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Introduction

Let V be a convex cone in a real vector space X, F: Y X Y — X a
V-positive hermitian map on a complex vector space Y, and

DV,F)={(z,w)eX* X Y; Imz — Flu,u) eV}
the Siegel domain associated to V and F. D(V,F) is said to be sym-
metric, if for each point p € D(V, F) there exists an involutive holomorphic
automorphism ¢, of D(V,F) such that the fixed point set of ¢, consists
of only the point p. Satake [6] showed that the symmetric Siegel
domain D(V, F) is characterized by the following three conditions (i), (ii)
and (iii).
(i) V is a self-dual homogeneous convex cone in X.

Let G(V) denote the group of linear automorphisms of V and take a
point ec V. Then the Lie algebra g(V) of G(V) is a reductive algebraic
Lie algebra in gl(X) and the stabilizer

t(V) ={Aeg(V); Ae = 0}
of e is a maximal compact subalgebra of g(V). Let
© g(V) = (V) + p(V)

be the associated Cartan decomposition of g(V). Then, for each xe¢ X
there exists a unique element T(x) e p(V) satisfying T(x)e = x. Choose
an inner product (,) on X such that if ‘A denotes the transpose of
A e gl(X) with respect to this inner product, the Cartan involution as-
sociated to (C) is given by A ——*A. We define a hermitian inner
product <, > on Y by

lu, vy = (e, Fl(u,v)) for u,veY,
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denoting the C-linear extension to X€¢ of (,) by the same notation (, ).
Let Herm (Y) be the real subspace of the space End(Y) of C-linear
endomorphisms of Y, consisting of those endomorphisms which are self-
adjoint with respect to this hermitian inner product <, >. Then the
second condition is stated as

(ii) For each x e X there exists R(x) ¢ Herm (Y) such that
F(R(x)u,v) + Fu, R(x)v) = T(x)F(u,v) for u,veY.

The above R(x) is uniquely determined for xze X, and so we have an
R-linear map R: X — Herm (Y) by the correspondence z — R(z). The
C-linear extension of the map R will be also denoted by R: X¢ — End (Y).
Then the third condition is stated as

(iii) For each u,veY, xe X, we have
R(F(u, v))R(x)u = R(F(u, R(x)v))u .

In this note, we shall classify Siegel domains satisfying the conditions
(i) and (ii), and then determine the ones with the condition (iii) among
these Siegel domains. Qur problem reduces to the classification in the
case where V is an indecomposable self-dual homogeneous convex cone,
and so we shall restrict ourselves to consider D(V,F) for such convex
cone V.

Take a maximal abelian subalgebra a in p(V) and put m = dima.
Then the multiplicities of a-roots of g(V) are the same for all a-roots.
We define a positive integer v to be this multiplicity if m =2, and v =1
if m = 1. Then the pair (m,») is a complete invariant for the linear
isomorphism classes of indecomposable self-dual homogeneous convex
cones, and the possibilities of (m,v) are m =1, v=1;m =2, v=1;m
=8, v=1,2,40r 8, m=4, v=1,2 or 4. The cone with the invariant
(m,v) will be denoted by V:. We associate to such (m,y) an algebra
F>, over R in the following way: F? = the Clifford algebra C,_, associated
to the negative definite quadratic form on R!, if m = 2; F; = the
division algebra over R of dimension v, if m +# 2. Let 1+— 1 denote the
canonical involution of F:;. We define a subspace P of F:; by
Po=RlL+R'CC,, if m=2;P,=F;, if m=2, and denote by
P:F, — P>, the orthogonal projection to P relative to the standard
inner product of F:. Let ¢,=1, ¢, --,¢,_, be the standard basis of
Py with relations
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d=—-101<igsv—1, ¢t +ee=00=<i<k<y—1).

We denote by Aut* (F:,#) the group of those automorphisms of the
algebra F: commuting with 21— 1 and &, and by IM*(F2) the set of
unitary equivalence classes of F:-modules W over C with a hermitian
inner product { , > satisfying the condition

(%) vy = u, > for AeF, u,veW.

We define IM(m,v) to be the orbit space Aut* (F:, Z)\M*(F:) relative to
the natural action of Aut* (F:,,#) on I*(F:). Then our results are
stated as follows.

THEOREM A. The set M(m,v) is in a bijective correspondence with
the set of affine isomorphism classes of those Siegel domains D(V,F)
satisfying V = V>, and the condition (ii).

THEOREM B.Y Let W be an F:-module with a hermitian inner pro-
duct {, > satisfying the condition (x), and D(V:,F) the Siegel domain
corresponding to W. Then D(V:,F) satisfies the condition (iii) if and
only if m =1, or m = 2 and

(%) Z:j lequ, VI e, wy =0  for u,v,weW.

=0

By means of Theorems A and B, we get a new classification of
symmetric bounded domains without the use of the classification of semi-
simple Lie algebras of hermitian type.

Finally we note (cf. Tsuji [8]) that if an F2-module W (m = 2) does
not satisfy the condition (#), then the corresponding Siegel domain
D(V*,F) has no infinitesimal automorphisms other than infinitesimal
affine automorphisms.

1. Homogeneous Siegel domains

In this section we recall definitions and fundamental results on
homogeneous Siegel domains. For homogeneous cones and T-algebras,
see [9], [101, [11].

Let X be a finite dimensional real vector space. An open subset V
of X is called a convex cone, if 1) z,yeV, 0<2<1= 2 4+ (1 — Dy
eV, @ zeV,2>0=>2axeV, and (3) V does not contain any straight

1) In the case of F3, the same result is obtained by T. Tsuji (unpublished).
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line. We denote by G(V) the subgroup of GL(X) consisting of those
¢ € GL(X) satisfying ¢V = V. V is said to be homogeneous if G(V) acts
transitively on V. Two convex cones VC X and V' C X’ are said to
be linearly tsomorphic, if there exists a linear isomorphism ¢: X — X’
satisfying ¢V =V’. Let V,C X, 1 <7< 1) be convex cones. Put X
=X, + .-+ + X, (direct sum) and V=V, + -.- +V,. Then V is a
convex cone in X. This cone is called the direct product of the V,
1<i<7r and denoted by V=V, X ..- X V,. A convex cone V is
said to be decomposable if it is linearly isomorphic to the direct product
V, X V, of non-trivial convex cones V, and V,; otherwise it is said to
be indecomposable. For a convex cone V C X, the subset V* of the
dual space X* of X defined by

V* = {geX*;&x) >0 for any ze V — {0}},

is also a convex cone. V is said to be self-dual if there exists an inner
product (,) on X such that the canonical isomorphism ¢: X — X* de-
fined by o(x)(¥) = (%, y) satisfies oV = V*. Each (self-dual) homogeneous
convex cone is linearly isomorphic to the direct product V, x..-.-X V,
of indecomposable (self-dual) homogeneous convex cones V, (1 <7< 7),
where the V, are unique up to linear isomorphism and permutation
(Vinberg [9], [10D).

