COMPARISON THEOREMS FOR THE EIGENVALUES
 OF THE LAPLACIAN IN THE UNIT BALL IN R^{N}

KIN MING HUI

AbSTRact. We obtain inequalities relating the eigenvalues of the Dirichlet and the Neumann problems for the Laplacian in the unit ball in R^{n}.

In this paper we will compare the eigenvalues of radial symmetric eigenfunctions of the Laplacian in the unit ball $B(0,1)$ in R^{n}. More specifically we compare the eigenvalues of the following two problems:

$$
\begin{align*}
& \begin{cases}\Delta \phi+\lambda \rho \phi=0 & \text { in } B(0,1) \\
\left.\phi\right|_{\partial B(0,1)}=0 & \phi \text { is radial }\end{cases} \tag{1}\\
& \begin{cases}\Delta \psi+\mu \rho \psi=0 & \text { in } B(0,1) \\
\left.\frac{\partial \psi}{\partial N}\right|_{\partial B(0,1)}=0 & \psi \text { is radial }\end{cases}
\end{align*}
$$

or in polar coordinates,

$$
\begin{align*}
& \left\{\begin{array}{l}
\left(r^{n-1} \phi^{\prime}\right)^{\prime}+\lambda r^{n-1} \rho \phi=0 \quad \text { in }(0,1) \\
\phi^{\prime}(0)=\phi(1)=0
\end{array}\right. \tag{3}\\
& \left\{\begin{array}{l}
\left(r^{n-1} \psi^{\prime}\right)^{\prime}+\mu r^{n-1} \rho \psi=0 \quad \text { in }(0,1) \\
\psi^{\prime}(0)=\psi(1)=0
\end{array}\right.
\end{align*}
$$

where $\rho(x)=\rho(|x|)>0$ for $x \in B(0,1), n \in Z^{+}$. It is well-known that the eigenvalues $\left\{\lambda_{i}\right\}_{i=1}^{\infty},\left\{\mu_{i}\right\}_{i=1}^{\infty}$ of (3), (4) are discrete with $0<\lambda_{1}<\lambda_{2}<\cdots \rightarrow \infty, 0<\mu_{1}<$ $\mu_{2}<\cdots \rightarrow \infty$ as $n \rightarrow \infty$ and that we have the inequality $\mu_{k} \leq \lambda_{k}$ for $k=1,2, \ldots$.

In a recent paper of C. Bandle and G. Philippin [1], they proved that

$$
\begin{equation*}
\mu_{k} \leq \lambda_{k}-2 \lambda_{1} \tag{5}
\end{equation*}
$$

for $k=2,3, \ldots$ where λ_{k}, μ_{k} are the k th eigenvalue of (1) and (2) when $n=1$ and $\rho(x)$ is a decreasing function $[0,1]$. We shall show that (5) remains valid for eigenvalues of (3) and (4) when $n \in Z^{+}$and $\rho(x)=\rho(|x|)$ is a decreasing function of $|x|$ on $[0,1]$.

The proof is a modification of the proof [1], [5]. We will assume without loss of generality that $\phi_{1}>0$ in $r \in(0,1)$ throughout the paper and we will also assume $\rho \in C^{2}([0,1])$ in the following three lemmas.

[^0]LEMMA 1. Let ϕ_{k} be the kth eigenfunction of (3). Let $v_{k}=\phi_{k} / \phi_{1}$. Then v_{k} satisfies the equation

$$
\begin{equation*}
\left(r^{n-1} v^{\prime} \phi_{1}^{2}\right)^{\prime}+\nu r^{n-1} \rho \phi_{1} \phi_{k}=0 \text { in }(0,1), \quad v^{\prime}(0)=v^{\prime}(1)=0 \tag{6}
\end{equation*}
$$

where $\nu=\lambda_{k}-\lambda_{1}$.
Proof. A straightforward computation shows that v_{k} satisfies (6) with $\nu=\lambda_{k}-\lambda_{1}$. By [2], $\phi_{1}(0)>0$. So

$$
v_{k}^{\prime}(0)=\lim _{r \rightarrow 0^{+}} \frac{\phi_{1} \phi_{k}^{\prime}-\phi_{1}^{\prime} \phi_{k}}{\phi_{1}^{2}}=0
$$

Since $\phi_{1}(r)=\phi_{1}^{\prime}(1)(r-1)+O\left((r-1)^{2}\right)$ and $\phi_{1}(r)>0$ for $r \in(0,1), \phi_{1}^{\prime}(1) \neq 0$. From (3) ϕ_{k} satisfies

$$
\begin{equation*}
\phi^{\prime \prime}=-\left(\frac{n-1}{r} \phi^{\prime}+\lambda_{k} \rho \phi\right) \tag{7}
\end{equation*}
$$

