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1. Introduction

The study of interpolation methods for finite families (N -tuples) of Banach spaces has
been of interest since the beginning of abstract interpolation theory in the early 1960s.
The first contributions on this problem were due to Foiaş and Lions [19], Yoshikawa [25],
Favini [16], Sparr [23] and Fernandez [17]; other references can be found in the mono-
graphs by Triebel [24] and Brudny̌ı and Krugljak [1]. More recently, in 1991, Cobos and
Peetre [4] introduced interpolation methods for N -tuples of Banach spaces associated
with a convex polygon Π in the plane and a point (α, β) in the interior of Π. Using
the vertices of Π they defined K- and J-functionals with two parameters and then they
introduced K- and J-spaces by means of an (α, β)-weighted Lq-norm. (We shall recall
the definitions in § 2.) In particular, when Π is equal to the simplex, these methods yield
(the first non-trivial case of) spaces introduced by Sparr [23], and if Π is equal to the
unit square, they recover spaces studied by Fernandez [17]. Among other things, the
geometrical approach in [4] explains the restriction on parameters in Fernandez’s case.
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An important part of [4] is devoted to investigating the behaviour of compact operators
in this multi-dimensional case. So, in [4, §§ 4–6], Cobos and Peetre established compact-
ness results when the interpolated operator acts between two K-spaces or two J-spaces.
Later, Cobos et al . [6] considered operators acting from a J-space into a K-space. A
comparison between the two cases was made in [2]. Norms of interpolated operators act-
ing from a J-space into a K-space can be estimated by a product of positive powers of
the norms of the restrictions of the operator to the Banach spaces forming the N -tuple
(see (2.2) below), but for operators acting between two K-spaces or two J-spaces a more
involved estimate holds (see (2.1)). This explains the gap between the two cases. Other
compactness results can be found in [5].

An estimate for the measure of non-compactness in the situation considered by Cobos
et al . was established in [10]. No similar result is known for the case studied by Cobos
and Peetre. Accordingly, in the present paper we investigate compactness of operators
between two K-spaces or two J-spaces more thoroughly.

We start by comparing necessary conditions for interpolating compactness with con-
ditions required to interpolate other operator ideals. Towards this aim, we characterize
compactness of interpolated operators in terms of a weaker stipulation and a condition
depending on the J- or K-functionals. In the instance of the real method for couples,
the first result of this kind was proved in [18]. Later, it was shown in [11,12] that cor-
responding results hold for the complex method and other classical methods for couples.

We also establish a formula for the measure of non-compactness of operators acting
between two K-spaces. This formula is a quantitative version of the corresponding qual-
itative result of Cobos and Peetre. Finally, as applications of our characterizations and
the formula, we recover the results on interpolation of compact operators between general
N -tuples due to Cobos and Peetre [4].

The plan of the paper is as follows. In § 2 we recall some basic ideas on K- and
J-spaces associated with polygons. Compactness results for operators interpolated by
the J-method are established in § 3, and the case for the K-method is considered in § 4.

2. Preliminaries

Let Π = P1 · · ·PN be a convex polygon in the affine plane R
2. The vertices of Π are

Pj = (xj , yj), j = 1, . . . , N . Let Ā = {A1, . . . , AN} be a Banach N -tuple, that is to say,
a family of N Banach spaces Aj , all of which are continuously embedded in a common
Hausdorff topological vector space. It is useful to think of Aj as sitting on the vertex Pj .
Using the polygon Π, we define the K- and J-functionals by

K(t, s; a) = inf
{ N∑

j=1

txj syj ‖aj‖Aj : a =
N∑

j=1

aj , aj ∈ Aj

}
,

J(t, s; a) = max{txj syj ‖a‖Aj : 1 � j � N}.

Here t, s > 0. It is easy to check that {K(t, s; ·)}t,s>0 is a family of norms on
Σ(Ā) = A1 + · · · + AN , with any two of them being equivalent. Similarly, {J(t, s; ·)}t,s>0
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is a family of norms on ∆(Ā) = A1 ∩ · · · ∩ AN , with any two of them being equivalent.
Note that K(1, 1; ·) coincides with the norm of Σ(Ā) and J(1, 1; ·) = ‖ · ‖∆(Ā).

Let 1 � q � ∞ and let (α, β) be any point in the interior of Π, (α, β) ∈ IntΠ. The
K-space Ā(α,β),q;K is formed by all elements a ∈ Σ(Ā) having a finite norm

‖a‖Ā(α,β),q;K
=

( ∑
(m,n)∈Z2

(2−αm−βnK(2m, 2n; a))q

)1/q

(the sum should be replaced by the supremum if q = ∞). The J-space Ā(α,β),q;J is formed
by all those a ∈ Σ(Ā) that can be represented as

a =
∑

(m,n)∈Z2

um,n (convergence in Σ(Ā))

with {um,n} ⊆ ∆(Ā) and

( ∑
(m,n)∈Z2

(2−αm−βnJ(2m, 2n; um,n))q

)1/q

< ∞

(again the sum should be replaced by the supremum if q = ∞). The norm in Ā(α,β),q;J is

‖a‖Ā(α,β),q;J
= inf

{( ∑
(m,n)∈Z2

(2−αm−βnJ(2m, 2n; um,n))q

)1/q}
,

where the infimum is taken over all representations {um,n}, as above.
Spaces Ā(α,β),q;K and Ā(α,β),q;J are the interpolation spaces associated with polygons

realized in a discrete way. They were introduced in [4]. When Π is equal to the sim-
plex {(0, 0), (1, 0), (0, 1)}, the spaces coincide with (the first non-trivial case of) spaces
investigated by Sparr [23]. If Π is the unit square {(0, 0), (1, 0), (1, 1), (0, 1)}, we recover
spaces studied by Fernandez [17].

K- and J-spaces do not coincide in general [7,13,23]. We have only that Ā(α,β),q;J ↪→
Ā(α,β),q;K , where ‘↪→’ denotes continuous inclusion. Let us give a concrete example. Let
Π be the unit square and let �1(wn) be the weighted �1-space with weights {wn}. It is
shown in [7, Example 2.8] that(

�1

(
1√
n

)
, �1

(
1
n

)
, �1

(
1√
n

)
, �1

(
1
n

))
( 1
2 , 1

2 ),1;J
= �1

(
1√
n

)
,

and (
�1

(
1√
n

)
, �1

(
1
n

)
, �1

(
1√
n

)
, �1

(
1
n

))
( 1
2 , 1

2 ),1;K
= �1

(
1 + log n

n

)
.