Let VC X be a convex cone and Y a finite dimensional complex
vector space. A map F:Y X Y — X¢ where X¢ denotes the complex-
ification of X, is called a hermitian map, if (1) FQAu, + Au,, v) = L,F(u,v)
+ ,F(u,,v) for 2,2, € C, u, u,ve Y, and (2) F(u,v) = F(v,u) for u,veY.
It is said to be V-positive, if (1) F(u,u) belongs to the closure V of V
for each ucY, and (2) F(u,u) = 0=> % = 0. For a V-positive hermitian
map F, the domain D(V,F) in X¢ X Y defined by

DWV,F)={z,uweX°XY;Imz—Fu,uweV},

is called the Siegel domain associated to V and F. It is known (Pjateckii-
Sapiro [5]) that D(V, F) is holomorphically isomorphic to a bounded
domain in X¢ X Y. We denote by A(D(V,F)) the group of those affine
automorphisms ¢ of X¢ x Y satisfying o(D(V, F)) =DV, F). D(V,F)
is said to be affinely homogeneous if A(D(V,F)) acts transitively on
D(V,F). A Siegel domain satisfying the Satake’s conditions (i) and (ii)
is always affinely homogeneous (c¢f. §3). If D(V,F) is affinely homo-
geneous, then V is homogeneous (Pjateckii-éapiro [5]). Two Siegel
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domains D(V,F) C X XY and D(V/,F) C X' x Y’ are said to be
affinely isomorphic if there exists an affine isomorphism ¢: X¢ X Y —
X'® X Y’ satisfying o(D(V, F)) = D(V',F’). Let DV, F)cX¢xY,
<1< 1) be Siegel domains. Put V=V, x ... XV, c X=X+ --- + X,
andY =Y, +.--+7Y,. We define a V-positive hermitian map F: Y X Y
— X¢ by

F(Sw Sve) = TFiuyv)  for upvie¥s Qi)

The Siegel domain D(V,F) associated to V and F is called the direct
product of the D(V,,F;) 1 <1< ) and denoted by D(V,F) = D(V,, F,)
XX DV, F,). A Siegel domain D(V,F) is said to be decomposable
if it is affinely isomorphic to the direct product D(V,, V) x D(V,, F,) of
non-trivial Siegel domains D(V,, F,) and D(V,, F,); otherwise it is said
to be indecomposable.

In general, a complex manifold D is said to be homogeneous if the
group of holomorphic automorphisms of D acts transitively on D. D is
said to be symmetric, if for each p e D there exists an involutive holo-
morphic automorphism ¢, of D such that the fixed point set of ¢, con-
sists of only the point p. It is known (Vinberg—Gindikin—Pjateckii—éapiro
[12]) that the set of affine isomorphism classes of affinely homogeneous
Siegel domains is in the bijective correspondence with the set of holo-
morphic isomorphism classes of homogeneous bounded domains. Each
symmetric Siegel domain is affinely homogeneous, since the Bergman
metric of a Siegel domain is complete (Nakajima [3]), and a homo-
geneous Siegel domain is affinely homogeneous (Kaup-Matsushima-Ochiai
[2D). Thus we have the bijective correspondence between the set of
affine isomorphism classes of symmetric Siegel domains and the set of
holomorphic isomorphism classes of symmetric homogeneous bounded
domains. Furthermore it is known (Kaneyuki [1]) that each affinely
homogeneous Siegel domain D(V, F) is affinely isomorphic to the direct
product D(V,F) X -.--x D(V,, F,) of indecomposable affinely homogeneous
Siegel domains D(V,, F;,) (1 <7 < r), where the D(V,,F;) are unique up
to affine isomorphism and permutation, and that D(V,F) is indecompos-
able if and only if V is indecomposable. Thus our problem reduces to
the case where V is indecomposable.

Now we recall the notion of 7T-algebras. Let
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A= 3>, Ay
1=4, kSm
be a finite dimensional bigraded distributive algebra over R and a > a*
be an involutive anti-automorphism of A. A is called a matriz algebra
with involution of rank m, if (1) A4, C Ay, and A A, = {0} if £+ p,
@) A¥x =A;;, and 3) A; is a subalgebra of A with the unit element

e,, for each 7. An element

a= TE. Qi s Qu€An

of A will be often denoted by the matricial form a = (a;,). The general
element of A;, (resp. of A) will be denoted by @i, bix, Cixs -+ - (resp. by
a,b,c,---). A matrix algebra A with involution of rank m is called a
T-algebrea of rank m, if

( I ) There exists an algebra isomorphism 6: A,; — R for each 3.

(II) e = Gy

(III) There exist n; > 0 (1 <7 < m) such that

N0(@xbrs) = NxB(Driix) -

(IV) 6aaf) > 0 if ay #+ 0.
(V) 0ubics) = (@ixbidCy-
(VI) (i) = (@ubrde, if 1 < k< ¢ and k< p.
(VID  a;x(bsdE) = (@b )bf, if 1 < k< 4.
For a T-algebra A of rank m, we define

’nszdimAik fOI‘ 1§i, kém,
tra= >, nba;) for a = (a;,) €4,

1=igm

(a, b) = tr adb* for a,bec A .
Then (, ) is an inner product on A satisfying

(a'*: b*) = (a', b) )
(ab, c) = (b, a*c) = (a, cb*) .
It follows from (II) that e = 3 e; is the unit element of the algebra

1=4sm
A. A permutation i~ 1 of the set {1,2,..,m} of indices is said to be
admissible for A, if i<k, 1>k imply m; =0. The renaming A,
~—> Ay of the grading of A by an admissible permutation %+ %, is
called an inessential change of the grading of A. T-algebras A of rank
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m and A’ of rank m’ are said to be isomorphic, if m = m’ and there
exists an algebra isomorphism of A onto A’ such that it becomes an
isomorphism as bigraded involutive algebras (i.e., it preserves gradings
and commutes with involutions), after an inessential change of the grad-
ing of A.

For a T-algebra A of rank m, we put

XA)={acd;a*=a},
~7(A)={(aik)€A;aik=0 @> k), 6a;;) > 0 (1§7:§m)} ’
V() = {tt*; te T (A)} € X(A) .