So by l'Hôpital's rule

$$
\begin{aligned}
v_{k}^{\prime}(1) & =\lim _{r \rightarrow 1^{-}} v_{k}^{\prime}(r)=\lim _{r \rightarrow 1^{-}} \frac{\phi_{1} \phi_{k}^{\prime}-\phi_{1}^{\prime} \phi_{k}}{\phi_{1}^{2}} \\
& =\frac{1}{2 \phi_{1}^{\prime}(1)} \lim _{r \rightarrow 1^{-}} \frac{\phi_{1} \phi_{k}^{\prime \prime}-\phi_{1}^{\prime \prime} \phi_{k}}{\phi_{1}} \\
& =\frac{1}{2 \phi_{1}^{\prime}(1)} \lim _{r \rightarrow 1^{-}} \frac{-\phi_{1}\left(\frac{n-1}{r} \phi_{k}^{\prime}+\lambda_{k} \rho \phi_{k}\right)+\phi_{k}\left(\frac{n-1}{r} \phi_{1}^{\prime}+\lambda_{1} \rho \phi_{1}\right)}{\phi_{1}} \\
& =\frac{n-1}{2 \phi_{1}^{\prime}(1)} \lim _{r \rightarrow 1^{-}} \frac{\phi_{k} \phi_{1}^{\prime}-\phi_{k}^{\prime} \phi_{1}}{\phi_{1}} \\
& =\frac{n-1}{2 \phi_{1}^{\prime}(1)^{2}} \lim _{r \rightarrow 1^{-}}\left\{-\phi_{k}\left(\frac{n-1}{r} \phi_{1}^{\prime}+\lambda_{1} \rho \phi_{1}\right)+\phi_{1}\left(\frac{n-1}{r} \phi_{k}^{\prime}+\lambda_{k} \rho \phi_{k}\right)\right\} \\
& =0
\end{aligned}
$$

LEMMA 2. Let v_{k} be as in Lemma 1. Then $w_{k-1}=r^{n-1} v_{k}^{\prime} \phi_{1}$ satisfies the equation

$$
\left(\frac{w^{\prime}}{r^{n-1} \rho}\right)^{\prime}-\frac{w}{r^{n-1}}\left\{\frac{2 \phi_{1}^{2}}{\rho \phi_{1}^{2}}-\frac{\phi_{1}^{\prime} r^{n-1}}{\phi_{1}}\left(\frac{1}{r^{n-1} \rho}\right)^{\prime}\right\}+\nu \frac{w}{r^{n-1}}=0 \text { in }(0,1)
$$

where $\nu=\lambda_{k}-2 \lambda_{1}$ with $w_{k-1}(0)=w_{k-1}(1)=0$ and w_{k-1} has a zero of order n at $r=0$.

Proof. Since $v_{k}^{\prime}(0)=v_{k}^{\prime}(1)=0, w_{k-1}(0)=w_{k-1}(1)=0$ and w_{k-1} has a zero of order n at $r=0$. By (6), w_{k-1} satisfies

$$
\begin{equation*}
\left(w \phi_{1}\right)^{\prime}+\nu r^{n-1} \rho \phi_{1} \phi_{k}=0 \Leftrightarrow \frac{w^{\prime}}{r^{n-1} \rho} \phi_{1}+\frac{w}{r^{2 n-2} \rho}\left(r^{n-1} \phi_{1}^{\prime}\right)+\nu \phi_{1} \phi_{k}=0 \tag{8}
\end{equation*}
$$

Differentiating with respect to r, we get
(9) $\left(\frac{w^{\prime}}{r^{n-1} \rho}\right)^{\prime} \phi_{1}+2 \frac{w^{\prime} \phi_{1}^{\prime}}{r^{n-1} \rho}+\frac{w\left(r^{n-1} \phi_{1}^{\prime}\right)^{\prime}}{r^{2 n-2} \rho}+r^{n-1} w \phi_{1}^{\prime}\left(\frac{1}{r^{2 n-2} \rho}\right)^{\prime}+\nu\left(\phi_{1} \phi_{k}^{\prime}+\phi_{1}^{\prime} \phi_{k}\right)=0$

By substituting into (9) the expression for w^{\prime} from (8) and simplifying the resulting equation, the lemma follows.

Lemma 3. Let ν be a positive constant. If u is a solution of

$$
\begin{equation*}
\left(\frac{u^{\prime}}{r^{n-1} \rho}\right)^{\prime}+\nu \frac{u}{r^{n-1}}=0 \text { in }(0,1), \quad u(0)=u(1)=0 \tag{10}
\end{equation*}
$$

and u has a zero of order natr $=0$, then $\psi=u^{\prime} /\left(r^{n-1} \rho\right)$ is a solution of (4). Conversely, if ψ is a solution of (4), then

$$
u(r)=\int_{0}^{r} t^{n-1} \rho(t) \psi(t) d t
$$

is a solution of (10) and u has a zero of order n at $r=0$.
Proof. Suppose first that u is a solution of (10) and has a zero of order n at $r=0$. Let $\psi=u^{\prime} /\left(r^{n-1} \rho\right)$. Then by (10) we have

$$
\begin{aligned}
\psi^{\prime}+\nu \frac{u}{r^{n-1}}=0 & \Rightarrow r^{n-1} \psi^{\prime}+\nu u=0 \\
& \Rightarrow\left(r^{n-1} \psi^{\prime}\right)^{\prime}+\nu u^{\prime}=0 \\
& \Rightarrow r^{n-1} \psi^{\prime}+\nu r^{n-1} \rho \psi=0
\end{aligned}
$$

