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NEW TELYAKOVSKII-TYPE ESTIMATES VIA
THE BOOLEAN SUM APPROACH

JIA-DING CAO AND HEINZ H. GONSKA

In the present note the magnitude of constants in Telyakovskii-type theorems is
investigated. Our general approach to construct the linear operators yielding good
constants is the one via Boolean sums. Explicit values for the constants in ques-
tion are given for general convolution-type operators; the classical Fejer-Korovkin
kernel is then used as an example for which one obtains rather small values. Fur-
thermore, also an asymptotic assertion is derived which indicates the room left for
improvement of the main results. This leads to a natural conjecture concluding
this article.

1. INTRODUCTION

Let N = {1, 2, . . .} be the set of natural numbers. For / 6 C[a, b] (real-valued and
continuous functions on the compact interval [o, b}), let ||/| | := max{|/(<)| : a ^ t ^ b}
denote the Cebysev norm of / . For Jfe € No = N U {0}, by Ck[a, b] we denote the
space of fc-fold continuously differentiable functions; nn will be the set of algebraic
polynomials of degree ^ n. For / £ C[a, b], the modulus of continuity of / is defined

by
« ( / , S) := sup{|/(a;i) - f{x2)\ : |xx - s 2 | < *} , 0 < 6 < 6 - a.

In his well-known paper [17], Telyakovskii proved the following

THEOREM A. ForntN and f € C [ - l , 1] there exists Pn(f, •) £ wn such that

\f(x) - Pn(f, x)\^c-Jf, Vl~X) for all

where the constant c is independent of f, n and x.

In our earlier paper [3] we studied general conditions under which certain Boolean
sums of linear operators satisfy Telyakovskii-type estimates. See [3] and the references
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132 J-D. Cao and H.H. Gonska [2]

there for more information concerning this theorem. In the present note we continue
our research on these types of inequalities. The central aim here is an investigation of
the magnitude of the constant c in Theorem A (Section 2). Earlier papers in which
explicit values of the constant c were found are, for example, those by Lehnhoff [12]
and Lupas [13], however, the constants given here are much smaller than theirs and
thus bring us closer to the solution of the underlying extremal problem. In Section
3 we derive an asymptotic assertion indicating the room left for improvement of the
main results in Section 2. More specifically, we show there that a certain asymptotic
constant equals 1/2 which, in a very natural fashion, leads to a conjecture concluding
that section.

2. O N THE CONSTANT IN THEOREM A

For n E N, let the even trigonometric kernel ifm(n) be given by

m(n)

J\mft(n\( V I ": = — "T" ^ Pk m(n\ COS KV.

where m is a function increasing with n.

Let / E C[— 1, 1] and x E [—1, 1]. The convolution-type operators Gm(n) defined

by

i r
(2.1) <?„»(„)(/, as) := - / /(cos(v + arccosz)) • Km{n)(v)dv

were investigated in a series of papers by Picugov [14], Lehnhoff [11, 12], and the
present authors (see, for example, [4] and the references cited there).

We have (1/TT) J2r Km(n){?)dv = 1 > anc^ Gm(n)(/ , •) is an algebraic polynomial of
degree T7i(n).

The main focus in our previous papers was on the order of approximation by
positive operators Gm(n) and certain Boolean sum modifications of them. Let us recall
the following notation and definitions.

For f E C[a, b], by Lf we denote the linear function interpolating / at a and b,

that is
: = f(b)(x-a) + f(a)(b-x)

b — a

If A: C[a, b] —• C[a, b] is a linear operator, the Boolean sum L © A of L and A is
given by A+ :=L®A = L + A — Lo A, or more explicitly,

A+(f, x) = A(f, x) + (b- a ) - J { ( x - a)[f(b) - A(f, b)} + (b- x)[f{a) - A(f, a)}}.
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[3] Telyakovskii-type estimates 133

In the sequel we shall be dealing with the operators

(2-2) G+( n ) ( / , x) := Gm ( n )( / , x) + - ( - Gm ( n )( / , 1)]

1
2^ -»)[/(-!) -Gm(n)(/,-l)].

We shall need two lemmas taken from papers by Cao (see [1, 2]).

