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Abstract. We consider a certain analytic function /3 (t) which is an invariant of finite
equivalence between two finite state Markov chains. If two such chains P, Q have
the same /8-iunction we wish to prove that they are finitely equivalent. To this end
we show that U(t)P' = Q'U(t) has a nontrivial matrix solution U over the ring
Z(exp) of integral combinations of exponential functions. In fact we can force U(t)
to be strictly positive at any specified t0. If U(t) has entries from Z+(exp), the
sub-semi-ring of positive integral combinations of exponential functions, then
P, Q are finitely equivalent. Many examples reinforce the conjecture that U(t)
may always be chosen over Z+(exp) when P, Q have the same /3-function. We
relate the /8-function to topological entropy, measure entropy and information
variance.

0. Introduction
In recent years a number of ergodic theorists have directed their attention to
classification problems which differ from the classical one by being restricted to
shift spaces (usually with an invariant measure) and by the imposition of state-
structure restraints on homomorphisms. We cite [1], [4], [7], [10], [14] and [15]
as examples of papers which fall into this category. The first named author, in
particular, has investigated a number of problems with the aid of what he has called
the information cocycle. In [14] the second named author derived a new invariant
by a limiting operation on the information cocycle and used it to investigate very
strict forms of isomorphism for Markov chains. This invariant is an analytic function
P : U-> U+. In particular, if two Markov chains are finitely equivalent then they have
the same /3-function. Our aim is to study the /3-function and to provide results
which go some way towards establishing the converse of the last statement. We
also illustrate the converse with examples which show that the invariant is well
fitted (we conjecture perfectly fitted) to finite equivalence.

We start by giving some basic definitions. In § 2 we define the /3-function and
show that it is an invariant of finite equivalence. Examination of its derivatives
reveals that it contains all invariants of finite equivalence known to us. Many of
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the properties established could be derived from the work of Ruelle in [12], but
we give direct proofs for the sake of completeness.

Section 3 is purely topological and introduces the ideas and techniques that will
be extended later to cover the measure-theoretic aspect of finite equivalence of
Markov chains. Apart from the new proof of Furstenberg's lemma and some
observations, this section is taken from [7].

In § 4 we confine our attention to so-called dichotomies. These are finite
equivalences involving the measure-theoretic analogues of right and left resolving
maps of Adler & Marcus [1] (amalgamations and divisions in [7] and [15]). Given
two stochastic matrices M, P we ask for a commutative diagram which splits as
in figure 1. Here, the entries of M, P are raised to the power of t, Q, and D, are
variable matrices depending on t, A is an amalgamation matrix and D, has division
shape. This situation obtains precisely when M, P are finitely equivalent through
right and left resolving maps. Analytically, it turns out that the commutative diagram
(figure 2) can be split precisely when U, has for its entries non-negative integral
combinations of exponential functions. In § 5 we investigate the possibility of
obtaining such a diagram when M, P have the same /3-function. It turns out that
we can always obtain a diagram in which the entries of U, are integral combinations
of exponential functions which reduce to positive integers at t = 0. This result is
not quite strong enough to establish a completely general classification theory. We
have not been able to obtain non-negative integral combinations of exponentials.
However, in the final section we describe a number of examples which illustrate
our theory and which tend to indicate the possibility of a future complete theory.
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Before turning to definitions, a few words about the special nature of dichotomies
are in order. It seems that much work needs to be done to understand the nature
and structure of bounded-to-one measure preserving continuous maps. Right and
left resolving maps are by no means the most general. Adler & Marcus have
conjectured in [1], however, that all bounded-to-one continuous semi-conjugacies
are compositions of finite sequences of such maps. (A recent unpublished result of
B. Kitchens on the zeta function seems to be in line with this conjecture.) Right
resolving (and left resolving) maps lie somewhere between the generality of
bounded-to-one continuous maps and the speciality of bounded-to-one open maps.
Indeed, it is not hard to prove that right resolving maps are (when interpreted on
the level of one-sided shifts) precisely the bounded-to-one open maps semi-
conjugating a one-sided subshift of finite type to another. (A similar statement
holds for left resolving maps.) Openness on the one-sided level does not imply
openness on the two-sided level. These few remarks do little to clarify the general
structure of semi-conjugating maps. They may be enough, however, to indicate
that there is indeed a problem. The special choice of resolving maps in this paper
(as in [1] and [7]) is dictated by the availability of relevant matrix theory, in
particular the ideas centering on the results of Perron and Frobenius.

1. Preliminaries
Let S be an n x n irreducible 0-1 matrix. Give the set

the discrete topology and

the product topology. Consider the subspace X of 2 defined by

X = {x = (xt) e 2 : S(x,, xl+i) = 1, V; e Z}.

The shift S is defined by

(Sx)i=xi+i forx = (xi).

5 is a homeomorphism of the compact, metrizable space X. (X, S) ig called the
topological Markov chain (or subshift of finite type) defined by the matrix S. The
fact that we denote the defining matrix and the shift by the same symbol should
not lead to any confusion. A(S) is called the state space (or the alphabet) of (X, S).
If P is an n x n stochastic matrix compatible with the matrix 5 (i.e. P(i, j) = 0 iff
S(i, j) = 0), then the (shift invariant) Markov measure defined by P has as its support
the topological Markov chain defined by S. We shall always regard Markov measures
as being defined on their supporting topological Markov chains. The sets

[»o • • • iiT = {(*.) e X: xm = i0, xm+i = iu ..., xm+i = /;}

(/, m € Z, / > 0, /o , . . . , J; € A(S)) are cylinders. They are closed-open and they form
a base for the topology of X. Moreover, finite unions of cylinders give all closed-open
subsets of X. Write [J0 • • • J<] for [i'o • • • J|]°. The state partition consists of the
cylinders [J], isA(S).

https://doi.org/10.1017/S0143385700001279 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700001279


306 W. Parry and S. Tuncel

A topological Markov chain (X, S) is said to be a finite extension of another,
(Y,T) (and (Y,T) a finite factor of (X, S)) if there exists a bounded-to-one
continuous surjection </>: X -* Y with <f>S = T<j>. Two topological Markov chains
(Vi, 7\) and (Y2, T2) a r e s a ^ t o ^e finitely equivalent if they have a common finite
extension.

Let (X,S) and (Y,T) be topological Markov chains and let <j>:X^Y be a
continuous map with <f>S = T<(>. Then for each cylinder [/], jeA(T), (£"'([/]) is
closed-open, and therefore a finite union of cylinders. This allows us to find integers
k, I withO</<fc and a map (/><,: ACS)*-* A(T) such that

4>(x)n+l = <t>o(Xn, Xn + i, . . . , Xn+k-l)

for all n £ Z whenever i = (j;n)eX. (By composing </> with a power of the shift we
may, and shall, assume that / = 0.) In other words we may find an integer k such
that the image of any point is determined by looking at its blocks of length fc-such
a map is called a k-block map. If (Y\, Tx) and (Y2, T2) are finitely equivalent
topological Markov chains, we may choose their common extension so that the
two factor maps are 1-block maps. (See [3] and [5].)

Let </>: X-* Y be a 1-block map between topological Markov chains (X, S) and
(Y, T). Suppose <f> is determined by the map <f>0: A(S)-*A(T). <f> is called right
resolving if, given (jo,ji)eA(T)2 with T{jo,j\) = l and loe^o'O'o). there exists a
unique /'16 <f>o * (/1) with S(i0, I'I) = 1. <j> is called left resolving if, given (/0, y'i) £ A(T)2

with T(jo,ji) = 1 and /ie<^o1(/i). there exists a unique /oe^o'O'o) withS(r0, i\) = 1.
(See [1].)