Then (Vinberg [10]) V(4) is a homogeneous convex cone in X(A4) and
the correspondence A ~~—> V(4) induces a bijection from the set of iso-
morphism classes of T-algebras onto the set of linear isomorphism
classes of homogeneous convex cones. Furthermore it is known (Vinberg
[11]) that V(A) is an indecomposable self-dual convex cone if and only
if m=1, or m =2 and all n,, ({# k) are the same non-zero integer.
For such T-algebra, weputy =1if m =1, and v = ny, G # k) if m = 2.
Then the pair (m,v) serves as a complete invariant for the linear iso-
morphism classes of indecomposable self-dual homogeneous convex cones.
It is not difficult to see that our invariant (m,v) coincides with the one
given in Introduction. We know that the possibilities of (m,v) are as
those in Introduction, seeing the clasgification of Vinberg [9] of such
convex cones. For such pair (m,v) we associate an algebra F: over R
as in Introduction. Then the T-algebra A: with the invariant (m,v) is
constructed explicitly in the following way.
Let first m = 2, and
Cio= 2 1(C”_l)s ) (C,oDs = 2. Rey---cy,

0ss=sv— <o <llg

be the usual graduation of C,_, = F:. Identifying R with (C,_), = R1,
we define a linear map Z%.:F: — R by the projection C,_, — (C,_),.
Putting P, = (C,_), + (C,_),, we also define a linear map #:F; — P2,
by the projection C,_, — (C,_), + (C,_),. Denoting by 1+ 2 the canonical
positive involution of C,_, (defined by the correspondence c;.c;,---c;, —

(—e¢;)- - - (—e)(—ey)), we define the standard inner product (,) on F,
by

1.1 G, 1) = Re 2 for 2, peF; .
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Note that P, is invariant under the involution 1+ 1 and
1.2) Re X = HPA + P2) for 2¢Fz, .

Let next m = 2. Then F: is the division algebra over R of dimension
v, and so we have the direct sum decomposition

F, =Rl + {2eF,;1= —2},

where 2+~ 1 denotes the canonical involution of F;. Identifying R with
R1 and putting P, = F2, we define linear maps Z%.: F;, — R and &:F},
— P*, by the projection F2, — R1 and the identity map of F:, respectively.
Then (1.2) holds also for these F:. The standard inner product (,) on
F:, is also defined by the formula (1.1). Note that then for each m the
involution 4 +— 1 commutes with #Z. and #.

Now, for a general pair (m,v), we denote by A:n the algebra M,,(F:)
of all matrices of degree m with coefficients in F2,. The product in /i:,,
will be denoted by a-b. Put ao* ='g for ac A?. Then A’, becomes a
matrix algebra with involution of rank m. A linear endomorphism p
of A», is defined by

P ifi+Ek

a =
tpades {%am ifi=1T.

We put A2, = p(42) and define a product in A’, by ab = p(a-b) for
a,beA’,. A has the natural bigrading induced from the one of A:n.
The involution a > ¢* of A’, leaves A’ invariant and induces an involu-
tion of A2. Relative to these grading and involution, A becomes a T-
algebra of rank m, by taking n;, = 1 for each 4. This T-algebra A:, is
the required one.

Put

X, = X(4;) , Vi =V(45) .
Then X, coincides with the space
H,(Py) = {ae M,(Py); ‘a = a}

of all hermitian matrices in the space M, (P2) of matrices of degree m
with coefficients in P:. It becomes a compact simple Jordan algebra
by the product

xy = 3y + yx)  for z,yeX;, .
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The unit element e of the T-algebra A is also the unit element of the
Jordan algebra X®. The cone V*, is also represented as the interior of

the subset {x[Jx; x e X%} of X%. We define the standard inner product
(,) on X3 by

(,y) = Trze[Jy = Z (Trz-y) for z,ye X, ,

where Tr denotes the usual trace of a matrix. This coincides with the
restriction to X*, of the inner product tr ab* of the T-algebra A:. The
cone V* is self-dual with respect to this inner product. We define an
injective linear map +: X3, — gl(X%) by

v(@)y = 2y + yx = 22y for z,ye X2, .

Let p2, = v(X%) and £, be the subalgebra of gl(X:) consisting of all
derivations of the Jordan algebra X:. Then the Lie algebra g(V:) of
the group G(V:) is given by

and P, coincides with the stabilizer of the point ec V?, in g(V%). Fur-
thermore the above is a Cartan decomposition of g(V) and the associate
Cartan involution is given by A — —!A with respect to the standard
inner product of X:. If we put

T(x) = 3y (x) for xe X, ,
we have T(x) €2, and T(x)e = « for each x ¢ Xz,

Next we recall the notion of S-algebras. Let

C= > Ca
154, kSm+1

be a T-algebra of rank m + 1 and j complex structures on C; ,,;,Cryyys
A<<i<m). C is called an S-algebre of rank m, if it satisfies the
following additional conditions:

(VIID a’ik(jbk,m+1) = 7(@xbr,ms0) fl1si<kzm.

(IX) jfn) = s m)* for each 1 <7 < m.

( X)) 000:m(G0s,mi)*) = 0@:mii0fn.)  for each 1 <7< m.
7 will be called the partial complex structure of C. For an S-algebra
C of rank m, we put
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A= Z Cik’

151, k=m

B = Z (Ci,m+1 + Cm+1,z‘) ’

1=igm
X={acd;o*=aqa},
Y={aeB;a*=a}.

Then A becomes a T-algebra of rank m and is called the T-algebra
associated to C. The complex structure j on B leaves Y invariant and
8o induces a complex structure j on Y. This j makes Y into a complex
vector space in the natural way, which will be denoted by (Y,7). The
inner product (, ) on C defined by the T-algebra structure on C satisfies

(ja, 7b) = (a, b) for a,beB.

Remark. It is known (Takeuchi [7]) that the positive numbers

n = 2(2 + 2. M+ %nz,mﬂ) l=sigm), n,,, =1

1=k=m
k#1
satisfy the axiom (III).

A permutation ¢ — % of the set {1,2, ..., m} is said to be admissible
for C, if i<k, 1>k imply my;=0. The renaming C,;,—> Cy
(1 g i’ k é m)7 Ci,'m.+1 ~ > C%,m+1y Cm+1,1’. ~—> Cm+1,i (1 § T é m) of the
grading of C by an admissible permutation i — %, is called an inessential
change of the grading of C. S-algebras C of rank m and C’ of rank
m’ are said to be isomorphic, if m = m’ and there exists an algebra
isomorphism of C onto C’ such that it becomes an isomorphism as a
bigraded involutive algebra with partial complex structure (i.e., it pre-
serves gradings and commutes with involutions and partial complex
structures), after an inessential change of the grading of C.