LEMMA 2 . 1 . Let Km(n)(v) ^ 0 € , v e R. Tien t i e following inequality holds:

(2-3) 2 - 7 T -
• / :

LEMMA 2 . 2 . If -K"m(n)(v) ^ 0, v e R , and |x| ̂  1, tien we iave

(2.4) Gm{n){\u - x\, x) ^ (1 - plMn)) -\x\+V2- y/\ - PlMn)

One further inequality needed will be:

LEMMA 2 . 3 . For n £ N, Jet tfm(n)(t>) ^ 0, v 6 R. Tien for all g £ C ^ - l , 1]
and all \x\ < 1 we iave

(2.5) g[x) - (2 + 2-V5)- y/l-PiMn) • h'W •

If pilTn(n) ^ 0, tien t i e constant 2 + 2 • y/2 may be replaced by 3 +

PROOF: For simplification we write pn := Pi,m(n). Since K

Km(n) ^ 0, we have
0 and

1 - pn = 7T-1 / (1 - cosv)Ji:m(n)(i;)dT; > 0.
J — T

Let 5 6 Cl[—1, 1]. Since jjg(as) -#(<) | < |f — *| • ||fli'||, and since Gm(n) are positive
linear operators satisfying Gm(n)(l , x) — 1, we have

\g{*) - Gm(n)(g, x)\ = \g(x) • G m ( n ) ( l , x) - Gm{n)(g, x)\ < Gm ( n )( | t - x | , x) • ||fl'||.

Using Lemma 2.2 we obtain

(2.6) \g(x) - Gm{n)(g, x)\ < [(1 - Pn) • \x\ + ̂ \ - pn • y/l - x2] • \\g'\\ .

Now we apply LehnhofF's method (see [11] and [12]) and consider three cases:
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134 J-D. Cao and H.H. Gonska [4]

CASE ( A ) . -^1 - P-n.

We have

From (2.6) we obtain

l -x2, - 1 < x ^ 1.

- Pn ^ y/l — Pn • V 1 - X2.

^\g(x)-Gm{n)(g,x)\

+ \(* + 1) • Ml) -

^ [(1 - Pn) -\x\ + y/2-

+ \{x + 1) •

= [(1 - pn) • \x

^(1 - *) • M - l ) - Gm{n)(g, -1

\\g'\\

(2.7) + \{x + 1) • (1 - Pn) • \\g'\\ + 1(1 - x) • (1 - P n ) • Hfl'H

(1 - Pn)] • ||ff'||

- pn • y/l - X2 + V2 V l - Pn • y/l - X2 + y/1 - Pn • >/l - X2} • \\g'\

CASE ( B ) . y/1 - x2 <~ y l - pn, 0 ^ x < 1.

From (2.2) we have

9(x) - Gi{n)(g, x) = [g(x) - ff(l)] - [Gm(n)(g, x) - GmM(g, 1)]

+ gC1 - *){\sO-) ~ Gm(n)(g, 1)] - \g(-l) - Gm{n){g, 1)]}.

Now let / m ( n ) (x) := \Gm(n)(g, x) - Gm{n){g, 1)|. Then it follows from (2.6) that

»\g{x) -g{i)\ + lm(n)(x)

(2.8)

Since

we have

< (1 - x2) • \\g'\\ + (1 - x2) • (1 - pn) • \\g'\\ + / m ( n ) (x)

1 - Pn = T-1 / (1 - cos v)Km{n)(v) dv^2w~1 I Km{n)(v) dv = 2,

J—ir J — ir

] V 2, and y 1 — x2 • y 1 — pn K V2.
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[5] Telyakovskii-type estimates 135

Hence

(2.9) </ (*)-G+ ( n )

If pn ^ 0, then 0 < 1 — p n < 1, \ / l - Pn ^ 1, VI — Pn • \A — x2 ^ 1. Thus in this
case we have from (2.8)

(2.10) \g(x) - G+(n)(f f , - Pn • \\g'\\

Now we estimate /m(n)(x). We have

^m(n)(«) ^ T"""1 / \g{cos(v + arccosx)) - jf(cosi))| • Km{n)(v)dv

< 7T-1 • \\g'\\ • / |cos(t; + arccosz) - cosu| • Km(n)(v)dv
J — TT

— 3"2 • SIx2 • sin v

- x2 • /

7T - x2) • J'
+ 2 • \A-:i;2 • y sin ̂ dv >

Using Lemma 2.1 we obtain

Jm ( n )(x) ^ (1 - x2) • 7T-1 • T
J —I

(2.11)

- pn + V2 • \ A - a;2 •

By combining (2.9) and (2.11) we have

(2.12) - Gl(n)(ff' *) | ^ ( 2
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136 J-D. Cao and H.H. Gonska [6]

If pn ^ 0, by combining (2.10) and (2.11) we get

(2.13)

CASE ( C ) .