A Markov chain (X, S,m) is said to be a finite extension of another, (Y, T, p)
(and (Y, T, p) a finite factor of (X, S, m)), if there exists a bounded-to-one continuous
measure preserving surjection <f>: X -* Y with 4>S = T<f>. Two Markov chains
(Yi, T\, pi) and (Y2, T2, Pi) are said to be finitely equivalent if they have a common
Markov finite extension, (X, S,m) say. This may be pictured as in figure 3.

(X,S,m)

(YuTuPt) (Y2,T2,p2)

FIGURE 3

Finite equivalence of topological Markov chains was introduced in [7], where
topological entropy was shown to be a complete invariant for this equivalence
relation. (This proof will be given in § 3.) A refinement of finite equivalence was
investigated by Adler & Marcus [1]. A direct proof that finite equivalence of
topological Markov chains is an equivalence relation may be found in [1]. Finite
equivalence of Markov chains was proved in [14] to be an equivalence relation-the
proof is a combination of the topological proof of [1] with the following lemma.

1. LEMMA [14]. Let (Y, T, p) be a Markov chain and (X, S) a topological Markov
chain. If <j> : X -* Y is a bounded-to-one continuous surjection satisfying 4>S = T<f>
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then on (X, S) there is a unique invariant probability m which makes <f> measure
preserving, m is multiple Markov. If <f> is a k-block map then m has memory at
most k.

The information cocycle of a Markov chain (X, S, m) with state partition a is denned
to be

/ s = /(a|5"1a) = - I xu^ogm([i]\S-la).
ieA(S)

If (X, S, m) is denned by the stochastic matrix P with left invariant probability
vector p, pP = p, then

i.jeA(S)

The main result connecting information cocycles and finite factor maps is:

2. THEOREM [8]. Let (X, S, m) and (Y, T, p) be Markov chains. If (Y, T, p) is a
finite factor of (X, S, m) by <f>: X -> Y then

Is=IT°<f>+g°S-g

for some continuous g: X ->U. If <f> is a k-block map then g is a function of (at most)
k coordinates, i.e.

g(x) = g(xo,...,xk-l) forx = (xn)sX.

2. The (3-function
Let P = (P(i,;)) be an irreducible stochastic matrix. For each t e U consider the
matrix P' whose (/, /) entry is P(i, j)' when P(i, j) > 0 and is zero otherwise, and let
pP(t) be the maximum eigenvalue of P' given by the Perron-Frobenius theorem
(see [13]). Thus f}P is a positive function /3 P : R-> R+. Let (X, S, m) be the Markov
chain denned by P. The ^-function oi{X, S, w)is/3s = /8P. Write 2 n ( / s ) for Y."Zl Is°S\

3. LEMMA. Let (X, S,m) be a Markov chain and let teU. Then

lim - log f exp {fLn(Is)}dm = log /3S(1 - 1 ) .

Proof. Suppose (X, S,m) is denned by the matrix P with left invariant vector p,
pP = p. Then

'p(io)P(io, ii)P{iu i2) • • • P(in-i,in)\

and
f IK,TMJ f v {pdo)P{io, h) • • • P(in-u in)\ '

exp{tln(Is)}dm = X Xu0- un 7^. dm

= I p(io)l~'p(in)'(P(io, h) • • • PUn-i, in))1''.

There exist constants k, K such that
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for all O'o, »n) e A(S)2 hence

* I (PUo, »i) • • • PU«-u U)1" =£ f exp {fSn(/s)} dm
io,...,in J

and

lim - log f exp {tJ.H(Is)} dm = lim - log I (P(i0, ix) • • • P(in.u in))
l~',

provided the last limit exists.
Choose a strictly positive vector v such that

P1-'v=/3s(l-t)v.

This is possible by the Perron-Frobenius theorem. By an argument similar to the
above,

l i m - l o g I (P(io, h) • • • P(in~u in))l~'
n~*ao f% io,...,in

= lim - log I P(i0, ii)
1"' • • • P(in-u in)'~'v(in)

n-*°° n io,...,in

= l im-log X P(io, ii)1'' • • • P(in~2, L-i^iXPttn-u /n)
1"'u(in

= l im-log _ I P(io,h)1"---P(in-2,in-i)1~'v(in-i)Ps{l-t)

= lim — log (/3S(1 - t)n X v(i0)) (by repeating the last step n times)

= log0s(l-O. •

4. PROPOSITION [14]. Let (X, S, m) and (Y, T,p) be Markov chains. If (Y, T,p)
is a finite factor of (X, S, m) then @s = PT-

Proof. Let </>: X -> Y be the finite factor map. By (2),

for some continuous g: X -* U. Note that g is bounded, as X is compact. Using (3)
we have, for any t e U,

log |8 s ( l -0= l im-log [ exp{t1.n(Is)}dm

= l im-log f exp{fZn(lT°</>)}• exp{t(g°S"-g)}dm

= lim — log exp {fLn{IT)°<f>} dm (since g is bounded)
"-<*> n J

= l im-log f exp{fSn(/7-)}^=log/3r(l-f). D
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5. COROLLARY [14]. If the Markov chains (Yu Tupi) and (Y2, T2,P2) are finitely
equivalent, then (3Tl = /3T2.

Fix a Markov chain (X, S,m). We remark that

log (3s(t) = 0>(-tls),

the pressure of the function -tls. This is the form in which the invariant was
presented in [14]. We have given a direct proof of (3). The result can also be
deduced from Ruelle's operator theorem (see [12] and [14]). Next we shall discuss
the properties of /3S, and it will be apparent that the function /3S contains all invariants
of finite equivalence known to us. In fact we know only two other invariants:

h(S)=l Isdm

is the entropy of the Markov chain (X, S, m). (2) implies that entropy is an invariant
of finite equivalence.

Let v be a real-valued function depending on only two coordinates of X and
such that

I v dm = 0.

Then

o-2(v)= Hm - I (1nv)2 dm

exists (see the next theorem).

o-\S) = CT2(IS -h(S)) = lim - f (Us -nh(S))2 dm

is called the information variance of (X, S, m). Information variance was introduced
as an invariant in [4]; that it is an invariant of finite equivalence follows from (2)
by the results of [4]. For the existence and characterization of information variance
we need:

6. THEOREM [9]. Suppose the Markov chain (X, S, m) is defined by an aperiodic
matrix P with invariant probability vector p, pP = p. Let v be a real-valued function
depending on only two coordinates of X and such that

J vdm = 0.

Then

2 f 2

<T (v)= v dm+2i^p(i)c(j)P(i,j)v(i,j),

where the vector c is uniquely determined by the properties Pnc -* 0 (as n -* oo) and

7. THEOREM. Let the Markov chain (X, S, m) be defined by the irreducible stochastic
matrix P and u be a real-valued function depending on two coordinates of X. Define
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a positive function y: R-» U+ by taking y(t) = yu{t) to be the maximum eigenvalue
of the matrix

(P(i,j) exp {tu (i,/)})

given by the Perron-Frobenius theorem. Then y is an analytic function,

y(0)=l , y'(0)=[u dm

and

Proof. Let P be k x k. Use the Perron-Frobenius theorem to find for each t e R a
unique probability vector

such that

I p,(t)P(i, j) exp {tu(i, /)} = y(/)p,(r) for all 1 < / < Jt. (*)
i

That y is an analytic function follows, for example, from the work of Bhatia &
Mukherjea [2]. It is not hard to show that p(t) is the normalization of the first row
of the matrix

(see [13]). Since y(t) is analytic, it follows that p(t) is also analytic. y(0) = 1 since
P is stochastic. Differentiating (*) with respect to t we have

y'(t)Pi(t) + y(t)p'i(t) = lp'i (t)P(i, j) exp {tu(/,;)} + E Pi(t)P{i, j)u(i, j) exp {tu(i, /)}.