Let C be an S-algebra of rank m. Put

A= D Upme U= D, Uniis for v = (u)e Y,
1<is=m 1=i=m

and define a symmetric bilinear map @: Y X ¥ —» X by
O(u,v) = @y + 4w for u,veY.

Then it satisfies @(u, jv) = O(u,v) for u,veY, and hence the map
F: (Y, x (Y,j) — X¢ defined by

F(u,v) = {0, v) + v —10(u, jv)} for u,veY
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is a hermitian map. The maps @ and F' are said to be associated to C.
It is known (Takeuchi [7]) that F' is a V(A)-positive hermitian map.
The Siegel domain D(V(4),F) < X¢ x (Y,7) associated to V(4A) and F
will be denoted by D(C). Then (Takeuchi [7]) the correspondence C —~— D(C)
induces a bijection from the set of isomorphism classes of S-algebras
onto the set of affine isomorphism classes of affinely homogeneous Siegel
domains.

2. Linear automorphisms of a Siegel domain

We consider the pair & = (S; {M,}1c.<,.+0) 0f a matrix algebra

S = Z Saﬁ

1Sa, 2p+1

with involution # — u* of rank g + 1 and the set {m,}ic.c,.1 Of g+ 1
positive integers with m,,, = 1, such that (1) partial complex structures
jon S, 11,8, 1 < a <y are defined; (2) linear endomorphisms & on
See 1 =<a=p+1) are defined; (3) for each « A < a =< p + 1), there
exists an algebra isomorphism 9:S,, — F: for some v,, satisfying 92
= 9(*), P(I) = HLA) for 2¢8S,,. Such pair & is called an S-system of
rank x. The general element of S,, (resp. of S) will be denoted by
Uy Vaps Wapy + ++ (reSp. by u,v,w, -+ +).

Let & = (S; {M}icec,r) be an S-system of rank ¢ and e, the unit
element of the algebra S,, 1 <& < g + 1). Identifying R with Re,, we
define a linear map Z%.: S,., — R by

Re 2 = P2+ (ZA)*) for 1¢8S,..
Then we have
Re X = Re () for 2¢ 8.,

and the involution # — u* of S commutes with &£ and Z. on each S...
A permutation « — & of the set {1,2, ..., ¢} of indices is said to be ad-
missible for &, if a<B, @a> f imply S.s = {0}. The renaming S,
> SZ§ l1=<a B = /«l)y Sa,[l—l—l > SZ,;:H’ Sp+l,a > S,u+1,§ l=sa=s ,u)’ m,
—~—>m; A <a=<yp by an admissible permutation «+— &, is called an
inessential change of the grading of <. S-systems & = (S;{m,}) of
rank ¢ and &’ = (8'; {m.}) of rank u/ are said to be equivalent, if (1)
g =y and (2) after an inessential change of the grading of &,m,
=m, 1 £ a < p) and there exists an algebra isomorphism of S onto S/,
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which preserves gradings and commutes with involutions, 7 and #. The
equivalence class of & will be denoted by {¥}.

Let C be an S-algebra of rank m. We define an equivalence re-
lation ~ in the set I ={1,2,--.,m} inductively as follows: Let ¢ ~<¢
for each 7. Suppose that an equivalence relation ¢ ~ k£ is defined for
each i,k with |t — k| <p. We define ¢,k with [¢ —k|=p to be i ~ k
if ) n # 0 and % w1 = Momers ) My = My, for each ¢4, k; (3) for
each s lying between 7 and k (except ¢ and k), n; = n3; = 0 or ¢ ~ 8,
s ~ k. A grading of C is said to be adapted to the relation ~, if i <k
< 4,1~ ¢ imply ¢ ~ k ~ 4. In this case we get the decomposition I =

L”)I,, of I into the ~-equivalence classes I, (1 £« < p) in such a way
a=1

that

ey L=[m+-- - +m._+1, m+---4+m_+m] forlse=zyp,

and hence

2.2) m=3m,.

We put

2.3) I,,,={m+1}, My =1.

Then the cardinality |I,|] of I, is equal to m, for each 1 <a < p + 1.
We define a(i) with 1 < a(®) < ¢ + 1 by the relation

2.4) iel,, (A<is<m+1).

THEOREM 2.1. (A) For each S-algebra C, we can make the grad-
ing of C adapted to the relation ~, by an inessential change of the
grading of C.

(B) Let C be an S-algebra of rank m with the grading adapted
to the relation ~. Then we can associate to C an S-system & =
(S {M higeg,s) Of rank p with the following properties:

(@) p is the number of the ~-equivalence classes I, in I =1{1,2,
cee,m}, and m, =|1,| 1 £ a < p).

0 IfaxBorB#7,

unm(vuﬁwﬁr) = (uaa,vaﬂ)wﬁy ’
Uep(VpsWp,) = (Uep¥pp) W, -
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(¢) There exist linear isomorphisms

Setyati if a@@) # ak)
2.5) 0% : Cy —> {PS.aity if a@@) =alk), 1+ k
Re S 4 tiyatiy if i=k

satisfying

0" (@1)0*(bir) if a() # a(f)
(1) 0(@ixbrs) = { PO (@:)0"(brr)) if a@) =a(f), i1+ ¢
Re (0"(0:)0%(bry))  if 1= ¢,

and hence 6 = @ for each 1,
(2) %) = @ (ar))* ,

(3) joz’m+l(ai,m+l) = 0i’m+1(jai,m+1)’ jﬁm+17t(am+1,i) = 0m+l’i(jam+1,i)
for each 1 <t < m.

Hence we have

dim S, )z if @) + a(k)
(2.6) dim Cy = {vaq if a@@) =ak), i +k
1 ifi=T.

(C) We associate to each S-algebra C an S-system & by the pro-
cedures (A) and (B). Then the correspondence C -—~— & induces an
injective map from the set of isomorphism classes of S-algebras into the
set of equivalence classes of S-systems.

Proof. We give the proof of the injectivity of the last map, since
the proof of other assertions was contained in Takeuchi [7].

Let & = (S; {M.}1cacpsr) be an S-system. We define m, I, 1<«
Spe+1) and a®) ALi=<m+ 1) by (2.1)~(2.4). Take real vector
spaces C;, A <1, k< m + 1) with dimensions (2.6) and linear isomor-
phisms 4** as in (2.5). Put

C = Ciu -

154, ksm+1

We define a product ab, an involutive linear automorphism a — a* and
a partial complex structure 7 on C by the relations (1), (2) and (8). It
is easy to see that a — a* is an anti-automorphism of C, making use of
the commutativity of u+— u* with & and Z., and hence C becomes a
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matrix algebra with involution and partial complex structure. If fur-
thermore & is associated to an S-algebra C’, then C becomes an S-
algebra, which is isomorphic to C’. This shows the injectivity of our

map. q.e.d.
For an S-algebra C of the grading adapted to the relation ~, the
subalgebra
CC == Z C’Lk
a(t)=a(k)

of C is called the kernel of C. We have the following multiplicative
properties related to the kernel C° (Takeuchi [7]).