Other interpolation formulae will be mentioned later on (see (3.2) and (4.2)). More
examples can be found in, for example, [3,4,7].
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Figure 1. Admissible polygon.

Let B̄ = {B1, . . . , BN} be another Banach N -tuple. We write T ∈ L(Ā, B̄) to mean
that T is a linear operator from Σ(Ā) to Σ(B̄) whose restriction to each Aj defines a
bounded operator from Aj into Bj , j = 1, . . . , N .

If T ∈ L(Ā, B̄), it is not difficult to check that the restriction of T to the K-space
defines a bounded operator T : Ā(α,β),q;K → B̄(α,β),q;K . The same holds for J-spaces. As
for norm estimates, it was shown in [7, Theorem 1.9] that

‖T‖Ā(α,β),q;K ,B̄(α,β),q;K
� C max{‖T‖ci

Ai,Bi
‖T‖cr

Ar,Br
‖T‖cs

As,Bs
: {i, r, s} ∈ Pα,β}. (2.1)

Here Pα,β is the set of all triples {i, r, s} such that (α, β) belongs to the triangle with
vertices Pi, Pr, Ps, numbers ci, cr, cs are the (unique) baricentric coordinates of (α, β)
with respect to Pi, Pr, Ps, and C is a constant depending only on Π and (α, β). A similar
inequality holds for the restriction of T to the J-spaces.

For operators acting from a J-space into a K-space, a different estimate holds. Let
θ̄ = (θ1, . . . , θN ) be any N -tuple of positive numbers with

∑N
j=1 θj = 1 and

∑N
j=1θjPj =

(α, β). It is shown in [7, Theorem 3.2] that there is a constant M > 0, depending only
on θ̄, such that, for any Banach N -tuples Ā = {A1, . . . , AN}, B̄ = {B1, . . . , BN} and any
T ∈ L(Ā, B̄), we have

‖T‖Ā(α,β),q;J ,B̄(α,β),q;K
� M

N∏
j=1

‖T‖θj

Aj ,Bj
. (2.2)

The following class of polygons was introduced in [4]. If Π = P1 · · ·PN , then for j > N

or j < 1, we put
Pj = Pj0 if j ≡ j0(mod N), 1 � j0 � N.

Definition 2.1. The convex polygon Π (see Figure 1) is said to be admissible if, for
each edge PjPj+1, j = 1, . . . , N , there is another PkPk+1 satisfying the following two
conditions.
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(a) The extension of the segment PjPk+1 in the direction of Pj meets the extension of
Pj+1Pj+2 in the direction of Pj+1.

(b) The extension of the segment Pj+1Pk in the direction of Pj+1 meets the extension
of Pj−1Pj in the direction of Pj .

It is clear that any regular polygon with at least five edges is admissible.
The compactness results of Cobos and Peetre for general N -tuples require that Π is

the simplex, the unit square or any admissible polygon [4, § 6]. Interpolation results for
weakly compact operators and other closed operator ideals do not require admissibility
of the polygon but require that 1 < q < ∞ [8,9]. Next we review some concepts from
operator theory.

Let E, F be Banach spaces. We designate by L(E, F ) the collection of all bounded
linear operators from E into F , endowed with the usual operator norm. We put UE for
the closed unit ball of E, and E∗ for the dual space of E.

We write �1(UE) for the Banach space of all absolutely summable families of scalars
{λx}x∈UE

with UE as the index set. We write �∞(UF ∗) for the Banach space of all
bounded families of scalars indexed by the elements of UF ∗ . The operators ιF : F →
�∞(UF ∗), πE : �1(UE) → E defined by ιF y = {〈f, y〉}f∈UF ∗ and πE{λx} =

∑
x∈UE

λxx

are an isometric embedding and a metric surjection, respectively.
An operator ideal I is a method of ascribing to each pair (E, F ) of Banach spaces a

linear subspace I(E, F ) of L(E, F ) such that I(E, F ) contains the finite rank operators,
and it satisfies the condition that STR ∈ I(G, V ) whenever R ∈ L(G, E), T ∈ I(E, F )
and S ∈ L(F, V ).

The operator ideal I is said to be closed if I(E, F ) is a closed subspace of L(E, F )
for all Banach spaces E and F . The ideal I is said to be injective (respectively, sur-
jective) if, whenever T ∈ L(E, F ) and, in addition, ιF T ∈ I(E, �∞(UF ∗)) (respectively,
TπE ∈ I(�1(UE), F )), it follows that T ∈ I(E, F ). Compact operators and weakly com-
pact operators are examples of surjective injective closed operator ideals. Strictly singular
operators form an ideal which is closed and injective but is not surjective, while the ideal
of strictly cosingular operators is closed and surjective but is not injective. (We refer the
reader to [14,21] for more details on operator ideals.)

Given any double sequence of Banach spaces {Wm,n}(m,n)∈Z2 and any sequence of
non-negative numbers {λm,n}(m,n)∈Z2 we put

�q(λm,nWm,n) =
{

w = {wm,n} : wm,n ∈ Wm,n and

‖w‖�q(λm,nWm,n) =
( ∑

(m,n)∈Z2

(λm,n‖wm,n‖Wm,n)q

)1/q

< ∞
}

.

When λm,n = 1 for all (m, n) ∈ Z
2, we write simply �q(Wm,n). Let Or,s : �q(Wm,n) →

Wr,s be the projection Or,s{wm,n} = wr,s, and let Dr,s : Wr,s → �q(Wm,n) be the
embedding Dr,sw = {δr,s

m,nw}, where δr,s
m,n is the Kronecker delta.

Let 1 < q < ∞. An operator ideal I is said to satisfy the Σq-condition if,
for any sequences of Banach spaces {Wm,n}, {Vm,n} and for any operator T ∈
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L(�q(Wm,n), �q(Vm,n)), it follows from Ou,vTDr,s ∈ I(Wr,s, Vu,v) for any r, s, u, v ∈ Z that
T ∈ I(�q(Wm,n), �q(Vm,n)). For example, weakly compact operators, Rosenthal operators,
Banach–Saks operators and dual Radon–Nikodým operators satisfy the Σq-condition
[20]. On the other hand, it is clear that compact operators fail the Σq-condition.