By (11) we have $\psi^{\prime}(1)=\lim _{r \rightarrow 1^{-}}\left(-\nu u(r) / r^{n-1}\right)=0$. Since u has a zero of order n at $r=0, \lim _{r \rightarrow 0^{+}} u(r) / r^{n-1}=0$. Hence $\psi^{\prime}(0)=0$ by (11).

Conversely, suppose ψ satisfies (4). Let

$$
u(r)=\int_{0}^{r} t^{n-1} \rho(t) \psi(t) d t
$$

Then $u(0)=0, u^{\prime}(r)=r^{n-1} \rho(r) \psi(r) \Rightarrow \psi=u^{\prime} / r^{n-1} \rho$. Substituting into (4) we get

$$
\left(r^{n-1} \psi^{\prime}\right)^{\prime}+\nu u^{\prime}(r)=0
$$

Integrating with respect to r,

$$
\begin{equation*}
r^{n-1} \psi^{\prime}+\nu u(r)=0 \Rightarrow\left(\frac{u^{\prime}}{r^{n-1} \rho}\right)^{\prime}+\nu \frac{u}{r^{n-1}}=0 \tag{12}
\end{equation*}
$$

By (12), $\nu u(r)=r^{n-1} \psi^{\prime}(r)$. Hence $u(1)=0$ and u has a zero of order n at $r=0$.
Before stating the main theorem, we need to recall the Sturm-Liouville Theorem ([2], [4]):

Sturm-Liouville Theorem. Let $f \in C([0,1]), f>0$. If ν_{k} and $\tilde{\nu_{k}}$ are the k th eigenvalues of the equations

$$
\left\{\begin{array}{l}
\left(\frac{w^{\prime}}{r^{n-1} \rho}\right)^{\prime}-\frac{w}{r^{n-1}} f(r)+\nu \frac{w}{r^{n-1}}=0 \text { in }(0,1) \\
w(0)=w(1)=0, \\
w \text { has a zero of order } n \text { at } r=0
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\left(\frac{u^{\prime}}{r^{n-1} \rho}\right)^{\prime}+\nu \frac{u}{r^{n-1}}=0 \text { in }(0,1), u(0)=u(1)=0 \\
u \text { has a zero of order } n \text { at } r=0
\end{array}\right.
$$

respectively. Then $\nu_{k} \geq \tilde{\nu_{k}}$.
We are now ready to state the main theorem:

Theorem 1. If $\rho(r)>0$ for $r \in(0,1)$ and $r^{n-1} \rho(r)$ is a decreasing function in $(0,1)$, then $\lambda_{k}-2 \lambda_{1} \geq \mu_{k}$ for $k=2,3, \ldots$.

Proof. Since λ_{k}, μ_{k} depend continuously on ρ [2], we may assume without loss of generality that $\rho \in C^{2}([0,1])$. Then $\left(1 / r^{n-1} \rho\right)^{\prime} \geq 0$. So

$$
\left\{\frac{2 \phi_{1}^{\prime 2}}{\rho \phi_{1}^{2}}-\frac{\phi_{1}^{\prime} r^{n-1}}{\phi_{1}}\left(\frac{1}{r^{n-1} \rho}\right)^{\prime}\right\} \geq 0 \text { for } r \in(0,1)
$$

since $\phi_{1}>0$ in $(0,1) \Rightarrow \phi_{1}^{\prime}<0$ in $(0,1)$ by [3]. By combining Lemmas $1,2,3$ and using the Sturm-Liouville theorem, the result follows.

References

1. C. Bandle and G. Philippin, An inequality for eigenvalues of Sturm-Liouville problems, Proc. of Amer. Math. Soc. 100(1987), 34-36.
2. R. Courant and D. Hilbert, Methods of mathematical physics, 1, Interscience, New York, 1953.
3. W. M. Ni, Some aspects of semilinear elliptic equations, National Tsing Hua University, Taiwan, R.O.C., 1987.
4. H. F. Weinberger, A first course in partial differential equations, Blaisdell Publishing Company, New York, 1965.
5. Y. Yang, A comparison of eigenvalues of two Sturm-Liouville problems, preprint.

Institute of Mathematics
Academia Sinica
Nankang, Taipei 11529
Taiwan
R.O.C.

[^0]: Received by the editors September 25, 1991 .
 AMS subject classification: Primary: 34B25.
 (c) Canadian Mathematical Society 1992.