(3 + V2) v"l - p«

- x2 - pn, - 1 < x ^ 0.

From (2.2) it follows that

- ! ) ] + [G»(»)(ff, - 1 ) - Gm(n)(g, x)}

, -1)] + [Gm{n)(g, 1) -

Since 1 + x ^ 1 — x2 for — 1 < x ^ 0, again using a method analogous to the one
used in Case (B), we get

(2.14) \g(x) - G+(n)(<7, s ) | < (2 +

Furthermore, if pn ^ 0, then

(2.15) \g(x) - G+( n )( f f , x)

From (2.2) we get

(3

- p n • y / l - x * • \\g'\\, - 1 < x < 0 .

Ilff'll, - K 0.

and ) - 1 ) = fl(-l).

By combining (2.7) (Case (A)), (2.12) (Case (B)) and (2.14) (Case (C)), we get for
n ^ 1 and \x\ ^ 1,

(2.16) \\g'\\.

If P-n. > 0, we combine (2.7), (2.13) and (2.15) to get for n > 1 and |x| < 1,

(2.17) -x2 • \\g'\\. D
In order to get an estimate which is valid for all continuous functions we use the

if-functional

(2.18) K(f;S):=M{\\f-g\\+S-\\g'\\:geC1[-l,l]}, f G C [ - l , 1], 6> 0.

It is well-known that this functional is related to the least concave majorant u>(f, •) of
the modulus of continuity w(/, •) by the equation

(2.19) K{f; 6)=^- w ( / ; 26) for all 6 > 0.

Furthermore, it was shown by Korneicuk [8] that for w and w the following is true:

(2.20) « ( / ; £ • 6) < (1 + () • u(f, S) for any 6 > 0 and ( > 0.

These facts will be used in the proof of
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[7] Telyakovskii-type estimates 137

THEOREM 2 . 4 . Let n e N, Km{n)(v) ^ 0, |x| ^ 1, and h > 0. Then for
/ £ C [ - l , 1] we have

[2 + (2

factor in front of w(f, •) may be replaced by

(2.21)

If Pi,m(n) ^ 0,

(2.22)

PROOF: Observe first that (2.2) imphes

G W ' *)| < 3 • H/ll for all / G C[-l, 1].

Again, for simplification we shall write pn := Pijm(n).

Now let g 6 C1[—1, 1] be arbitrary. Then

(2.23)

|/(x) - g(x)\ + \g(x) -

4 • ||/ - 5|| + (2

, x)\ + |G+ ( T I ) ( 5 - / , x)\

. — p n • h • h • v 1 — x2 • || 17'||} for a n y h > 0.

Taking the infimum over g £ C ^ - l , 1] and using (2.18), (2.19) and (2.20) show

4 • K (f,

= 2

<2- ( l +

W ^ • A"1 • h • \ A - z 2

-pr, h'1 h-

Furthermore, if pn ^ 0, then in the above, the constant 2 + 2\/2 can be replaced
by 3 + \/2, giving in this case

2 •
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138 J-D. Cao and H.H. Gonska [8]

REMARK 2.5. If u>(/, •) is concave, then

(2.24) w(/, S) = w(f, S) for all 6 ^ 0.

From the proof of Theorem 2.4 (see (2.23)) it can be seen that in the general case one
has, for any g 6 C1[—1, 1],

, (2
1] • {\\f - g\\ + ±y/\ - x* \\g'\\).

Taking the infimum over g £ Crl[—1, 1] and using (2.18) and (2.19) shows

(2.25)

whereas, for
(2.26)

<2max[2, (2 + 2V2) • Jl - P l ,m(n ) • h'1] • K (f;
L \ / j V *

= max[2, (2 + 2V2~) • VI-/»!,„(„)-fc"1] • 5 ( / ; h • y/\ - x2)

[2, (2= max[

> 0,

> ( 3

An upper bound for the constant c in Theorem A will now be given using the clas-
sical Fejer-Korovkin kernels. Much information on these important kernels is contained
in an excellent survey paper by Stark [16]. Their significance arises from the fact that
for them the quantity 1 — PilTn(n) is minimised in the following sense.

n

Let Sn be the set of all trigonometric polynomials Tn(<) = 1/2 + £ pjt)ncosifef.