(**)

Put t = 0 in (**), sum over j , and observe that, since Z,P/(f) = l, its derivative
^ • p } W s 0 to obtain

y'(0) = I p'i (0)P(i, j)+1 p,(0)Pd, /)«(«, /)

= lPi(0)P(i,j)u(U)=\udm.

To prove

y"(0) = a 2 ( u - 1 «)

we assume (for simplicity, the periodic case is similar) that P is aperiodic. Put

u

and

v(i,j) = u

Take
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and use (6) to write

where c is uniquely determined by P"c -* 0 (as n -* oo). Clearly

Since P is aperiodic
(P(O)

P"-*
\p(0)

the matrix with identical rows p(0). Hence

= 0

i.e.

5>(0)c, = 0.

Now using (**) we have

I Pi (0)c, = 1 y (O)pJ (0)c, + y'(0) I p,(O)c,

= I pj (O)P(i, /)c, + 1 p,(0)P(i, /)«(/, /)cy,

i.e.

p'(0), b). (***)

Differentiate (**) with respect to t, put t = 0, sum over /, and observe that X, p" (t) = 0
also to obtain

y"(0) = 2 1 P ; (0)P(», j)u(i, j) +1 p,(0)P(i, j)u (i, jf

= 2 1 p'i(0)(b, + h)+\ u2 (by the definition of b,)
i J

= 2lp;(0)6,-+f u2

i J

= 2Ip,(0)P(;,/)«(i,/)c, + J u2 (by(**•))

= 2 1 p, (O)P(i, /)(«(i, /) + h)c, + J (« + h f

y (by (6))

a
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8. COROLLARY. Let (X, S,m) be a Markov chain. /3S is an analytic function,

/?s(l) = l, P's(D =
and

If X does not consist of a single orbit, /3s(f) is strictly decreasing to zero as t -» oo.

Proof. Take u(i, /) = -log P(i, j) in (7) so that

and apply the theorem. For the last part, let t0 < 11. Then
p'o s p'l

and, if X does not consist of a single orbit, equality does not hold. That

Ps(to)>Ps{h)
is then a consequence of the Perron-Frobenius theorem (see [13]). We omit the
simple proof that /3s(t) -* 0 as t -» oo. •

We remark that in (7)
log y(t) = P(-Is + tu),

the pressure of the function —/s + tu. Using this observation, (7) and (8) may also
be deduced from the work of Ruelle [12].

3. Finite equivalence of topological Markov chains
As we have already remarked, it was proved in [7] that topological entropy is a
complete invariant for finite equivalence of topological Markov chains. In the next
section we shall refine the techniques of [7] to (stochastic) Markov chains. We now
study the construction of the (topological) finite equivalences in [7].

The main argument of [7] relies on a lemma of H. Furstenberg. We give a new
proof of this lemma. The proof, which is algebraic, will be extended later. (See
also [1] for an alternative proof.)

9. LEMMA (Furstenberg). Let S, T be irreducible non-negative integral matrices.
S, T have the same maximum eigenvalue iff there exists a strictly positive integral
matrix U with US = TU.

Proof. It is easy to see by using the Perron-Frobenius theorem that if US = TU
for some strictly positive integral matrix U then S, T have the same maximum
eigenvalue. Conversely, suppose 5 and T have the same maximum eigenvalue, /3.
Let xs, XT be the characteristic polynomials of S, T:

XsW = det (A/-S), *T(A) = det (A/- T).
Let s(A) be the first row of adj(AJ-S), and let T(A) be the first column of
adj (A7-T). The entries of T(A), S(A) and T(A)-S(A) belong to Z[A], the ring of
polynomials in A with integer coefficients. Moreover, T(/3) and s((3) are strictly
positive vectors (see [13]). Since

adj(A/-S)S = A adj(AJ-S)-*s(A)/,

T adj (A/- T) = A adj {\I-T)-XT(\)I,
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we have

where the matrices A, B are over Z[A].
We claim that there exists a monic polynomial x e 2[A] such that ^(/3) = 0 and

Xs = ux, XT = vx

for some u, v e Z[A]. Using XsiP) = XT(P) = 0 and the Euclidean properties of Q[A]
we can assert

where a, b e Z, u', v', x £ Z[A], x is primitive and x(P) ~ 0. Since Z[A] is a unique
factorization domain and x is primitive, we see that a\u' and b\v' in Z[A]. Let
u, v e Z[A ] satisfy

au = u', bv = v',

and note that ^ s is monic to complete the proof of our claim. Let d > 1 be the
degree of x- Use the fact that x is monic to reduce the polynomials in T(A)S(A)

modulo x to obtain a matrix V(X) over Z[A ]. Since x \xs and x \XT in Z[A ], we obtain
from (*) an equation

where the matrix C(A) is also over Z[A]. Write

Vj over Z for i — Q,\,...,d — \. Since xW has degree d, C must be the zero
matrix and we have

ViS=TVi f o r / = 0 , l , . . . , d - l .

Let a be a strictly positive vector such that So- = /3<r. There exists an ;', 0 < / < <i - 1 ,
such that VfO- # 0, for otherwise we would have 0 = r(/3)s(j8)cr, a product of strictly
positive matrices. The matrix U we require is obtained by modifying Vt. We assume
that S, T are aperiodic; the periodic case is similar. By Perron-Frobenius theory,
5"//3" tends to <rs(/3) as M-MX>. Thus each row of ViSn/p" tends to a constant
multiple of s(|3). Similarly, each column of

ViSn/P" = TnVi/pn

tends to a constant multiple of rQ3). It follows that either ViS"/p" tends to the
zero matrix, or the entries of V,5" are all non-zero and have the same sign for
large n. But, since

ViS"/P" cannot tend to the zero matrix. Hence we may find n such that V,S" is
strictly positive or strictly negative. Accordingly, take

U=ViS" or U = -ViSn. •

As in [7], we shall use Williams' technique of splitting non-negative integral matrices
into products of division and amalgamation matrices.
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A rectangular 0-1 matrix is called a division matrix if its rows are non-trivial
and each column contains exactly one non-zero entry. A 0-1 matrix is called an
amalgamation matrix if its transpose is a division matrix.

10. PROPOSITION [15]. IfNis a non-trivial non-negative integral matrix, then it can
be written as N = DA, where D is a division matrix and A is an amalgamation
matrix. This decomposition into the product of a division matrix with an amalgamation
matrix is essentially unique in the sense that, if N = D'A' also, then D' = DR,

A' = R ~lA for some permutation matrix R.

If (X, S) is a topological Markov chain, the topological entropy of (X, S) is given
by log/?, where /8 is the maximum eigenvalue of the matrix S. We shall use the
following lemma (see [3], [7] or [8]):

11. LEMMA. / / (X, 5), (Z, W) are topological Markov chains and if <f>: Z ->X is a
continuous surjection with <f>W = S<f> then <f> is bounded-to-one iff the matrices S, W
have the same maximum eigenvalue.

12. PROPOSITION [7]. Let (X, S) and (Z, W) be topological Markov chains. If their
defining matrices satisfy AS = WA for some amalgamation matrix A then (X, S) is
a finite factor of {Z, W) by a right resolving 1 -block map.

