence,

GiG-i = i ( l ~ ^ ) times the unity of the F, in OF(pf) (10)

From (3) and (10) it follows that Qx and G_x are the elements of 6F(pf) which satisfy the quad-
ratic equation

x* + x + i(l-eq)=0, (11)
where it is to be understood that |(1 -eq) means this integer multiplied by the unity element
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If 2>>2, the usual method can be used to solve the quadratic equation, giving

(x+ $)* = &[.

Hence if a suitable solution in GF(pf) of y2 = eq is denoted by Jeq, we have

, (12)8 l
for 8= +1 and - 1 .

Now, whether p>2 or not, the correspondence

is an automorphism of GF{pf). Applying this automorphism to G(x, p), we have

= 2 t?i* = G{*p,p)

( I ) -d) ..
and therefore, using the other notation for the Gaussian sum and putting ( - 1 = 8 , where
8 = ± 1 , we have

, (13)

- (?) • •©©-•©•
In the case in which p>2,

since - \ and |8 lie in the subfield FP of GF(pf) ; and

_ 1 1 M ._

It follows from (13) that

Thus, if ( i = 1 ,

hence \leq is in I*1- and therefore (—) = 1. In this case, therefore, ( - ) = ( — )a " \p) \qj \pj

hence s/eff is not in Fn and therefore I — ) = - 1. Thus, in this case also ( - ] = ( — ] .

This completes the proof of the quadratic law of reciprocity itself. j
There remains to be completed the proof of the second complement, dealing with the case j

in which p = 2. In that case (13) reads '
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We note that if x is either element of the subfield F2 of GF{2f), then x2 + x-0, and that
therefore no other element of GF(2f) satisfies this equation. This has the following conse-
quences.

If J(l -eq) = 0 (2), then both elements of F2 are roots of (11) and no other elements of

OF(2f) are. Hence, for each 8, GseF2 and therefore G/=GS. Thus, by (14), (-\ = 1.

If | (1 - eq) = 1 (2), then neither element of F2 is a root of (11), and therefore neither of the
roots Gs of (11) lies in F2. Hence, for these roots Gs, Gs

2^Gd (for the two elements of F2 and
therefore no other elements of GF(2f) satisfy the equation x2 = x). Hence Gs

2 — G_a and there-
fore, by (14), ^ = - 1.

Now if |(1 -eq) = 0 (2), 1 -eq = 0 (8), i.e., eg-sl (8) and therefore q= ± 1 (8) ; while if
1(1 -eq) = l (2), \-eq = 4: (8), i.e., eq~ - 3 (8) and therefore q= ± 3 (8). Hence, if

g=±l<8), Q = l ; ifg=±3(8), ( |)=-

This completes the proof of the second complement.

MCGILL UNIVERSITY,

MONTREAL, CANADA.

https://doi.org/10.1017/S2040618500035486 Published online by Cambridge University Press

https://doi.org/10.1017/S2040618500035486