LEMMA. 1) If i+ p, k+ q and one of au, bep, Cpy belongs to C°,
then

aik(bkpcpq) = (aikbkp)cpq .
2) If i+ ¢ and a(k) equals a(i) or «(f), then

03 (brdE) = (@ixbr)0},

a(0be) = (@%b,
or equivalently,

i(Dricity) + 0in(Crdi) = (@ubrded, + (@xCe)F,
at(bucr) + bfi(awcr) = (@hbi)Ce, + (BFGx)Cx,

3) If1<i<m and a; e C then

aik(jbk,mﬂ) = j(aikbk,m+1) ’
(jbm+1,i)atk = j(bm+1,iaik) .

Now we consider the group of linear automorphisms of Siegel
domains. Let D(V,F) C X¢ X Y be a Siegel domain. Put

GL(D(V,F)) = ADWV,F) N GL(X° X Y) .

Let gl(D(V, F)) and g(V) denote the Lie algebras of GL(D(V,F)) and G(V)
respectively. Identifying as gl(X) @ gl(Y) C gl(X¢ X Y), we have (Pjateckii-
Sapiro [5])

glD(V, F)) = {(¥', ¥") e g(V) @ gl(Y) ; ¥'F(u, v)
= F(y""u,v) + Fu,¥"v) W,veY)}.
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The projection zy:gl(D(V,F)) — g(V) is defined by the correspondence
W, vy — 4'. In particular, for the Siegel domain D(C) C X¢ x (Y, %)
associated to an S-algebra C, we have an identification

gl(D(C) = {(W, ") e g(V(A) D gl(Y); ¥'§ = jv”,

VO(u,v) = O(W"u,v) + O(u,v"v) (u,veY)},
where @: Y X Y — X is the symmetric map associated to C. It is known
(Vinberg-Gindikin—Pjateckii—éapiro [12]) that gl(D(C)) (resp. g(V(A))) is
an algebraic Lie algebra in gl(X X Y) (resp. in gl(X)), and zx: gl(D(C))
— g(V(4)) is a rational homomorphism. We shall describe the structure

of gl(D(C)) in terms of the S-algebra C. Assume that C has the grad-
ing adapted to the relation ~. Put

X=CNXx, Ve=CNVA) .

Then it can be shown that V¢ is the direct product V, X ... X V, of the
cones V, corresponding to the T-algebras

A, = Z Cux (1§a§y),

a(i)=a(k)=a

and hence V¢ is a self-dual homogeneous convex cone in X¢ in virtue
of the characterization of Vinberg cited in §1. The Lie algebra g(V°)
of G(V°) has a Cartan decomposition

g(V9) = ¥V + p(V9) ,
where £(V°) is the stabilizer of e, = 1sZs: e; Ve in g(V°), and p(V°) is the
image °(X°) of the injective linear _1;;p P X¢ — gl(X® defined by
V()Y = xy + yx for z,ye X°.
We define linear maps : X¢ — gl(X) and ¥”: X¢ — gl(Y) by

V(@)Y = 2y + yx forxe X¢, yeX,
V() = 2u + ux forxeX®, ueY,

and then define an injective linear map +: X° — gl(X) @ gl(Y) by + =
Vv DY, ie.,

V@)Y, u) = W@y, v (@u)  for re X, yeX, ueY.
Put

https://doi.org/10.1017/5S0027763000016767 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000016767

24 MASARU TAKEUCHI

T = Cik

1Sa(i)<a(k)sp

Then T* becomes a Lie algebra by the bracket product [¢,t'] = ¢t/ — t't.
A faithful representation +: T* — gl(X) @ gl(Y) is defined by

V() (x, u) = Gz + xt*, tu + ut*) for teT* zcX,ucY.
We define subspaces p¢ and t* of gl(X) @ gl(Y) by
pPP=9X), t=WT.

t* is nilpotent in the sense that it consists of nilpotent endomorphisms
of X X Y. Then we have

THEOREM 2.2. (Takeuchi [7]) We have a direct sum decomposition
gl(D(C)) =gy + g° + ¥

as vector spaces with the following properties:

1) 1* is the maximum nilpotent ideal of gl(D(C)).

2) g° is a reductive algebraic subalgebra of gl(D(C)) without com-
pact factors. g°X° C X° and the restriction to X°¢ induces an isomorphism
of g° onto g(V°). We have a Cartan decomposition

g° = fe 4+ ey
where ¢ is the stabilizer of e, in g°, and p° is the one defined in the
above.
3) g, is o compact subalgebra of gl(D(C)) satisfying g,X° = {0} and
[90’ gc] = {0}
4) The stabilizer £ of e, in gl(D(C)) is a maximal compact sub-
algebra of gl(D(C)) with the decomposition

f=g,®f.

COROLLARY. Let C be an S-algebra. Then the rank of an S-system
associated to C is equal to 1 if and only if (1) the associated T-algebra
A is isomorphic to one of the A:, and (2) the projection nx: gl(D(C)) —
g(V(A)) is surjective.

Proof. We may assume that C has the grading adapted to the
relation ~. Let & = (S; {M.}1z.2.+1) be an S-system associated to C.

Assume g =1. Then T* = {0}, X = X°,V(4A) = V* and A is isomor-
phic to Az, It follows from Theorem 2.2 that
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gl(D(C) =g, Dg°,

where g,X = {0} and g° is isomorphic to g(V(A4)) through the restriction
to X, and hence ry is surjective.

Conversely assume that (1) and (2) are satisfied. It follows from
(2) that =nx(gl(D(C))) is reductive and zx(1*) is a nilpotent ideal in
zx(gl(D(C))), and hence nx(t*) = {0}. Since zy is injective on t*, we have
T* = {0}. Now (1) implies p¢ = 1. g.e.d.

3. Siegel domains satisfying (i) and (ii)

LEMMA 1. Let D(V,F)C X° x Y be a Siegel domain associated to
a self-dual homogeneous convexr cone V. Then the Satake’s second
condition (ii) is equivalent to the following condition

() 7nx:gl(D(V,F)) — a(V) is surjective.
If D(V,F) satisfies (ii), it is affinely homogeneous.