3. Compactness and J-spaces

Given any convex polygon Π = P1 · · ·PN with Pj = (xj , yj) and any Banach N -tuple
Ā = {A1, . . . , AN}, we denote by Gm,n the Banach space ∆(Ā) endowed with the norm
J(2m, 2n; ·). We write

�1(j) = �1(2−xjm−yjnGm,n), j = 1, . . . , N, and �̄1 = {�1(1), . . . , �1(N)}. (3.1)

According to [4, Theorem 3.1], if (α, β) ∈ IntΠ and 1 � q � ∞, we have

(�̄1)(α,β),q;J = �q(2−αm−βnGm,n) (equivalent norms). (3.2)

Let π be the operator defined by π{um,n} =
∑

m,n∈Z2 um,n. It is easy to check that
π ∈ L(�1(j), Aj), j = 1, . . . , N . Moreover, π acting from �q(2−αm−βnGm,n) into Ā(α,β),q;J

is a metric surjection.
The following result shows a necessary and sufficient condition for the interpolated

operator by the J-method to belong to a surjective closed operator ideal. It complements
[9, Theorem 2.6] and [8, Theorem 3.2].

Theorem 3.1. Let Π = P1 · · ·PN be a convex polygon in R
2 with vertices Pj =

(xj , yj), let (α, β) ∈ IntΠ, 1 < q < ∞, and let I be a surjective closed operator ideal
which satisfies the Σq-condition. Assume that Ā = {A1, . . . , AN} and B̄ = {B1, . . . , BN}
are Banach N -tuples and let T ∈ L(Ā, B̄).

Then a necessary and sufficient condition for T : Ā(α,β),q;J → B̄(α,β),q;J to belong to I

is that T : ∆(Ā) → B̄(α,β),q;J belongs to I.

Proof. The factorization

∆(Ā) ↪→ Ā(α,β),q;J
T−→ B̄(α,β),q;J

shows that if T ∈ I(Ā(α,β),q;J , B̄(α,β),q;J) then T : ∆(Ā) → B̄(α,β),q;J belongs to I.
Conversely, if T ∈ I(∆(Ā), B̄(α,β),q;J), then TπDr,s ∈ I(2−αr−βsGr,s, B̄(α,β),q;J) for any

(r, s) ∈ Z
2. Here {Dr,s}(r,s)∈Z2 are the operators introduced in § 2. Since I satisfies the

Σq-property, it follows that Tπ ∈ I(�q(2−αm−βnGm,n), B̄(α,β),q;J). Then, using the fact
that I is surjective, we conclude that T : Ā(α,β),q;J → B̄(α,β),q;J belongs to I. �

Theorem 3.1 does not apply to compact operators because they do not satisfy the
Σq-condition. In fact, a similar equivalence does not hold for compact operators, as we
show next by means of an example.
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Example 3.2. Let Π = {(0, 0), (1, 0), (1, 1), (0, 1)} be the unit square; take any
(α, β) ∈ IntΠ and let

Ā = {�1, �1(2−m), �1(2−m−n), �1(2−n)}, B̄ = {�∞, �∞(2−m), �∞(2−m−n), �∞(2−n)}.

Choose T ∈ L(Ā, B̄) as the operator defined by T{ξm,n} = {µm,n}, where

µm,n =

{
ξm,n if m � 0 and n � 0,

0 otherwise.

According to [4, Corollary 3.2] we have

Ā(α,β),2;J = B̄(α,β),2;J = �2(2−αm−βn).

On the other hand, a direct computation shows that

∆(Ā) = �1(max{1, 2−m, 2−m−n, 2−n}).

So, T : Ā(α,β),2;J → B̄(α,β),2;J is not compact, but T : ∆(Ā) → B̄(α,β),2;J is com-
pact because it is the limit of the sequence of finite rank operators {Tr}r∈N defined by
Tr{ξm,n} = {ρm,n} with

ρm,n =

{
ξm,n if 0 � m � r and 0 � n � r,

0 otherwise.

Next we investigate when compactness of T : ∆(Ā) → B̄(α,β),q;J passes to

T : Ā(α,β),q;J → B̄(α,β),q;J .

First we recall a construction of Cobos and Peetre for the simplex, the unit square or
any admissible polygon Π = P1 · · ·PN [4, § 5].

There is a family {Ω
(r)
ν }0�r�N, ν∈N of subsets of R

2 such that

(i) for each ν ∈ N, {Ω
(0)
ν , Ω

(1)
ν , . . . , Ω

(N)
ν } is a partition of R

2,

(ii) the sets {Ω
(0)
ν }ν∈N are bounded, with Ω

(0)
1 ⊆ Ω

(0)
2 ⊆ · · ·, and, given any bounded

set K ⊆ R
2, there exists a ν ∈ N such that K ⊆ Ω

(0)
ν ,

(iii) for any 1 � j � N , we have Ω
(j)
1 ⊇ Ω

(j)
2 ⊇ · · · .

Moreover, if Ā = {A1, . . . , AN} is any Banach N -tuple and we define the N -tuple �̄1 as
in (3.1), then the family {Q

(r)
ν }0�r�N,ν∈N of projections on �̄1 defined by Q

(r)
ν {um,n} =

{wm,n}, where

wm,n =

{
um,n if (m, n) ∈ Ω

(r)
ν ,

0 otherwise

satisfy the following conditions.
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(I) The identity operator I on Σ(�̄1) can be decomposed as

I =
N∑

r=0

Q(r)
ν , ν = 1, 2, . . . .

(II) We have ‖Q
(r)
ν ‖�1(j),�1(j) = 1 for any ν ∈ N, 0 � r � N and 1 � j � N .

(III) For each ν ∈ N, Q
(0)
ν ∈ L(Σ(�̄1), ∆(�̄1)).

(IV) Let 1 � j � N and let 1 � k � N with k �= j, j + 1. Then one has either that

(a) for any ν ∈ N, Q
(j)
ν maps �1(k) to �1(j) and the sequence of norms

{‖Q
(j)
ν ‖�1(k),�1(j)} converges to 0 as ν → ∞, or that

(b) for any ν ∈ N, Q
(j)
ν maps �1(k) to �1(j + 1) and the sequence of norms

{‖Q
(j)
ν ‖�1(k),�1(j+1)} converges to 0 as ν → ∞.