Proof. Define <f>0: A(W)->A(S) by putting <f>o(zo) = xo whenever A(z0, xo) = l.
Since A is an amalgamation, for each zoe.A(W) there exists a unique xoeA(S)
such that A(z0, x0) = 1, and the map <f>0 is well denned. Note that since S is 0-1
and A an amalgamation, AS = WA is 0-1. If W(z0> Zi) = 1 then

so that
1 = (WA)(zo, <f>oz,) = (AS)(z0, <t>ozi)

= A(z0, 4>oZo)S(<j>0Zo, 4>0Zi).
Thus,

W(z0, z i ) = 1 implies S{<t>ozo, 4>oZi) = 1

and the 1-block map </>: Z -*X,
<Mz) = {<£o(z,)} for z={z,},

is well denned. Clearly <t>W = Scf>. Given x0, xi&A(S) with S(xo,xi) = l and
z0 e A (W) with c/>ozo = *o we have

1 = A(z0, xo)S(xo, *i) = (AS)(z0, *i)

= (WA)(z0, Xl) = W(z0, Zi)A(zi, xi)

for a uniquely denned ZieA(W). It follows that <t> is right resolving. Surjectivity
follows from the right resolving property. Let x = (xj)eX. For each n s 0 use the
right resolving property to find zMeZ such that

(ct>zM)i=xi fo r />-n .

Any limit point z of z(n) has <j>z = x. Finally, to see that <f> is bounded-to-one note
that AS = WA implies that 5, W have the same maximum eigenvalue, and
use (11). •
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Interchanging the roles of rows and columns in the above proof we obtain:

315

13. PROPOSITION [7]. Let (Y, T) and (Z, W) be topological Markov chains. If their
defining matrices satisfy TD=DW for some division matrix D, then (Y, T) is a
finite factor of (Z, W) by a left resolving 1 -block map.

It is not hard to see that (12) gives all right resolving 1-block finite factor maps.
Let (X, S), (Z, W) be topological Markov chains and let (X, S) be a finite factor
of (Z, W) by a right resolving 1-block map <f>:Z^X, given by </>0: A(W)^A{S).
Use <j>o to define an amalgamation Ao by putting

A0(z0, *o) = l iff x0 = 4>oZO.

Then A0S = WA0 and <£ is simply the map obtained from A0S = WA0 by (12).
Similarly, if the topological Markov chain (Y, T) is a finite factor of (Z, W) by a
left resolving 1-block map t//, then there exists a division matrix Do such that
TD0 = D0W and \\i is the map obtained from TD0 = D0W by (13). Consequently,
if (Y, T) and (X, S) have a common finite extension (Z, W) by 1-block maps
ip: Z -> Y and cf>: Z ->X which are, respectively, left and right resolving, then there
exists a non-trivial non-negative integer matrix U satisfying US = TU. (Take
U = D0A0 above.)

14. THEOREM [7]. Two topological Markov chains are finitely equivalent iff they
have the same topological entropy (i.e. iff their defining matrices have the same
maximum eigenvalue).

Proof. Finitely equivalent topological Markov chains have the same topological
entropy as a result of (11). For the converse, let (X, S), (Y, T) be topological
Markov chains such that the matrices S, T have the same maximum eigenvalue.
Let U be a non-trivial non-negative integral matrix satisfying US = TU. By (9),
such matrices exist. We shall also insist that U is minimal in the following sense:
if U' is a non-trivial integral matrix such that 0 < U' < U and U'S = TU', then
U' = U. Use (10) to decompose U = DA, S = DXAU T = D2A2 into products of
division matrices with amalgamation matrices and rewrite AD\ = D3A3, A2D =
D4A4 to obtain the commutative diagram in figure 4.

FIGURE 4
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Now DDiA^Ax and D2D4A4A are two decompositions of US = TU. (Note that
the product of two divisions (resp. amalgamations) is a division (resp. amalgama-
tion).) By (10), replacing D4, A4 by D4R,R~XA4, where R is a suitable permutation
matrix, we may assume that

DD3 = D2D4 and A3Ai=A4A.

In other words we may assume that figure 5 is commutative. Defining W = D3A4,
we see that AS = WA and TD =DW. Since A is an amalgamation and 5 is 0-1,

A, o,

A4

\<A

A2 D2

FIGURE 5

AS = WA and W must be 0-1 matrices. The minimality condition on U ensures
that W is irreducible. Suppose

•Wtt 0
B Wb,

where Wa is irreducible. Accordingly, write

(Wa ON
\ B whr

write

-lAa\

"UJ-Then

so that Wa has the same maximum eigenvalue as S and T, /3 say. Now write

D = (Da Db)

to obtain

DaWa+DbB =

and let v be a strictly positive vector such that

vT = /3v.

Then

so that
JW^s/S («£>„).
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The Perron-Frobenius theorem shows that

{vDa)Wa=fi(vDa)

i.e.

v(DbB) = 0.

It follows that

B = Q and DaWa = TDa.

Now taking U' = DaAa we obtain a contradiction to the minimality of U, unless
W = Wa. Hence W is irreducible and we may apply (12) and (13) to conclude that
the topological Markov chain it defines is a common finite extension of (X, S) and
(Y,T). •

Let {X, S), (Y, T) be topological Markov chains of the same topological entropy.
The proof of (14) provides a finite equivalence (figure 6), where the map <f> is right
resolving and ip is left resolving, i.e. we have a dichotomy. The next section is
devoted to the measure-theoretic analogue of this situation.

(Z,W)

(Y,T) (X,S)

FIGURE 6

4. Dichotomy of Markov chains
Let (X, S, m), (Y, T, p) be Markov chains. Consider the following dichotomy:

(a) (X, S, m) and (Y, T, p) are finitely equivalent by a diagram (figure 7),

(Y,T,p) (X,S,m)

FIGURE 7

where <f>, ip are 1 -block maps, <f> is right resolving and ip is left resolving.
In this section we develop coding to establish necessary and sufficient conditions

for (a) to hold.

15. LEMMA. Let (Y, T,p), (Z, W, q) be Markov chains defined by the stochastic
matrices P, Q respectively. Let ip : Z -» Y be a bounded-to-one 1 -block surjection with
tpW = Tip. Suppose 4> « given by ip0- A(W)-*A(T). Define a matrix R compatible
with Q by setting

ro
,i,0o/) ifO(i,/)>0.' " {
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Then R has maximum eigenvalue 1. Letp be a strictly positive right invariant vector,
Rp = p, and let P' be the stochastic matrix with

ip is measure preserving iff Q =P''.

Proof. By (1), on the topological Markov chain (Z, W) there is a unique Markov
measure, given by the stochastic matrix Qi, say, for which 4/ is measure preserving.
By (2), there is a function g depending on only one coordinate such that

-log Oi(/,;) = -\ogP(<J,0i, <M + g(/)-gd")
whenever Qi(i,j)>0. Exponentiate, note that Q and Oi are compatible matrices,
and use the definition of R to obtain

Old, 7) =

for some strictly positive p : A( W) -» U. Summing over j ,

i

so that R has maximum eigenvalue 1, p is a corresponding eigenvector and Oi = P' •
By the uniqueness in lemma 1, as a map between the Markov chains {Y, T,p) and
(Z, W, q), ij/ is measure preserving iff O = Oi, i.e. iff Q = P'. •

If M is a non-negative matrix and t e U, M* will denote the matrix whose entries
are the t'th powers of the entries of M. More precisely, the (/,;') entry of M' is
M(i, j')' when M(i, j) > 0 and is zero otherwise. A rectangular non-negative matrix
D is said to have division shape if the compatible 0-1 matrix D° is a division
matrix. A rectangular non-negative matrix D is called a stochastic division matrix
if it is stochastic and if it has division shape. Amalgamation matrices are stochastic
by definition. Amalgamation and stochastic division matrices characterize all 1-
block right resolving and left resolving finite factor maps between Markov chains:

16. LEMMA. Let (X, S, m) and (Z, W, q) be Markov chains defined by the stochastic
matrices M and Q respectively. If there exists an amalgamation matrix A such that

AM0 = Q°A and AM = QA

then (X, S, m) is a finite factor of (Z, W,q) by a right resolving 1 -block map.