Set S+ := {Tn \ Tn £ Sn and Tn{t) ^ 0 for all t}.

Then (see, for example DeVore [5, Theorem 4.2])

max pi,n(Tn) = cos ——-,
Tnes+ n + 2

k=i

min (1 - pllB(Tn)) = 1 - cos - J
Tnes+ n

For the Fejer-Korovkin kernels one has the representation
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[9] Telyakovskii-type estimates 139

and for these we have p\,n = cosn/(n + 2) > 0. D

In the sequel we shall use operators Gm(n) as given in (2.1) and which are defined
using the Fejer-Korovkin kernels Kn. We shall denote these operators by Wn and their
Boolean sum modifications by W+ . We thus have

W+(f,x) = Wn(f;x) + \{x - Wn(f,l)}

where
i r

Wn(f;x) = — • / /(cos(arccosz + v)) • Kn(v)dv.
*• J-Tt

Our first result is the following

THEOREM 2 . 6 .

/ ,
n + 2

Furthermore, il u>{f, •) is concave, we have

\f(x)-W+ 10-u>(f, A-x2

n + 2

PROOF: We first observe that for the Fejer-Korovkin kernels we have

1 - P i , n = A / 1 - c o s — — = . / 2 s i n
2TT2 •K 1

n + 2 Y ~ 2(n + 2) ^ Y 4(n + 2)2 \/2 n + 2'

Choosing h = l / (n + 2) in (2.22) of Theorem 2.4 gives

/ ,
n + 2
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140 J-D. Cao and H.H. Gonska [10]

If w(/, •) is concave, we may use (2.26) of Remark 2.5 to obtain

max " n + 2

/ ,
n + 2 y D

A second parameter frequently used in the modulus is ir/(n + 1)^/1 — x2 . This is
dealt with in the following theorem:

THEOREM 2 . 7 . For the operators W* we also have the following inequalities:

(i) |/(*)

H w(/, •) is concave, one has

(ii) |/(aB)

PROOF: Using again y/1 — pi<n ^ n/y/2 • l/(ra + 2), and putting h — 7r/(n + 1)
in (2.22) of Theorem 2.4, gives

|«.) - WH/, .)| < [2 + (3 + VS) • ^ • j i . . i ± i ] . . ( , . ^

which is (i). If w(/, •) is concave, we again use (2.26) from Remark 2.5 to arrive at
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[11] Telyakovskii-type estimates 141

3. CONCLUDING REMARKS

The inequalities of Theorems 2.6 and 2.7 raise the question of how good the con-
stants given there are in comparison to the best possible ones (for algebraic polynomial
approximation in general, and not just for the operators W* used in the above). An
indication is given in this section. The reader should note, however, that the result of
Corollary 3.2 is pointwise and asymptotic in nature, and thus does not imply uniform
and general ones such as those from the two theorems mentioned. It is hence the inten-
tion of this section to only give a hint as to what might be possible to achieve. Details
will become clear from our discussion below.

Let us first recall the definition of the classes Hu[—1, 1], where w is a general
modulus of continuity. (See, for example, Chapter 7 in [7] for a detailed discussion.)
We define

Ha[-1, 1] == {/ I / e C [ - l , 1] and « ( / , 6) < «(*)}.

The following result is taken from a paper by Korneicuk and Polovina [10], see Theorem
1 and Remark 4 there.

THEOREM 3 . 1 . Let w(t) be an arbitrary concave modulus of continuity. Then

for each function f £ Hu there exists a sequence of algebraic polynomials Pn = Pn(f, •)
of degree n £ No such that

(3-D i / w - w i ^

holds uniformly for — 1 ^ x ^ 1 and for every f £ Hu, and the constant 1/2 is best

possible.

The fact that inequality (3.1) indeed holds uniformly for every / £ Hu can be

verified directly from their proof.

From Theorem 3.1 we derive the following pointwise consequence.