In fact, it is shown in [4, Theorem 5.5] that

‖Q(j)
ν ‖�1(k),�1(j) � 2−ν for case (a),

‖Q(j)
ν ‖�1(k),�1(j+1) � 2−ν for case (b).

Now we are prepared to characterize compactness of T : Ā(α,β),q;J → B̄(α,β),q;J in terms
of T : ∆(Ā) → B̄(α,β),q;J .

Theorem 3.3. Let Π = P1 · · ·PN be the simplex, the unit square or any admissible
polygon with vertices Pj = (xj , yj), let (α, β) ∈ IntΠ and 1 � q � ∞. Assume that
Ā = {A1, . . . , AN} and B̄ = {B1, . . . , BN} are Banach N -tuples, and that T ∈ L(Ā, B̄).
Then T : Ā(α,β),q;J → B̄(α,β),q;J is compact if and only if the following conditions hold:

(a) T : ∆(Ā) → B̄(α,β),q;J is compact;

(b) sup
{∥∥∥∥T

( ∑
|m|>k, |n|>k

um,n

)∥∥∥∥
B̄(α,β),q;J

: ‖{um,n}‖�q(2−αm−βnGm,n) � 1
}

→ 0

as k → ∞.

Proof. First note that, by (ii), condition (b) is equivalent to

sup
{∥∥∥∥T

( ∑
(m,n)/∈Ω

(0)
ν

um,n

)∥∥∥∥
B̄(α,β),q;J

: ‖{um,n}‖�q(2−αm−βnGm,n) � 1
}

→ 0

as ν → ∞. That is to say, (b) is equivalent to the following.

(b′) ‖Tπ − TπQ(0)
ν ‖�q(2−αm−βnGm,n),B̄(α,β),q;J

→ 0 as ν → ∞.
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Suppose that (a) and (b′) are satisfied. Using (III), we can factorize

TπQ(0)
ν : �q(2−αm−βnGm,n) → B̄(α,β),q;J

as

�q(2−αm−βnGm,n)
Q(0)

ν−−−→ ∆(�̄1)
π−→ ∆(Ā) T−→ B̄(α,β),q;J .

Hence, (a) implies that TπQ
(0)
ν is compact for any ν ∈ N. By (b′), it follows that Tπ :

�q(2−αm−βnGm,n) → B̄(α,β),q;J is compact. Since π is a metric surjection, we conclude
that T : Ā(α,β),q;J → B̄(α,β),q;J is compact.

Conversely, if T : Ā(α,β),q;J → B̄(α,β),q;J is compact, then (a) follows from the embed-
ding ∆(Ā) ↪→ Ā(α,β),q;J . In order to establish (b′), observe that

(I − Q(0)
ν ) ◦ (I − Q

(0)
ν+1) = I − Q

(0)
ν+1, ν ∈ N.

Thus, the sequence

{‖Tπ(I − Q(0)
ν )‖�q(2−αm−βnGm,n),B̄(α,β),q;J

}

is non-increasing. Let δ be its limit. We need to show that δ = 0. Find {wν} ⊆
U�q(2−αm−βnGm,n) such that

δ = lim
ν→∞

‖Tπ(I − Q(0)
ν )wν‖B̄(α,β),q;J

.

The sequence {π(I − Q
(0)
ν )wν} is contained in UĀ(α,β),q;J

because

‖I − Q(0)
ν ‖�q(2−αm−βnGm,n),�q(2−αm−βnGm,n) � 1.

By the compactness of T , we may suppose, passing to a subsequence if necessary, that
{Tπ(I − Q

(0)
ν′ )wν′} converges to some b in B̄(α,β),q;J . Therefore, ‖b‖B̄(α,β),q;J

= δ.
Note that, by (I),

Tπ(I − Q
(0)
ν′ )wν′ =

N∑
j=1

TπQ
(j)
ν′ wν′ .

We shall show that b = 0, and therefore δ = 0, by establishing that {TπQ
(j)
ν′ wν′} → 0 in

Σ(B̄) for j = 1, . . . , N .
Fix 1 � j � N and choose any 1 � k � N with k �= j, j + 1. By (IV), either

Q
(j)
ν : �1(k) → �1(j) for any ν ∈ N and their norms tend to 0 as ν → ∞, or Q

(j)
ν :

�1(k) → �1(j + 1) for any ν ∈ N and ‖Q
(j)
ν ‖�1(k),�1(j+1) → 0 as ν → ∞. It follows from

the interpolation formula (3.2) and the estimate (2.2) that Q
(j)
ν′ maps �q(2−αm−βnGm,n)

to �1(j) + �1(j + 1) with

‖Q
(j)
ν′ ‖�q(2−αm−βnGm,n),�1(j)+�1(j+1) → 0 as ν′ → ∞.

This yields that {TπQ
(j)
ν′ wν′} is a null sequence in Σ(B̄) and completes the proof. �

Next we shall use Theorem 3.3 to derive the following result due to Cobos and Peetre [4,
Theorem 6.1].
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Corollary 3.4. Let Π be the simplex, the unit square or any admissible polygon, let
(α, β) ∈ IntΠ and 1 � q � ∞. Assume that Ā = {A1, . . . , AN} and B̄ = {B1, . . . , BN}
are Banach N -tuples, and let T ∈ L(Ā, B̄) such that T : Aj → Bj is compact for every
1 � j � N . Then

T : Ā(α,β),q;J → B̄(α,β),q;J

is compact.

Proof. Since T : Aj → Bj compactly, T : ∆(Ā) → Bj is compact for j = 1, . . . , N .
Applying a Lions–Peetre-type compactness result due to Cobos and Peetre [4, Theorem
4.3], we find that Theorem 3.3 (a) holds. Let us show that (b′) also holds. Using (I), we
have

Tπ − TπQ(0)
ν =

N∑
j=1

TπQ(j)
ν .

Hence,

‖Tπ − TπQ(0)
ν ‖�q(2−αm−βnGm,n),B̄(α,β),q;J

�
N∑

j=1

‖TπQ(j)
ν ‖�q(2−αm−βnGm,n),B̄(α,β),q;J

.