Proof. If the condition (ii) is satisfied, we have p(V) C nx(gl(D(V, F)))
in the notation in Introduction. On the other hand, we have g(V) =
V) + p(V) with [p(V), p(V)] = V), and hence g(V) C zx(gl(D(V, F))).
This shows (ii)’.

Conversely assume (ii). Then D(V,F) is affinely homogeneous (cf.
Pjateckii-Sapiro [5]). From the arguments in §1, we may assume that
D(V,F) = D(C) of an S-algebra C of rank m satisfying (1) the associated
T-algebra A = A2, and (2) nyx:gl(D(C)) — g(V*) is surjective. Then as
we have seen in Theorem 2.2 and Cor., gl(D(C)) contains the image p°
= (X%) of the map = ' @ " given by

V(@y =zy +yx  for z,yeX, =X,
Y'(X)u = xu + ux for xe Xy, ueY.

Take the base point e, ¢ V*, and the standard inner product (,) on X:,.
Recall that then

T(x) = 3/ (x) for xe X, .
We shall show that if we put
R(x) = 34" (%) for xe X, ,

R(x) is self-adjoint with respect to the hermitian inner product (e, F'(u, v))
on (Y,7); this will imply (ii). We may assume n, =1 for 1 <1< m,
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in virtue of Remark of §1. Thus the inner product (,) on C coincides
on X, with the standard inner product of X*. We define a hermitian
inner product <, > on (¥,7) by

{u, vy = (u,v) + v —1(u, jv) for u,veY.

Then we have 4(e,, F'(u,v)) = {u,v> for each u,veY. In fact, for the
symmetric map @ associated to C we have

2(e4, D(u,v)) = (e4, Wy + Pw) = (¥*, D)+ (0%, %)
= (ﬁr 7)) + (?\'f’ ?,)) = (u, ’0) .

Furthermore we have

" (wyu, v) = (@u + uw, v) = U, v*¥v) + (U, va*)
= (u, 2v + vx) = (U, ¥"(x)v) for xe X?, u,veY,

and hence "(x) is self-adjoint with respect to the hermitian inner pro-

duct <, >. This implies the required assertion.
The last assertion of the Lemma is clear from the above arguments.
q.e.d.

LEMMA 2. Let & = (S;{m.}1zes) be an S-system of rank p=1.
Then & 1is associated to an S-olgebra if and only if it satisfites the
following conditions 1)~8):

1 e Uy = Ugpe
2) There exist £,>0 A1 £ a < ¢+ 1) such that

by Re (UogVp,) = b5 Re (VpUep) -

3) Re(u,uk) >0 if u, #0.
1) Re (Uop(V5,W,.)) = Re (Uag?p)W,0)-
5) uaﬂ(jvﬂ,p+l) = J(Uap¥pe) If 1S S B = pe
6) J(uk,.) = (U, )* if LS a < p.
T Re (jun,p+l(jua,u+1)*) = HKe (ua,p+lu¢ip+l) ifla< M.
8) 8-1) a(pw) = Upu for A, pe Sy, uelSy,
8-2) A(uv) = (Au)v for 28y, veS,, velS,.

Remark 1. For a general S-system & = (S; {M,}iz.<,4) Of rank g,
the conditions in order that % is associated to an S-algebra, are given
by the above conditions 1)~7) for general u, together with the follow-
ing associativity conditions:
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8 Ifa#por p=+ry,

uaa(vaﬁwﬁr) = (uaavaﬁ)wﬂr ’

Uag(VpsWp,) = (UegVpp) Wi, -

9 U (VW) = (U)W, if a < B <7y and g <a.
10) %, P(vpw,p) = (U)W, if « < B <y and m, = 2,
Ues(V5,V5E) = (U0, )V5 if < B <7y and m, = 1.

Proof of Lemma 2. Let & be associated as in Theorem 2.1, (B) to
an S-algebra of the grading adapted to the relation ~. Then 1) follows
from the axiom (II) of S-algebras. In virtue of Remark of §1, we may
assume that n; = n; if a@) = a(k). Put 4,, = n;. Then 2) follows from
the axiom (III) and the equality (1,x) = (1, 2) for the standard inner
product (,) of F:, seeing that F: is generated by £F:;. We get 3)
making use of the axiom (IV). Theorem 2.1, (B), (b) implies 8-1), 8-2)
and -

8-3) u(Av) = (udv for ueS,, veSy, 18, .
Applying the involution u# — u* on 8-2), we get
8-2) (uv)A = u(vl) for ueSy, veS,, 2€8S,.

Now 4) follows from 8-3), 8-2)' and the equality (Ag,v) = (4, 2v) for the
standard inner product of F:. 5) follows from the axiom (VIII), seeing
also that F: is generated by £F:;. 6) and 7) follow from the axioms
(IX) and (X) respectively.

Conversely assume that & satisfies the conditions 1)~8). Let

C= > Cu,s m =m,
1<i, kSsm+1

be the matrix algebra with involution a+— a* and partial complex
structure j, constructed from & as in (C) of Theorem 2.1. We shall
prove axioms (I)~(X) for C.

(I) Put §=06%:Cy— Re,;, = R. Then

014 (@y:bs0) = Re (0°4(:0)0°(Dy) = 0 (a)0%(by)

implies that 6 is an algebra isomorphism.
(II) The unit element e; e C,;; satisfies %(e;) = ¢,). It follows from
1)
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6*(e)0" (@) = 6% (@) if a(@) # alk)
0°%(e,045) = (P (0" ()0 (a11)) = P (air) if a@) =alk), @ #+ k
Re (0%(e)0(:1)) = Ke 0%(a;y) ifi=k
= 0"%(a;x) .

This implies e;a;; = Q.
(III) Put n; = 4,,. Then from 2) it follows
N:0(056D5) = ga(i)aii(a’ikbki) == by He (RO (D))
= Za(k) Re (0¥ (b )0%(asr)) = 4«@)0“(1)“%14)
= Nx0(brsse) -
avy If e, + 0,
0(a,0%) = 0°4a,0%) = He (0“%(0,)0%(a))
= Re (0"(a)0"(@s)*) > 0
in virtue of 3).
V)1 a(bi,cr) = (@ibr)e,. We may assume that ¢, k, £ are mutu-
ally distinct, in virtue of (II). Then
0 U@5(DgsCr)) = Re (0%(a:1)0%(DrsCes))
_ {% [07% (1) (0%(D )0 (C4:))] if a(k) +# a()
TR 07(0:) POF (D)0 e))] i k) = a(D)
= Re [0%(a;1) (0" (b )0 (C, )]
since Ze (Ay) = X (2Pu) for 2e PF,,nc F;. In the same way we get
0 (D50 Cer) = Re [(07%(;1)0% (b1 )0 (C,0)]
Now (V) follows from 4).
(VD) au(briery) = (@ubrde, if 1 < k< 4, E<p. In virtue of (ID),
we may consider the following three cases:
@ a®=ak)=al@)=1<ap =2, m=3,
b)) a@=ak)=a@) =1<all) =2, m=3,
© a=ak)=al)=ap =1, t+p, m=4.
In case (a), we have
07P(as(b1sCop)) = 0(a3)0*P(DrsCip) = 07(0;)(0F (D106 (C,y))
= (0“(a:)0" (b1 ))0°?(C;p) by 8-1)
= 0*(a,D)0°7(Cyp) since m + 2
= mp((aikbke)czp) .
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This implies (VI). In case (b), making use of 8-2) and m =+ 2, we have
0ip(aik(bkzczp)) = 0ip((aikbk4)clp) ’
which implies (VI). In case (c), making use of m # 2, we have