Proof. Define <f>0: A(W)-+ A(S) by taking

</>o(zo) = x0 when A(zo,xo) = l.

According to (the proof of) (12), 4>o gives a well-defined 1-block map </> which is
a right resolving bounded-to-one surjection of the topological Markov chain (Z, W)
onto (X, S). Let (i,j)eA(W)2. Since A is an amalgamation and AM° = Q°A is
0-1, we have for all allowable (i, j)

<t>oj) = M(<f>oi, <t>oj),

and (15) shows that <t> is measure preserving. •
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17. LEMMA. Let (Y, T,p) and (Z, W,q) be Markov chains defined by the stochastic
matrices P, Q respectively. If there exists a stochastic division matrix D such that

P0D° = D°Q0 and PD=DQ

then (Y, T,p) is a finite factor of (Z, W,q) by a left resolving 1 -block map.

Proof. Define i//0: A( W) -* A(T) by taking <M-Zo) = y0 when D(y0, z0) > 0. According
to (13), <̂ 0 gives a well-defined 1-block map i// which is a left resolving bounded-to-
one surjection of (Z, W) onto (Y, T). Let (i,j)eA(W)2. Since D° is a division
matrix and P° is 0-1, P°D° = D°Q° is a 0-1 matrix. Using this fact,

= (PD)(iffOi, j) =

and, taking f(i) = D(t{/oi, i), we see that for all allowable (/, /),

It follows that / is a strictly positive eigenvector of the matrix

compatible with Q, and (15) shows that ip is measure preserving. D

Companions (converses) to (16) and (17) are the following two lemmas:

18. LEMMA. Let (X, S, m) and (Z, W, q) be Markov chains defined by the stochastic
matrices M and Q. Suppose (X, S, m) is a finite factor of (Z, W, q) by a right resolving
1 -block map <f>. Then there exists an amalgamation matrix A such that

AM' = Q'A

for all teU and <j> is the map obtained from AM0 = Q°A, AM = QA by (16).

Proof. Suppose <f> is given by the map 4>0: A(W)-*A(S). Index by A(W) and A(S)
the rows and columns respectively of an amalgamation matrix A by putting

tO,
R(i0, / i ) =

>-M((f>oio,4>oii),

Since <f> is right resolving, the matrix R,

tO, if <?(;„, ii) = 0,

otherwise,

is stochastic and

Q(/o, i\) = M(4>oio, <f>oii

for all allowable (/0, <i)e A(W)2. But

and

= Q'H, ii)
for a unique i\ with ^o'i =/, and the result follows. •
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19. LEMMA. Let (Y,T,p) and (Z, W, q) be Markov chains defined by the stochastic
matrices P and Q. Suppose (Y, T, p) is a finite factor of (Z, W, q) by a left resolving
1 -block map tp. Then there exists a stochastic division matrix D such that

P'D'=D'Q'

for allteR and <p is the map obtained from P°D° = D°Q°, PD = DQ by (17).

Proof. Suppose t// is given by the map t//0: A(W)-*A(T). Let p and q be the left
invariant probability vectors of P and Q, pP = p and qO = q. (Usage of the same
symbol for the invariant vector and Markov measures denned by the matrices
should not lead to any confusion.) Define D by putting

and taking

D(/, /) = 0 when / ̂  ipoi.

D is a stochastic division matrix, since t// is measure preserving. We show
P'D'= D'Q' foraWtz U.

Define a diagonal matrix q by putting

and let

where Qtr is the transpose of Q. Then Q* is a stochastic square matrix and it
defines a Markov chain (Z*, W*, q*), which is the inverse (shift) of (Z, W, q).
Similarly, define a diagonal matrix p by putting

let

and let (Y*, T*,p*) be the Markov chain defined by P*. Then (Y*, T*,p*) is a
finite factor of (Z*, W*,q*) by a right resolving 1-block map defined by «̂ 0-
Applying (18) we see that the amalgamation A defined by setting

{i,j) = l iff / = «Ao/

satisfies

A{P*)' = (Q*)'A

for all t € R, i.e.

Ap-'{PYp' = q-'(QTq'A

for all te.U. Transposing, we see that

D=p-lAtTq

satisfies

P'D' = D'Q'

for all t e R. •

https://doi.org/10.1017/S0143385700001279 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700001279


Classification of Markov chains 321

Consider the product D'A where D is a stochastic division matrix and A is an
amalgamation matrix. D'A is non-trivial and the entries of D'A are non-negative
integral combinations of exponentials, i.e. its non-zero entries are finite sums

X nk exp {akt), ak e R, nk e Z, nk > 0.
k

Let U = U, be a matrix whose entries are functions of R. 1/ is called a non-negative
exponential matrix if all its entries are non-negative integral combinations of
exponential functions.

Let M, P be non-negative matrices. Consider the statement:
(b) There exists a non-trivial non-negative exponential matrix U = U, such that

U,M' = P'U, forallreR.
We may combine (18) and (19) to obtain:

20. PROPOSITION. For Markov chains (X, S, m), (Y, T,p) defined respectively by
the stochastic matrices M, P, (a) implies (b).

In fact, we shall see that (a) and (b) are equivalent. Williams' decomposition result
for non-negative integral matrices, (10), may be extended to non-negative exponen-
tial matrices:

21. PROPOSITION. If U= U, is a non-trivial non-negative exponential matrix, then
there exists an amalgamation matrix A and a non-negative matrix D with division
shape such that U, = D'A for all teU. This decomposition is essentially unique in
the sense that if U, = D"A' {for all 1e U), where A' is an amalgamation and D' has
division shape, then D' = DR, A' = R~*A for some permutation matrix R.

Proof. First consider the non-trivial non-negative integer matrix UQ. Use (10) to
write Uo — DQA, where Do is a division matrix and A is an amalgamation matrix.
We shall define a non-negative matrix D such that D° = D0 and U, = D'A for all
t e R. Take

D(i,k) = 0 ifDo(i,k) = 0.

Suppose (/,;') is such that for some n > 1,

U,(i, j) = exp {axt) + • • • + exp {ant),

where a\,..., an € R are not necessarily distinct. Then

U0{i, j) = n

and from

we see that in the j'th row of Do there are precisely n places {i, k) with D0{i, k)=\
which are 'picked up' by the /'th column of A (i.e. such that A{k, j) = 1 also). Since
A is an amalgamation, no other column of A 'picks up' the same places. Assign
exp ai,..., exp an one by one to these n places. Note that, again because A is an
amalgamation, each place with D0{i, k) = \ is picked up by some column of A. It
follows that when we have gone through all (/, /), the matrix D is fully and well
defined. It is clear that D° = Do and that Ut = D'A for all t e R.
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Now let U, = D"A' be another decomposition where A' is an amalgamat;on
matrix and D' is a non-negative matrix of division shape. Putting t = 0 and using
the uniqueness in (10) we see that, by supplementing with a permutation, we may
assume D'° = D°, A' = A. In other words, we may take D"A to be the new
decomposition and D'° = D°. We shall show that there is a permutation matrix R
such that D' = DR, D° = D°R and A = R - 1 A.