Take any 1 � j � N ; let us check that

‖TπQ(j)
ν ‖�q(2−αm−βnGm,n),B̄(α,β),q;J

→ 0 as ν → ∞. (3.3)

By (3.2) and the norm estimate (2.1), we have

‖TπQ(j)
ν ‖�q(2−αm−βnGm,n),B̄(α,β),q;J

� C max
{i,r,s}∈Pα,β

{‖TπQ(j)
ν ‖ci

�1(i),Bi
‖TπQ(j)

ν ‖cr

�1(r),Br
‖TπQ(j)

ν ‖cs

�1(s),Bs
}.

Therefore, in order to establish (3.3) it suffices to prove that, for any 1 � k � N with
k �= j, j + 1, we have

‖TπQ(j)
ν ‖�1(k),Bk

→ 0 as ν → ∞. (3.4)

Since Q
(j)
ν−1 ◦ Q

(j)
ν = Q

(j)
ν , the sequence {‖TπQ

(j)
ν ‖�1(k),Bk

} is non-increasing. Let µ be
its limit. Choose a sequence {uν} ⊆ U�1(k) such that µ = limν→∞ ‖TπQ

(j)
ν uν‖Bk

. By (II),
the sequence {πQ

(j)
ν uν} is bounded in Ak. Using the compactness of T : Ak → Bk, we

can find a subsequence {TπQ
(j)
ν′ uν′} converging to some b in Bk. Therefore, µ = ‖b‖Bk

.
Again, it follows by (IV) that {TπQ

(j)
ν′ uν′} converges to 0 in Σ(B̄). Consequently, b = 0

and so µ = 0. This establishes (3.4) and completes the proof. �

4. Compactness and K-spaces

In this section we investigate operators interpolated by the K-method. If Π = P1 · · ·PN is
a convex polygon with vertices Pj = (xj , yj) and B̄ = {B1, . . . , BN} is a Banach N -tuple,
we denote by Fm,n the Banach space Σ(B̄) provided with the norm K(2m, 2n; ·). We put

�∞(j) = �∞(2−xjm−yjnFm,n), j = 1, . . . , N, and �̄∞ = {�∞(1), . . . , �∞(N)}. (4.1)
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Given any (α, β) ∈ IntΠ and 1 � q � ∞, it follows from [4, Theorem 3.1] that

(�̄∞)(α,β),q;K = �q(2−αm−βnFm,n) (equivalent norms). (4.2)

Let ι be the operator assigning to each b ∈ Σ(B̄) the constant sequence ιb =
(. . . , b, b, b, . . . ). Clearly, ι ∈ L(Bj , �∞(j)) for j = 1, . . . , N . It is also immediate that
ι acting from B̄(α,β),q;K into �q(2−αm−βnFm,n) is an isometric embedding.

We start by characterizing those interpolated operators which belong to a given injec-
tive closed operator ideal satisfying the Σq-condition. The result complements [9, Theo-
rem 2.6] and [8, Theorem 3.1].

Theorem 4.1. Let Π = P1 · · ·PN be a convex polygon in R
2 with vertices Pj =

(xj , yj), let (α, β) ∈ IntΠ, 1 < q < ∞ and let I be an injective closed operator ideal
which satisfies the Σq-condition. Assume that Ā = {A1, . . . , AN} and B̄ = {B1, . . . , BN}
are Banach N -tuples and let T ∈ L(Ā, B̄).

Then a necessary and sufficient condition for T : Ā(α,β),q;K → B̄(α,β),q;K to belong to
I is that T : Ā(α,β),q;K → Σ(B̄) belongs to I.

Proof. Since B̄(α,β),q;K ↪→ Σ(B̄), if T ∈ I(Ā(α,β),q;K , B̄(α,β),q;K), it follows that T ∈
I(Ā(α,β),q;K , Σ(B̄)).

Conversely, if T ∈ I(Ā(α,β),q;K , Σ(B̄)), then for all (r, s) ∈ Z
2 we have that Or,sιT

belongs to I(Ā(α,β),q;K , 2−αr−βsFr,s). Here {Or,s} are the operators introduced in the
definition of Σq-condition (see § 2). Since I satisfies the Σq-property, we derive that
ιT : Ā(α,β),q;K → �q(2−αm−βnFm,n) belongs to I. Finally, injectivity of I implies that

T ∈ I(Ā(α,β),q;K , B̄(α,β),q;K).

�

Working with the unit square, N -tuples

Ā = {�1, �1(2−m), �1(2−m−n), �1(2−n)}, B̄ = {�∞, �∞(2−m), �∞(2−m−n), �∞(2−n)}

and the same operator as in Example 3.2, it is not difficult to show that compactness
of T : Ā(α,β),q;K → Σ(B̄) is not sufficient to yield that T : Ā(α,β),q;K → B̄(α,β),q;K

is compact. Indeed, in this case we have Σ(B̄) = �∞(min{1, 2−m, 2−m−n, 2−n}) and,
by [4, Corollary 3.2],

Ā(α,β),2;K = B̄(α,β),2;K = �2(2−αm−βn).

Therefore, if T is as in Example 3.2, we have that T : Ā(α,β),2;K → Σ(B̄) is compact but
T : Ā(α,β),2;K → B̄(α,β),2;K fails to be compact.

In order to determine compactness of operators interpolated by the K-method, let Π

be the simplex, the unit square or any admissible polygon and let {Ω
(r)
ν }0�r�N,ν∈N be

the family of subsets of R
2 described in § 3. We introduce a new family of subsets by

putting
Ω̃(r)

ν = {(m, n) ∈ R
2 : (−m,−n) ∈ Ω(r)

ν }.
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Given any Banach N -tuple B̄ = {B1, . . . , BN}, we consider the family of projections
{R

(r)
ν }0�r�N,ν∈N on �̄∞ defined by

R(r)
ν {vm,n} = {wm,n}, where wm,n =

{
vm,n if (m, n) ∈ Ω̃

(r)
ν ,

0 otherwise.

These projections satisfy the following properties.

(I′) The identity operator I on Σ(�̄∞) can be written as

I =
N∑

r=0

R(r)
ν , ν = 1, 2, . . . .

(II′) Projections are uniformly bounded in �̄∞,

‖R(r)
ν ‖�∞(j),�∞(j) = 1 for any ν ∈ N, 0 � r � N and 1 � j � N.