0(a(byeCep)) = ﬁik(aik)(ﬁm(bkz)ﬁlp(cm)) ’
0ip(aikbkt)clp) = (0ik(afiIc)oke(bk[))alp(cdp) .

Since F: is an associative algebra for m = 4, we get (VI).

VID: a;(bibE) = (aubir)bl if ¢+ < k < 4. We may consider follow-
ing two cases:

@ ad)=al)=1<a(f) =2, m=2,

®) a@@) =alk) =al) =1, m = 3.
In case (a), we have

07 (031 (b1:D3)) = P(0°(@s1)0*(bxeD3y))
= Pl0"(as) e (0°4br)0*(Dr)*)]
= P[0"(0:) (0" (b1 )0" (D) ™)] »
since P(A Re ) = P(Ay) for 2e #F:, and peF;, with g = p. On the other
hand
0% (@101 bF) = P(0U011b1 )0 (D))
= P[(0"(a:)0"*(b1.))0** (b1 )*]
= P(0°*(a:) (0" (b1 )0 (b1 )*)] by 8-2).
These imply (VII). In case (b), we have

0@ (brbE)) = 0(ai)(0*(D)0" (b)) ,
0" (@b = (0" (@)™ (D))" (br)* .

Together with the equality a(¢z) = (Ag in Fz, we get (VII).
(VIII) follows from 5) and 8-1).
(IX) and (X) are immediate consequences of 6) and 7) respectively.
q.e.d.

Remark 2. For an S-system (S;{m,}) of rank p satisfying 2) and
3), we put

tru=>, 4, Ry, for u = (u.p)es,

(u, v) = tr uv* for u,veS .
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Then (, ) is an inner product on S satisfying
(u*, v*) = (u,v) for u,ve S,
and the condition 4) is equivalent to
(uv, w) = (v, u*w) for u,v,weS,
or
(uv, w) = (u, wo*) for u,v,wesS.

Let M(F2) be the set of all equivalence classes of (finite dimensional
and unital) F:-modules over C, and IM*(F:), Aut* (F.,#) and I(m,v)
be as in Introduction. Then the natural map from I*(F:) into IN(F:)
is a bijection. This can be proved in the same way as Lemma 21 in
Ozeki-Takeuchi [4]. Since the natural map is equivariant with respect
to the action of Aut* (F2, %), we have the identification

M(m,v) = Aut* (F;,, #)\M*(F;) = Aut* (F,, P\ M(Fz)

of orbit spaces. The point of Pi(m,v) represented by an F:-module W
will be denoted by [W].

In virtue of Lemma 1 and Cor. of Theorem 2.2, the classification
of affine isomorphism classes of those Siegel domains D(V, F) such that
V is an indecomposable self-dual homogeneous convex cone and it
satisfies the condition (ii), is equivalent to the classification of isomor-
phism classes of those S-algebras such that the rank of an associated
S-system is 1. Thus, in virtue of Theorem 2.1 and Lemma 2, our
Theorem A in Introduction is equivalent to the following

THEOREM 3.1. The set &S(m,v) of equivalence classes of those S-
systems (S; {m,}) of rank 1 satisfying m, =m, 1)~8) and 9: S, = F,
18 in o bijective correspondence with the orbit space M(m,yv).

Proof. Let & = (S; {M,h<.<2) be an S-system of rank 1 satisfying
m, =m, 1)~8) and S;; = F2,. We define

(U, v) = Re uv* for u,veS,;.

Then 3) and 7) show that (,) is an inner product on S,, satisfying
Gu, jv) = (u,v) for u,veS,. Put W = (S,,7) and

<u, vy = (U, v) + V' —1(u, jv) for u,vesS,.
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Then <{, > is a hermitian inner product on W. 1), 5) and 8-1) show
that W is an F’-module over C. Furthermore Remark 2 implies (Au, v)
= (u, 1) for AeF,u,vec S, and hence

(x) u,v> = u, ) for 1eF:, u,veW.

Now the correspondence & —~— W induces the map ©(m,v) s {¥} — [W]
€ M(m, v).

Conversely let W be an F:-module with a hermitian inner product
{, > satisfying the condition (x), and W, the scalar restriction to R of
W. We define an inner product (,) on Wy by

Uy v) = He U, v) for u,veW.

It satisfies
3.1 (Au, v) = (u, v) for A¢F:, u,veW.

The natural complex structure on W, (defined by the multiplication +/—1
on W) will be denoted by 7. Making use of the standard inner product
(A, 1) = Ze Ap of F:, we define a bilinear map Wy X Wgs (U, v) »uve
F;, by

(uv, ) = (u, ) for each 2¢ Fz, .

It satisfies

3.2) Aluv) = (Au)v , (uv)A = uQv) ,
(3.3) Reuv = (U, v) ,

3.9 uv = vu,

(3.5 w@v) = wv ,

for u,ve W and 1¢F,. Now we put

A u\ A¢F:, £¢R
S = >? ;= my =1
v &) u,ve Wy

and define on S a product ss’, an involution s— s* and a partial com-
plex structure j by

(2 u) <2’ u’) _ (u’ + uv’ A + &u )
v &)\ &) \Iv+ & )+ ee)’

https://doi.org/10.1017/50027763000016767 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000016767

32 MASARU TAKEUCHI
(2 u)* _ (2 v)
v & T \u & ’
(0 u) _ (0 ju)
No o) \jw o

Then & = (S; {M,}1<.<2) becomes an S-system of rank 1 with S, = F2,.
We define

2
trs= %2+ & fors:(v u)eS,
(s,8") = tr ss’* for s,s’e S,

and hence
A U
(s, = A, + Ww,u) + ,0) +& for s= (v e)es'

We can show

(s, 8") = (s*, 8’%) for s,s’e S,

(ss’, 8") = (s, 8"78'%) for s,s,8" €S,

making use of (3.1), (8.2) and (8.3). It follows from Remark 2 that &
satisfies 2), 8) and 4). 1), 5), 6) and 8-1) follow from the definition.
T and 8-2) follow from (3.5) and (8.2) respectively. Thus we get an
S-system & of rank 1 satisfying m, =m, 1)~8) and S, = F,. It is
easy to see that the correspondence W —~— & induces the map IM(m,v)
3 [W]l— {#}eS(m,v), and that it is the inverse of the former map
&(m,v) — M(m,v). This proves Theorem 3.1. q.e.d.