Let (i, j) satisfy U0(i, j) = n> 0. Using

U, = D"A^D'A
and the fact that

D'° = D°

we see that there are k\,... ,kn such that

D°(i, fci) = • • • =D°(i, kn) = l = A(kuj) = - • •=A(kmj)

and

for all ? E R. It follows that there exists a permutation II of { 1 , . . . , n} such that

D'(i,knu)) = D(i,kl)

for all / e { 1 , . . . , « } . Let Rti be the matrix which permutes columns k\,...,kn of

D' according to Ft, and fixes all other columns. It is clear that

D°Rij = D°, R7i
1A=A

and that

for all / e { l , . . . , n}. As D° is a division matrix and A an amalgamation, for any

implies

(/',/') = (»,;).
Thus none of the columns ki,...,kn are involved for pairs other than (/,/), and
for (/',;") 5̂  (/,/) the matrix I?,-,- leaves the columns k\,...,kn fixed. Moreover,
since A is an amalgamation matrix, for each pair (/, k) with D°(i, k) = 1 there exists
; such that A(k, j) = 1. It is now clear that if we let R be the product of all the
permutation matrices i?;, as (i, j) runs through all possibilities with U0(i, j) > 0, then

D'R=D, R~*A=A and D°R=D°. •

Note that the product of two matrices of division shape again has division shape.
Furthermore, if D = DXD2, where Du D2 have division shape, then £>' = D[D'2 for
all real t. We may now prove:

22. THEOREM. For Markov chains (X, S, m), (Y, T, p) defined respectively by the
stochastic matrices M, P, (a) and {b) are equivalent conditions.

Proof. In one direction the result is an immediate consequence of (18) and (19),
and has already been given as proposition (20). For the converse, let U = U, be a
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non-trivial non-negative exponential matrix such that

U,M' = P'U,

for all teU. Taking t = 1 and using the fact that M is stochastic,

323

where 1 is a column vector consisting of ones. Since P is stochastic, the Perron-
Frobenius theorem shows that the entries of the vector U\l must all be the same
number, c say. c ^ 0 as U\ is non-trivial. Hence the rows of U\ all have the same
sum c # 0. Dividing U, by c', we may assume that U\ is stochastic. We shall also
insist that U - U, is minimal in the following sense. If U' = U't is a non-trivial
non-negative exponential matrix such that

U'tM' = P'U't
(for all real t) and (U, - U',) is also a non-negative exponential matrix, then

U'=U.

Use (21) to decompose

U, = D'A, M' = D[AU P'=D'2A2

and to rewrite

AD[=D'3A3, A2D' = D'4AA,

FIGURE 8

where A, Au A2, A3, A* are amalgamation matrices and D, D\, D2, D3, D4 have
division shape. We have the commutative diagram of figure 8. Now

and

D2DU4A = (D2D4)'A4A

are two decompositions of U,M' = P'U,. By (21), replacing DA, A4 by D4R, R~lA4,
where R is a suitable permutation matrix, we may assume that

DD3 = D2D4 and A3AX = A4A.

https://doi.org/10.1017/S0143385700001279 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700001279


324 W. Parry and S. Tuncel

A i

A ,

A 4

f £ j ' y

i • (

FIGURE 9

In other words, we may assume that figure 9 is commutative. Define Q = D3A4.
Since AM0 = {D%A^)A and A is an amalgamation, D3A4 is a 0-1 matrix. It follows
that

and P'D' = D'Q'

for all f e R. Q is a stochastic matrix as M, Dx and D3 are stochastic. D is stochastic
since Ui is. The minimality condition on U = U, ensures that Q is irreducible:
Suppose

B' Q'J'
where Qa is irreducible and accordingly write

'AaHA
Considering the case t = 0 and repeating the argument in the proof of (14), we see
that B° is zero, i.e. B is a zero matrix. Hence

AaM' = Q'aAa and P'D'a=D'aQ'a
for all real f. Taking

U' = U't=D'aAa

we obtain a contradiction to the minimality of U = U,, unless 0 = Qa. Hence Q is
also irreducible and we may apply (16) and (17) to conclude from AM' = Q'A,
P'D' ~D'Q' that the Markov chain defined by Q is a common finite extension of
{X, S, m) and (Y,T,p) by 1-block maps which are, respectively, right and left
resolving. Q

It can be shown that the technique used in the proof of (22) works only for (matrices
very closely related to) non-negative exponential matrices.

Let V = V, be a non-trivial matrix whose entries are real-valued functions defined
on a set / c R, 0 e /, / ^ {0}. Let Vo be non-negative integral. Suppose there exists
a decomposition V, = D,A, where A is an amalgamation matrix, Do is a division
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A v

D , "

matrix and D° = Do for t e I. Suppose also that there exists a matrix Q = Q, such
that Qo is non-negative, irreducible and integral, Q° = Qo for t e I and figure 10
commutes. Then figure 10 may be used to show that (X, S, m) and (Y, T,p) satisfy
(a). However, it can also be proved (by arguments similar to those used at the
beginning of this section) that there is then a function f:I-*R and a non-negative
exponential matrix U =U, such that

V,=f(t)U, fort el

and
U,M' = P'U, for all t e U.

The decomposition of (21) could have been given in the form DA'A, where D
is a division matrix, A is an amalgamation and A is a (real-valued) non-negative
diagonal matrix. Then, in the proof of (22) we would have obtained a commutative
diagram (figure 11), where the £>'s are division matrices, A's are amalgamations
and the A's are non-negative diagonal matrices.

M'

u,

A ,

r A A 3 <

A4

' A ' A ; i

A 4

' D D 4 ^

A 2
k_—

1 •
A;

r i

AT

r i

' 1

fe

1 ^ 1

f A 3 A ^

> A^ A' i

'D 4 D^

D2

fc

u,

p'

FIGURE 11

5. A necessary and sufficient condition for BM = BP

In § 2 we defined the function BM for an irreducible stochastic matrix M. The same
definition may be used if M is just an irreducible non-negative matrix (whether or
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not it is stochastic): f}M(t) is defined to be the maximum eigenvalue of M' given
by the Perron-Frobenius theorem. Again, /3M is an analytic function. In this section
we fix two irreducible non-negative matrices M, P and show that a necessary and
sufficient condition for /3M = /3P is:

(c) There exists a matrix U =Ut, whose entries are integral combinations of
exponential functions, such that U, is strictly positive in a neighbourhood of
0 and U,M' = P'U, for all t e R.

If U = U, satisfies U,M' = P'U, and is strictly positive in a neighbourhood of 0
then J8M(0 = /3P(0 in this neighbourhood of 0, by a standard argument using the
Perron-Frobenius theorem. Since (iM, f$P are analytic, it follows that f}M = (3P. Thus,
(c) readily implies /3M =/3P. The rest of this section is devoted to the proof of the
converse.

The ring Z[*i , . . . , xk] of polynomials over Z in k indeterminates x\, • • •, xk is a
unique factorization domain. (See [16].) In the following, a monomial shall mean
a polynomial of the form

xVx¥ • • • xl",

where « i>0 n ^ O , « i , . . . , n^ eZ. The monomials N form a multiplicative
system (see [16]) and the ring Z[xi , . . . , xk]N of elements of Z[JCI, ... ,xk]
divided by elements of N is also a unique factorization domain. The units
of R = Z[x\, • • •, xk]N are ratios of monomials.

23. LEMMA. If glt..., gk are integrally independent real numbers, then the ring of
integral combinations of functions exp {ht) with h an integral combination of
gu ..., gk is isomorphic to Z[xu . . . . xk]N.

Proof. Define
x, = exp(g,f) (i = l,...,k)

so that if

h=nig1 + - • • - + nkgk,

« i , . . . , nk € Z we have

exp(ht) = x " 1
l x ? •••xH

k"=fi/v.
for some fi, v&N. It is then clear that any integral combination of functions exp (ht)
is a polynomial in Z[*i , xk] divided by an element of N, i.e. takes the form
of an element of Z[xi , . . . , xk]N- To complete the proof it suffices to show that, if
m i , . . . , m( e Z and distinct hi,..., hi satisfy

mi exp (hit) + - • • + mi exp {h\t) = 0,
then

ffll = ffl2 = • • • = m; = 0.