COROLLARY 3 . 2 . Let w(f) > 0, t > 0, be a concave modulus of continuity. Let

f £ Hu[—\, 1]. Tien there is a sequence of algebraic polynomials Pn = Pn(f, •) of

degree n £ No suci that

0)

(3.2) lim " v ' " v " . < - for each fixed |x| < 1.
n-.oo / w r r\ 2

Furthermore, putting t\(f) := | / ( - l ) - Pn(- l) | /w(l/(n +1)) and e2
n(f)

l -PB(l) | /w(l/(n + l)) one has

(3.3) lim ej,(/) = hm e2
n{f) = 0 uniformij for / £ Hu[-1, 1].
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142 J-D. Cao and H.H. Gonska [12]

(ii) T5T

PROOF: Since (3.1) of Theorem 3.1 holds uniformly for \x\ ^ 1 and for / e
H"[—1, 1], for e > 0 we get that there is a natural number Ni (Ni being independent
of |z| ^ 1 and of / ) , such that, when n ^ Ni, we have

(3.4)

Letting x = — 1 and z = +1, we get

, and

so that

as well as

Hence
hm 4 ( / ) = hm e* (/) = 0 uniformly for / e ffw[-l, 1].
—>oo 7 i • o o

Furthermore, from (3.4) we have uniformly for \x\ < 1 that

(3.5)
_]/(*) - Pn(x)J

w I • v 1 — x7 I w I • v 1 — x2 I
\n+l V y \ n + l V )

Using w(/, A5) < (A + l)w(/, 5) for £ > 0 and A > 0, we get

for all n

Hence
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[13] Telyakovskii-type estimates 143

For an arbitrary £i > 0, taking 0 < e = e\ • %/l - x2 , (\x\ < 1, and hence e < ei), there
is a natural number ^ ( x ) independent of / , so that, when n ~£ Ni{x), the inequality

holds.

From (3.5) we have

I -

and thus

lim
Y_!!_.A/TT;

Letting £i tend to zero shows the validity of

lim
n—»oo / 7T r

VI - x

From (3.4) we have

2

Similarly it can be proved that

D

REMARK 3.3. The operators yielding the polynomials Pn{x) = Pn{f; x) are nonlinear,
see [10].

COROLLARY 3 . 4 . Let u>(t) be an arbitaray concave modulus of continuity.
Then for each function f £ Hu[—1, 1] there exists a sequence of algebraic polynomials
Pn = Pn(f, •) of degree n 6 No so that

(3.6)
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PROOF: From Theorem 3.1 we get

(3.7)

Let En(f)c,_1 ji denote the approximation constant for / when approximating by
algebraic polynomials of degree ^ n. Polovina [15] (see also [10]) proved that

snp{En-1{f)c[_ltl]:f€H'*[-l,l}}

= 12W(l)- e»w (1)' Wheie ° * £n =
Hence

Since £ n ( / ) c [ _ l i l , < | | / - Pn(f; Oil. from (3.7) we get

sup{£lB( / ) o [_ l i l ] : / £ H»{-1, 1]} < sup{||/ - Pn(f; -)|| : / e Hu[-1, 1]}

and hence

from which it follows that

sup{l/ - Pn(f; Qll : / e g"[-l , 1]} _ 1

The latter relation implies the statement of Corollary 3.4. U

We have thus seen that the asymptotic constant 1/2 is best possible in an equality
like that of Corollary 3.4.

Comparing the assertions of Theorem 2.7 (ii) and of Corollary 3.2 shows that there
appears to be room for improvement on the constant 4 figuring in (2.27). A guideline
for future research may be another result of Korneicuk. In his book [7] (see also [9]) it
is shown that for each function / £ C^*, / 7̂  constant, one has

where the constant 1 is best possible. Here En(f)c is the best uniform approximation

of / by trigonometric polynomials of degree ^ n — 1. D

The results of Corollaries 3.2 and 3.4, together with above remark concerning the
trigonometric case, suggest the following
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[15] Telyakovskii-type estimates 145

CONJECTURE 3 . 5 . For each function f 6 C [ - l , 1], / ^ constant, and n > 1,
there is an algebraic polynomial Pn(x) oi degree ^ n such that

\f(x) - Pn(x)\ < 1 • u, U ^^f-j for all \x\ < 1,

where the constant 1 is best possible.
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