(III′) For each ν ∈ N, R
(0)
ν ∈ L(Σ(�̄∞), ∆(�̄∞)).

(IV′) Let 1 � j � N and let 1 � k � N with k �= j, j + 1. Then one has that either

(a) for any ν ∈ N, R
(j)
ν maps �∞(j) to �∞(k) and the sequence of norms

{‖R
(j)
ν ‖�∞(j),�∞(k)} converges to 0 as ν → ∞, or

(b) for any ν ∈ N, R
(j)
ν maps �∞(j + 1) to �∞(k) and the sequence of norms

{‖R
(j)
ν ‖�∞(j+1),�∞(k)} converges to 0 as ν → ∞.

To check property (IV′) observe that if

〈(m, n), Pk − Pj〉 � −ν for all (m, n) ∈ Ω(j)
ν ,

then

〈(m, n), Pj − Pk〉 � −ν for all (m, n) ∈ Ω̃(j)
ν .

Here 〈· , ·〉 denotes the scalar product of R
2. The other properties are trivially fulfilled.

Theorem 4.2. Let Π = P1 · · ·PN be the simplex, the unit square or any admissible
polygon with vertices Pj = (xj , yj), let (α, β) ∈ IntΠ and 1 � q � ∞. Assume that
Ā = {A1, . . . , AN} and B̄ = {B1, . . . , BN} are Banach N -tuples, and that T ∈ L(Ā, B̄).

If

(a) T : Ā(α,β),q;K → Σ(B̄) is compact, and

(b) sup
{( ∑

|m|>k,|n|>k

(2−αm−βnK(2m, 2n; Ta))q

)1/q

: ‖a‖Ā(α,β),q;K
� 1

}
→ 0

as k → ∞,
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then
T : Ā(α,β),q;K → B̄(α,β),q;K

is compact.
Moreover, if q < ∞, then compactness of T : Ā(α,β),q;K → B̄(α,β),q;K implies condi-

tions (a) and (b).

Proof. According to (ii) and the definition of Ω̃
(0)
ν , we observe that the sets {Ω̃

(0)
ν }

are bounded, with Ω̃
(0)
1 ⊆ Ω̃

(0)
2 ⊆ · · · and, given any bounded set K ⊆ R

2, there exists
ν ∈ N such that K ⊆ Ω̃

(0)
ν . Therefore, condition (b) is equivalent to the following.

(b′) ‖ιT − R(0)
ν ιT‖Ā(α,β),q;K ,�q(2−αm−βnFm,n) → 0 as ν → ∞.

By (III′), the operator R
(0)
ν ιT can be factorized as

Ā(α,β),q;K
T−→ Σ(B̄) ι−→ Σ(�̄∞)

R(0)
ν−−−→ ∆(�̄∞) ↪→ �q(2−αm−βnFm,n).

Hence, condition (a) implies that, for each ν ∈ N, the operator

R(0)
ν ιT : Ā(α,β),q;K → �q(2−αm−βnFm,n)

is compact. Using (b′), we obtain ιT : Ā(α,β),q;K → �q(2−αm−βnFm,n) compactly. Since
ι is an isometric embedding, we conclude that T : Ā(α,β),q;K → B̄(α,β),q;K is compact.

Assume now that q < ∞ and T : Ā(α,β),q;K → B̄(α,β),q;K is compact. Condition (a)
follows from the embedding B̄(α,β),q;K ↪→ Σ(B̄). In order to establish (b′) take any ε > 0.
By compactness of T , there exists a finite set {a1, . . . , ap} ⊆ Ā(α,β),q;K such that

T (UĀ(α,β),q;K
) ⊆

p⋃
s=1

{Tas + 1
3εUB̄(α,β),q;K

}.

Properties of the sets Ω̃
(0)
ν , and so of the operators R

(0)
ν , and the assumption that q < ∞

yields that there exists a ν0 ∈ N such that if ν � ν0, then

‖ιTas − R(0)
ν ιTas‖�q(2−αm−βnFm,n) � 1

3ε, s = 1, . . . , p.

Consequently, for all ν � ν0, given any a ∈ UĀ(α,β),q;K
, if we choose s such that

‖Ta − Tas‖B̄(α,β),q;K
� 1

3ε,

we obtain

‖ιTa − R(0)
ν ιTa‖�q(2−αm−βnFm,n)

� ‖ιTa − ιTas‖�q(2−αm−βnFm,n) + ‖ιTas − R(0)
ν ιTas‖�q(2−αm−βnFm,n)

+ ‖R(0)
ν ιTas − R(0)

ν ιTa‖�q(2−αm−βnFm,n)

� 2‖Ta − Tas‖B̄(α,β),q;K
+ 1

3ε

� ε.

This gives (b′) and completes the proof. �

https://doi.org/10.1017/S0013091505001823 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091505001823


666 L. M. Fernández-Cabrera and A. Mart́ınez

Next we establish a formula for the measure of non-compactness of an operator inter-
polated by the K-method. Recall that if T ∈ L(A, B), the measure of non-compactness
β(T ) = β(TA,B) of T is defined as the infimum of all σ > 0 such that there exists a finite
number of elements b1, . . . , bs ∈ B such that

T (UA) ⊆
s⋃

j=1

{bj + σUB}.

Clearly, β(TA,B) � ‖T‖A,B , and T is compact if and only if β(T ) = 0. Other properties
of this notion can be found in [15,22].

Given any Banach N -tuple Ā = {A1, . . . , AN}, we denote by Ā◦ = {A◦
1, . . . , A

◦
N} the

Banach N -tuple formed by the closures of ∆(Ā) in Aj for 1 � j � N . We say that Ā is
regular if A◦

j = Aj for j = 1, . . . , N .

Theorem 4.3. Let Π = P1 · · ·PN be the simplex, the unit square or any admissible
polygon with vertices Pj = (xj , yj), let (α, β) ∈ IntΠ and 1 � q � ∞. Let Ā =
{A1, . . . , AN} be a regular Banach N -tuple, let B̄ = {B1, . . . , BN} be a Banach N -tuple
and assume that T ∈ L(Ā, B̄). Then

β(TĀ(α,β),q;K ,B̄(α,β),q;K
) � M

N∑
j=1

max
{i,r,s}∈Pα,β

{ηj,i(T )ciηj,r(T )crηj,s(T )cs}.