This is well known. In fact, successive differentiation and evaluation at t = 0 yields
a Vandermonde matrix

/I • • • 1
h x ••• h ,

\ h [ ~ 1 ••• h ' r 1

which has non-zero determinant. •
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24. COROLLARY. If p e Z[xu . . . , xk]N satisfies

p(exp (g^),..., exp (gfcf)) = O

then p = 0.

In the following we take p(t) to be a real analytic function.

25. LEMMA. If XM, XP^RM (where R =Z[xi , . . . ,xk]N) are monk polynomials
such that

(git),..., exp (gfc0, j3(0) = Xp(exp (gif), . . . , exp (gkf

then XM = "X, XP = vx, where x,u,ve JR[A],

A-(exp ( g l r ) , . . . , exp (gfcr), 0(0) = 0

and x is monic.

Proof. Using the Euclidean properties of the ring of polynomials over the quotient
field of R we can assert

axM = u'x, bxP = v'x, (t)

where a, beR, x, u', v'eR[\], x is primitive and

ex = U"XM + V"XP

for some non-zero c e R and u", v"eR[\].
Substituting

X! = exp (giO, • • •, xk = exp (gkt), k=p(t)

we see that ex vanishes for all t e R. If c vanishes for infinitely many t near zero
then c vanishes for all t and, by (24), c = 0, which is not the case. Thus x vanishes
for infinitely many t near zero and therefore

iO , . . . , exp (gkt),
Since i?[A] is a unique factorization domain and x is primitive, we see from (t)
that a\u' and b\v' in R[A]. Thus, in fact,

XM = ux, XP = vx

for some u, v e R[\]. Finally, as XM is monic, the leading coefficient of x must be
a unit and may be taken to be 1. O

Now we return to the two irreducible non-negative matrices, M, P with the same
0-function, @(t). Let G be a finitely generated subgroup of R containing all
log M(i, i), log P(l, n) (M(i, j) * 0, P(l, n) # 0) and let gu ..., gk be a free basis for
G. Put

xi = exp (git), ...,xk=exp (gkt).

Then M(i, j)', P(l, n)' are ratios of elements of N, the set of monomials inxu • • • ,xk.
In particular, M(i, / ) ' , P(l, n)' belong to R = Z[xu . . . , xk]N.

Let XM, XP be the characteristic polynomials of M, P:

*M(A ) = det (AJ-M'), *p(A) = det(A/-.p').
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Clearly XM, * P S / ? [ A ] . Let m(A) be the first row of adj (A/-M') and let TT(A) be
the first column of adj (A/ — P'). The entries of m(A), TT(A) and 7r(A)-m(A) belong
to R[\]. Moreover, 7r(/?(0) and m(/3(0) are strictly positive (see [13]). Since

adj (A/-M')M' = A adj (A/-M')- X M (A)/ ,

P' adj (A/-P') = A adj ( A J - P ' ) - X P ( A ) / ,

we have for any matrix L over i?[A] (of appropriate dimension)

adj (AI-P')L adj (XI-M')M'-P' adj (A/-P')L adj ( A J - M ' ) = XPB-XMA,

where A and i? are suitable matrices over i?[A]. We take L to be the matrix with
1 in the top left-hand corner and zero elsewhere so that

adj (\I-P')L adj (AJ-Af') = 7r(A)m(A),

and we have

As j8 (0 is the common /8-function of M and P,

*M(exp ( g l r ) , . . . , exp (gfcO, 0(f)) = x>(exp (giO, • • •, exp (gkt), 0(0) = 0.
Let #e.R[A] be the monic polynomial of (25) which divides both XM and XP in

R[\] and satisfies

*(exp (git),..., exp (&*), 0(0) = 0.

Let d s 1 be the degree of *-. Use the fact that x is monic to reduce the polynomials
in 7r(A)m(A) modulo x t o obtain a matrix V(\) over R[\],

where Vo, • • •, Vd-i are matrices over R. From (*) we obtain an equation

V(A)Af'-PV(A) = *(A)C(A),

where the matrix C is over R[\]. Since x is of degree d, C must be the zero matrix
and we have

ViM' = P'Vi f o r / = 0 , l , . . . , d - l .

We now assume that M and P are aperiodic; the periodic case is similar. Put t = 0
to obtain integral matrices. Repeating the argument at the end of the proof of (9),
we see that there exists /, 0 < i < d - l , and a non-negative integer n such that
Vi(M')" or —Vi{M')n reduces to a strictly positive integral matrix at / = 0. Accord-
ingly, take

U=Vl(M')H or U = -Vi(M')n.
(Of course, (M')" denotes the n 'th power under matrix multiplication of M'.) Clearly
U = U, satisfies

for all real t. U is over R and strictly positive at t = 0. It follows that the entries
of U = Ut are integral combinations of exponential functions and U, is strictly
positive in a neighbourhood of zero. We have completed the proof of:
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26. THEOREM. For two irreducible non-negative matrices M and P, PM = PP iff (c)
holds.

27. Remark. Above, {matrices U over R : UM' = P'U} is a finitely generated
i?-module. This follows from the fact that Z[*i , . . . , xk] ideals are finitely generated
(see [16]). In the proof of (26) we obtained an element

U = ±V,(M')n

of this module which is positive at t = 0. It is not difficult to see that this U is an
/^-combination of Vo, Vlt..., Vd-\. Indeed, we only have to check that for each
/, 0 s / < d - l , VjM' is an ^-combination of V0, Vu • • •, Vd-t. In fact,

7r(A)m(A)Af' = A7r(A)m(A) mod*,

so that

V(A)Af' =

Letting

with Co,..., cd^\ e R, we have

mod*.

Hence

and, for 1 < / S < / - 1 ,

as we wished to prove.

V,M'= Vj-i + CjVa-u

6. Does fiM - PP imply finite equivalence?
Let (X, S, m), (Y, T, p) be Markov chains defined by the stochastic matrices M, P.
Suppose pM = PP- Then, by (26),

U,M' = P'U,

for a matrix U = U, (which is positive in a neighbourhood of zero and) whose
entries are integral combinations of exponential functions. From (22) we see that
the Markov chains are finitely equivalent if the entries of U are non-negative
integral combinations of exponentials. We are not able to prove this in general,
but we conjecture that this is the case. In particular:

CONJECTURE. / / two Markov chains have the same P-function, then they are finitely
equivalent.

Recall that in the topological case topological entropy is a complete invariant of
finite equivalence. In [1] Adler & Marcus obtained the stronger result that for

https://doi.org/10.1017/S0143385700001279 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700001279


330 W. Parry and S. Tuncel

topological Markov chains topological entropy and period together characterize
almost topological equivalence, i.e. finite equivalence with a.e. 1-1 maps. In view
of this fact, one may wonder about the possibility of establishing for Markov chains
finite equivalences with a.e. 1-1 maps when /3-functions and periods coincide. We
assert that this is not possible in general. The reader is referred to the group
invariant introduced in [6]. This invariant would exclude, for example, the possibility
of a finite equivalence with a.e. 1-1 maps between the Markov shifts defined by
the matrices

p q) \q p

0<p<\, p¥^\, q = l-p. (These are aperiodic and have identical /3-functions,

We devote the rest of the paper to examples, which will serve to illustrate our
theory and the above conjecture.

Measures of maximal entropy. For a Markov measure of maximal entropy

where log y is the topological entropy. Thus, for Markov measures of maximal
entropy, the /3-invariant reduces to topological entropy. The completeness of the
invariant for this sub-class may easily be deduced from the purely topological
classification (14).