Here

ηj,k(T ) =

{
β(TAk,Bk

) if k �= j, j + 1,

‖T‖Ak,Bk
if k = j, j + 1,

and M is a constant depending only on Π and (α, β).

Proof. Using (I′) and the fact that ι : B̄(α,β),q;K → �q(2−αm−βnFm,n) is an isometric
embedding, we have

β(TĀ(α,β),q;K ,B̄(α,β),q;K
) � 2β(ιTĀ(α,β),q;K ,�q(2−αm−βnFm,n)) � 2β(R(0)

ν ιT )+2
N∑

j=1

β(R(j)
ν ιT ),

(4.3)
where we consider all operators R

(r)
ν ιT acting from Ā(α,β),q;K into �q(2−αm−βnFm,n).

Take any 1 � j � N . By [4, Theorem 3.1], the embedding (�̄∞)(α,β),q;K ↪→
�q(2−αm−βnFm,n) has norm less than or equal to 1. According to the estimate (2.1)
for the norms of interpolated operators, we get

β(R(j)
ν ιT )

� ‖R(j)
ν ιT‖Ā(α,β),q;K ,(�̄∞)(α,β),q;K ,

� C max{‖R(j)
ν ιT‖ci

Ai,�∞(i)‖R(j)
ν ιT‖cr

Ar,�∞(r)‖R(j)
ν ιT‖cs

As,�∞(s) : {i, r, s} ∈ Pα,β}. (4.4)

If k = j, j + 1, we have

‖R(j)
ν ιT‖Ak,�∞(k) � ‖T‖Ak,Bk

= ηj,k(T ).
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Assume that k �= j, j + 1 and take any ε > 0. By the definition of the measure of
non-compactness and the fact that Ā is a regular N -tuple, there exists a finite set
{a1, . . . , ap} ⊆ ∆(Ā) with ‖as‖Ak

� 1 for s = 1, . . . , p and such that

min{‖Ta − Tas‖Bk
: 1 � s � p} � 2(1 + ε)β(TAk,Bk

) for all a ∈ UAk
.

If we are, say, in the first case of (IV′), we can find ν0 ∈ N such that, for any ν � ν0,

‖R(j)
ν ‖�∞(j),�∞(k)‖ιTas‖�∞(j) � ε for s = 1, . . . , p.

Whence, for any a ∈ UAk
, choosing as so that ‖Ta − Tas‖Bk

� 2(1 + ε)β(TAk,Bk
), we

obtain

‖R(j)
ν ιTa‖�∞(k) � ‖R(j)

ν ι(Ta − Tas)‖�∞(k) + ‖R(j)
ν ιTas‖�∞(k)

� 2(1 + ε)β(TAk,Bk
) + ‖R(j)

ν ‖�∞(j),�∞(k)‖ιTas‖�∞(j)

� 2(1 + ε)β(TAk,Bk
) + ε.

This implies that
‖R(j)

ν ιT‖Ak,�∞(k) � 2β(TAk,Bk
) = 2ηj,k(T ).

Inserting these estimates in (4.4), we get for any ν � ν0

β(R(j)
ν ιT ) � 2C max

{i,r,s}∈Pα,β

{ηj,i(T )ciηj,r(T )crηj,s(T )cs}, j = 1, . . . , N. (4.5)

In order to deal with β(R(0)
ν ιT ), take any σj > β(TAj ,Bj

), j = 1, . . . , N . It is easy to
check that there are Banach spaces Zj and compact linear operators Sj ∈ L(Zj , Bj) such
that

T (UAj
) ⊆ σjUBj

+ Sj(UZj
), j = 1, . . . , N. (4.6)

Denote by (Z1 ⊕ · · · ⊕ ZN )�∞ the direct sum of Z1, . . . , ZN , normed by ‖(z1, . . . , zN )‖ =
max{‖zj‖Zj : 1 � j � N} and, for each (m, n) ∈ Z

2, write Wm,n = (Z1 ⊕ · · · ⊕ ZN )�∞ .
Given any ε > 0 and any (r, s) ∈ Z

2, consider the operator S : �q(Wm,n) →
�q(2−αm−βnFm,n) defined by S{wm,n} = {bm,n} with

bm,n =

⎧⎪⎪⎨
⎪⎪⎩

N∑
j=1

(1 + ε)2(α−xj)(m+r)+(β−yj)(n+s)Sjwj,m,n if (m, n) ∈ Ω̃
(0)
ν ,

0 otherwise,

where wm,n = (w1,m,n, . . . , wN,m,n). The operator S is compact because, using projec-
tions from the vector-valued spaces into the factors and using the fact that each Sj is
compact and that the set Ω̃

(0)
ν is finite, S can be written as a finite sum of compact

operators. We will show that

R(0)
ν ιT (UĀ(α,β),q;K

)

⊆
(

(1 + ε)N max
1�j�N

{2r(α−xj)+s(β−yj)σj}
)

U�q(2−αm−βnFm,n) + S(U�q(Wm,n)). (4.7)
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Take any a ∈ UĀ(α,β),q;K
and set

dm,n = dm,n(a) = (1 + ε)2−αm−βnK(2m, 2n; a).

Since K(2m+r, 2n+s; a) < 2α(m+r)+β(n+s)dm+r,n+s, we can decompose a in the form a =∑N
j=1 aj,m,n with aj,m,n ∈ Aj and

2(m+r)xj+(n+s)yj ‖aj,m,n‖Aj � 2α(m+r)+β(n+s)dm+r,n+s.

Then, since
‖d−1

m+r,n+s2
(xj−α)(m+r)+(yj−β)(n+s)aj,m,n‖Aj

� 1,

it follows from (4.6) that there exist zj,m,n ∈ UZj , j = 1, . . . , N , such that

‖Taj,m,n − Sj(2(α−xj)(m+r)+(β−yj)(n+s)dm+r,n+szj,m,n)‖Bj

� 2(α−xj)(m+r)+(β−yj)(n+s)σjdm+r,n+s. (4.8)

Let z = {((1 + ε)−1dm+r,n+szj,m,n)1�j�N}(m,n)∈Z2 . Then

‖z‖�q(Wm,n) � (1 + ε)−1(1 + ε)
( ∑

(m,n)∈Z2

(2−αm−βnK(2m, 2n; a))q

)1/q

� 1

and, by (4.8),

‖(R(0)
ν ιT )a − Sz‖q

�q(2−αm−βnFm,n)

�
∑

(m,n)∈Ω̃
(0)
ν

[
2−αm−βn

( N∑
j=1

2xjm+yjn‖Taj,m,n − 2(α−xj)(m+r)+(β−yj)(n+s)

× dm+r,n+sSjzj,m,n‖Bj

)]q

�
∑

(m,n)∈Ω̃
(0)
ν

(
2−αm−βn

N∑
j=1

2xjm+yjn2(α−xj)(m+r)+(β−yj)(n+s)σjdm+r,n+s

)q

�
(
N max

1�j�N
{2(α−xj)r+(β−yj)sσj}

)q ∑
(m,n)∈Ω̃

(0)
ν

dq
m+r,n+s

� (1 + ε)q
(
N max

1�j�N
{2(α−xj)r+(β−yj)sσj}

)q

.

This establishes (4.7).
Since ε > 0 is arbitrary, we obtain

β(R(0)
ν ιT ) � N inf

(r,s)∈Z2

(
max

1�j�N
{2(α−xj)r+(β−yj)sσj}

)
.

Then [7, Theorem 1.9] implies that

β(R(0)
ν ιT ) � ND max{σci

i σcr
r σcs

s : {i, r, s} ∈ Pα,β}.
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Consequently, for any ν ∈ N,

β(R(0)
ν ιT ) � D

N∑
j=1

max{ηj,i(T )ciηj,r(T )crηj,s(T )cs : {i, r, s} ∈ Pα,β}.

The last inequality along with (4.5) and (4.3) show that

β(TĀ(α,β),q;K ,B̄(α,β),q;K
) � M

N∑
j=1

max{ηj,i(T )ciηj,r(T )crηj,s(T )cs : {i, r, s} ∈ Pα,β},

where M = 2D + 4C. �

As an application we obtain the following result of Cobos and Peetre [4].

Corollary 4.4. Let Π be the simplex, the unit square or any admissible polygon, let
(α, β) ∈ IntΠ and 1 � q � ∞. Assume that Ā = {A1, . . . , AN} and B̄ = {B1, . . . , BN}
are Banach N -tuples, and let T ∈ L(Ā, B̄) such that T : Aj → Bj compactly for every
1 � j � N . Then

T : Ā◦
(α,β),q;K → B̄◦

(α,β),q;K

is compact.

Proof. For 1 � j � N , the operator T : A◦
j → B◦

j is still compact and the N -tuple
Ā◦ = {A◦

1, . . . , A
◦
N} is regular, so Theorem 4.3 gives the desired result. �

Remark 4.5. The proof given by Cobos and Peetre (see [4, Theorem 6.3]) is not
entirely correct. They work with the sets {Ω

(r)
ν } and the projections associated with

them, but the property they really need on [4, p. 399] is not (IV), but (IV′). If one works
instead with the projections associated with the sets {Ω̃

(r)
ν }, then their arguments are

correct.

We end the paper with a result that characterizes compactness of interpolated opera-
tors between N -tuples with the property that J- and K- spaces coincide.

Corollary 4.6. Let Π be the simplex, the unit square or any admissible polygon, let
(α, β) ∈ IntΠ and 1 � q � ∞. Assume that Ā = {A1, . . . , AN} and B̄ = {B1, . . . , BN}
are Banach N -tuples with Ā(α,β),q;J = Ā(α,β),q;K and B̄(α,β),q;J = B̄(α,β),q;K , and let
T ∈ L(Ā, B̄).

If

(a) T : ∆(Ā) → Σ(B̄) is compact,

(b) sup
{∥∥∥∥T

( ∑
|m|>k,|n|>k

um,n

)∥∥∥∥
B̄(α,β),q;J

: ‖{um,n}‖�q(2−αm−βnGm,n) � 1
}

→ 0

as k → ∞,

(c) sup
{( ∑

|m|>k,|n|>k

(2−αm−βnK(2m, 2n; Ta))q

)1/q

: ‖a‖Ā(α,β),q;K
� 1

}
→ 0

as k → ∞,
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then

(d) T : Ā(α,β),q;K → B̄(α,β),q;J is compact.

Furthermore, if q < ∞, then (d) implies (a), (b) and (c).

Proof. Assume first that 1 � q < ∞ and that (d) holds. Then (a) is a consequence
of the factorization

∆(Ā) ↪→ Ā(α,β),q;K
T−→ B̄(α,β),q;J ↪→ Σ(B̄).

Moreover, since restrictions

T : Ā(α,β),q;J → B̄(α,β),q;J , T : Ā(α,β),q;K → B̄(α,β),q;K

are compact as well, (b) and (c) follow from Theorems 3.3 and 4.2.
Conversely, if 1 � q � ∞ and (a)–(c) are satisfied, then, using the diagram

�q(2−αm−βnGm,n)
Q(0)

ν−−−→ ∆(�̄1)
π−→ ∆(Ā) T−→ Σ(B̄) ι−→ Σ(�̄∞)

R(0)
ν−−−→ �q(2−αm−βnFm,n),

we find that R
(0)
ν ιTπQ

(0)
ν is compact for each ν ∈ N. We claim that

{R(0)
ν ιTπQ(0)

ν } → ιTπ in L(�q(2−αm−βnGm,n), �q(2−αm−βnFm,n)).

Indeed, by conditions (b) and (c), we obtain

‖ιTπ − R(0)
ν ιTπQ(0)

ν ‖�q(2−αm−βnGm,n),�q(2−αm−βnFm,n)

� C‖(I − R(0)
ν )ιT‖Ā(α,β),q;K ,�q(2−αm−βnFm,n)

+ C‖Tπ(I − Q(0)
ν )‖�q(2−αm−βnGm,n),B̄(α,β),q;J

→ 0 as ν → ∞.

This implies that ιTπ : �q(2−αm−βnGm,n) → �q(2−αm−βnFm,n) is compact, and there-
fore T : Ā(α,β),q;J → B̄(α,β),q;K compactly. Finally, since Ā(α,β),q;J = Ā(α,β),q;K and
B̄(α,β),q;J = B̄(α,β),q;K , we derive that T : Ā(α,β),q;K → B̄(α,β),q;J is compact. �
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