We remark that a Markov shift and its inverse have identical /3-functions. Other
classes of Markov shifts with identical /3-functions are:
Bernoulli-type shifts. Fix a probability vector

Consider all irreducible matrices M with the following property. In each row of
M there are precisely n non-zero entries and the non-zero entries form a permuta-
tion of {p(l),..., p(n)}. We call the Markov shifts defined by such matrices, and
their inverses, Bernoulli-type shifts based on p. These were first studied by Rosen-
blatt [11]. In particular, the Bernoulli shift defined by p is in this class. All
Bernoulli-type shifts based on p = (p ( l ) , . . . , p(n)) have the same /3-function,

We claim that all Bernoulli-type shifts based on the same probability vector
p = (p(l) p(n)) are finitely equivalent. Indeed, all elements of this class have
the Bernoulli shift defined by p, (Y, T, p), as a finite factor.

Let M be a matrix as above, defining a Bernoulli-type shift (X, S, m) based on
p. We give a 2-block finite factor map <}>: X-* Y. That (Y, T, p) is also a finite
factor of the inverse of (X, S, m) follows from this on noting that Bernoulli shifts
are their own inverses. In a row / of M there are exactly n non-zero entries and
these may be ordered k\,..., kn so that

for / = ! , . . . , « .
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Define <f>0(i, kj)=j. Evidently, the map <f> defined by <j>0 is right resolving. Given
(juh)eA(T)2 and (iu i2)eA(S)2 with M(iu i2)>0 and 4>0(iu 12) = ju there exists
a unique i3 sA(S) such that

M(i2, i3) > 0 and <£0('2, '3) = ji-
lt follows that <f> is bounded-to-one and surjective (see the proof of (12)). <j> is also
measure preserving: it is sufficient to check this on cylinders of (Y, T,p). For a
cylinder [j\ • • • / ,], ff>~Xj\ • • • //] consists of card {A(S)) cylinders of length / +1 . For
each /'i e A(S) the right resolving property determines i2,..., ii+i e A(S) such that

and

</>o('fc, ik+i) = jk

for k = 1 , . . . , / . Moreover,

M(4, ik+i)=p(jk)
so that

m[/i • • • /i+i] = m(

Hence

//]) = ( I '"(/i))p(/i) • • • P(jl)=p(]\)- • • P(jt),

as we wished to prove.

We have now exhausted the types of examples (we know) for which the /^-function
is readily computable. (1) and (15) may be used to obtain examples of Markov
chains with identical /8-functions from (topological) 1-block finite factor maps, but
with these examples we have finite equivalence ab initio. However, a Markov chain
and its inverse have the same /8-function but we are not able to prove in general
that they are finitely equivalent. Thus inverses (or, in terms of matrices, transposes)
present good tests of our conjecture. We now turn to low dimensional examples
(2x2 and 3x3) and use the techniques of § 5 to test if they satisfy condition (b)
of §4.

Consider a general 2x2 matrix

(x A
\z wl

We think of the entries as exponential functions. Observe that
(x y\/y 0 \= /y 0\/x z\
\z w)\0 z) \0 z)\y wl'

Hence (b) is satisfied by 2 x 2 matrices and their transposes. (We should point out
that 2x2 Markov chains are trivially finitely equivalent to their inverses.)

We now assume the entries of

P =
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are algebraically independent and look for 3 x 3 matrices whose /3-functions coincide
with that of P. Remembering that we are concerned only with irreducible matrices
and noting that evaluation at 1 must give a 0-1 matrix with maximum eigenvalue
2, one quickly concludes that either row sums must equal 2 or column sums must
equal 2. Without loss of generality, we consider the former case (this covers the
latter by transposing). We require the characteristic polynomial of P, namely

A 2 - (w + x)\ + wx - yz,

to divide the characteristic polynomial of the 3x3 matrix whose entries are (ratios
of) monomials. For certain forms of matrices (namely when the determinant is a
positive form, i.e. a sum of monomials) this is impossible. We arrive at

/0 1 1
1 1 0

\0 1 1,

as the only possible 'shape' (up to permutation of the indexing set {1, 2, 3}).
A matrix

0 a b
d 0

y e f
has characteristic polynomial

\[\2-(d +/)A +(df-ac)] + c(af-be).
For divisibility by

A — (w +x)X + wx — yz,

we require af = be (c # 0 as none of a, b, c, d, e, f can be zero). Therefore

d+f=w+x and df—ac = wx — yz.

It follows that d = w, f = x (or d = x, f = w) and ac = yz so that the matrix must be

M=\

We concentrate on the former; the latter may be treated similarly. Adopting the
notation of the proof of (26), A is denned by

x(\) = X2-(w+x)\+wx-yz=0.

The first row of adj (A/ - M ) is

0

V

0

y±
V

w
u

xyz\

uv
0
x /

or

0

V

0

yj.
V

X

u

wy

uv
0
w

)
UV J

= I yz, —A, (A - w) ),
\ V UV J

and the first column of adj (A/-P) is
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Hence (modulo x) we have

333

where

Vo =

7r(A)m(A)= Vo

y Z r ^ * V Z r 2 -,
wyz —lwx-yz\ \w +yz-wx\

v uv
-yz

i xyz xyzr
-yz [x-w]

v uv

"~2 xyz2

wxyz

uv

\
0 -•-

v uv
Now

xy2z2 \

uv

-yz

Multiplying this by -(uv)/(yz2), we obtain

2 wyz

uv uw 0 /

which satisfies UM = PU.
Now we consider a 3 x 3 matrix P = (P,,) and its transpose PtT. Observing that

UP = PtT U implies (U + UtT)P = P"(U + U")

for the symmetric matrix U+ Utr, we seek a symmetric solution U of UP = PtTU
such that the entries of U are non-negative integral combinations of monomials. Let

x a b

U = a y e

b c z

By symmetry, we need only check UP = PUU in the three top right-hand positions
(1, 2), (1, 3) and (2, 3). Working out UP and PtrU in these three positions we see
that

/ * \
y

z

a

bw
must satisfy the equation

(S (*)
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where

(S £

If

the

V

block i

£) =

natrix

P12

Pl3

0

-P21

0

W. Parry

0
-P31

-P32

and

(P2

S. Twice,

P23

Pl3

P32

-Pl2

-P31

(P33-P22)

det S = P12P23P3l-P2lP32Pl3 = 0,

then we may take

a=b = c = 0, x = l, y=Pi2/P2i and z=P13/P3i

to obtain a 'non-negative' solution. If det 5 # 0, denning

= (adj

we have for the vector

u =
-det 5

0

\ 0
(S £ v

Similarly,

v =
0

-detS
\ 0 /

and w =

(adj S)t
0
0

-det 5

satisfy (*). Moreover u, v, w form a basis for solutions of (*). On computing adj 5
we obtain:

(adj

(adj 5)ry =
P23P31P32 ~ ^>21-f>32(̂ >33 ~ Pi l) ~ P21P31P12

P13P32P32 ~ P12P32(^33 ~ Pi l) ~ P12P31P12

~ P21P13P21P13P12

-P23P31P31 + P21P32P21 + P21P3AP33 - P22)

~-Pl3^>32^>31 + P12P32P21 + Pl2P3l(P33~ P22)

-Pl3P23P31+Pl2P23P21+P2lPl3(P33-

Recalling that rows, 4, 5, 6 of u, v, w are either 0 or

- d e t S = P21P32P13-P12P23P31 * 0,
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one is led to seek non-negative integral combinations k, I, m of (ratios of) monomials
such that

is divisible by detS and the entries of -(l/detS)V are non-negative integral
combinations. Without attempting to do this, we observe that a large number of
special cases have particularly simple solutions. For instance, if P23 — 0 and if one
of Pn or P22-P11 is zero, then taking k = 1, l = m—0 suffices.
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