Next we shall describe explicitly the hermitian map of the Siegel
domain corresponding to [W]e M(m,v). The C-linear extension to (P2)°
of the involutive linear automorphism 1+~ 1 of P, will be also denoted
by 2— 2. Then (X2)° is identified with the space

H,((P,)%) = {ze M,(P,)9); 'z = 2}

of all hermitian matrices in M, ((P2)°). The (¢, k)-th component of ze
H,((P)°) will be denoted by z;. Denoting the C-linear extension to
(P2)¢ of the standard inner product (,) on P by the same notation
(,), and the complex conjugation of (P2)¢ with respect to P2, by 1~ 4,
we define a hermitian inner product {, > on (P:)°¢ by
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Qo> =@, 0 for 2, pe (P2)° .
We define a map H: W X W — (P2)° by
{2, Hu, v)) = v, u) for each 2¢e P, .

It is sesqui-linear (i.e., C-linear with respect to % and conjugate linear
with respect to v) and satisfies

H’(_J,{v) = H,u) for u,veW.
In terms of the standard units ¢, ¢, ---,c,_, of P, H is given by

Hu,v) = >, <u,cwde for u,veW.

0=si=v-1

THEOREM 3.2. The V:,-positive hermitian map F: Y X Y — H,((P2)°)
of the Siegel domain D(V:,, F) corresponding to [W]e MM(m,v) is described

—_—
as follows: Put Y =W + ... + W. The i-th component of ueY will
be denoted by u; e W 1 <1< m). Then F is given by

Fu,v)u = H{Hu, vi) + Hug,v)}  for 14, k<m, 1 #Fk,
F(u, )y = {ug, v for1si=m.

Proof. Let & be an S-system constructed from W as in Theorem
3.1, and C an S-algebra constructed from & as in Theorem 2.1, (C).
We may assume that the T-algebra A associated to C is A and Y =
{a € B; a* = a} is identified with the totality of “matrices” of the form

U,

u = Sl weWrp(A=£i<m),
Un,

Uys + Uy 0

with the natural complex structure j. The associated symmetric map @

is given by
3.6) {@(u,v)m = $P(uvr, + viUy) for 14, k<m, i +k,
' D(u, )iy = Re (Uv;) = (Uy, vy for 1<i<m,

in the notation in Theorem 3.1, and hence

O(u, jv)i = $PU(Jvi) — v,(JUr)) for 1<, k<m, 1+ k
O(u, Jv)s; = (Us, JV2) for1<i<m.

3.6) {
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We define an R-bilinear map H: Wy X Wi — (P2)°¢ by
H(u,v) = Puv + + —1u(jv)) for u,veW,

denoting the C-linear extension of #: F:, — P, by the same #:(F*)°¢ —
(P2)¢. Then it is characterized by

{4, Hu,v)) = QAv, u) for each 2¢ P, ,

and hence it coincides with the formerly defined sesqui-linear map H.
In fact,

Ay Hu,v)y = A, uv + v/ =1u@Gv)y = 4, uv) — v/ =1, u(jv))
= A, u) + V=1, Guwv)
= (v, u) + V=1, ju) = v, u) .

Now, by (3.6), (3.6)', the associated hermitian map F(u,v) = {0(u,v) +
« —10(u, jv)} is described as

2F(u, V)i = ${HW,ve) + Hugy,v))y  for 1 <4, k<m, i1 #k,
2F (U, v);; = Uy, V) for1si<m.

This implies the Theorem. q.e.d.

Remark 3. Let D(V*,F) C X¢ X Y be the Siegel domain constructed
from [W]e M(m,v) in the Theorem. As we have seen in the proof of
Theorem 2.2, Cor., we have the direct sum decomposition

gl(DV2, F) =g, D g°,

where g, is the kernel of the projection zy. The ideal g, is described as
follows: Let ©, denote the real subalgebra of gl(W) consisting of those
linear endomorphisms of W, leaving invariant the hermitian inner pro-
duct {, > of W, and commuting with the action of F:; on W. We de-
fine ¢, e gl(X¢ X Y) for De D, by

wD(Z,Z’Mz) = (O, > Du,-) for ze XC, u,eW A1 <i1<m).

Then the correspondence D — -, gives an isomorphism of 9, onto g,.
This follows from the Theorem or from the detailed description of g, in
terms of derivations of C, given in Takeuchi [7]. The subalgebra g° is
also described explicitly by means of the F:-module structure of W [T7].

It is easy to determine M(m,v), since the set M(F2) is well known.
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In the following we will give I(m,v) for each (m,v).

Case m =2, v > 1.

F:, = C,_,. Note that the action of each 6 O(» — 1) on R*~' = (C,_)),
is uniquely extended to an automorphism ¢ of C,_;, and that Aut* (F2, %)
coincides with the totality of ¢ for ¢ € O(v — 1).

@ v=2+1(=0).

Mm,v) ={[W,];reZ, r=0}, dim W, = 2% .
b)) v=2+2(¢£=0).
M(m,v) ={W,);r,seZ, r=s =0}, dim W, =24r + s) .
W, =WOD...0WODOWOD ... W, where W®» and W® are

-
r S

inequivalent irreducible C,,,,-modules over C.

Case m #2, v=1, 2, 4 or 8.
@ v=1 (m=+2). F;=R is isomorphic to C, as an algebra with
involution and projection 2.

Mm,v) ={[W,l;reZ, r =0}, dim W, =r.

®) v=2 (m=3). F,=C (as a real algebra) is isomorphic to C,
as an algebra with involution and £.

Mm,v) ={W,];7,8eZ, r=zs=0, dimW,,=7r+s.
W,e=WOD .. OWODWOD ... ®W®, where WP and W® are

~—

inequivalent irreducible C,-modules over C.
() v=4 (m =38). F: = H (real quaternion algebra) is isomorphic
to C, as an involutive algebra.

Mm,v) = {W,]l;reZ, r=0}, dim W, = 2r.
(d v=8 (m=38). F;,=K (real Cayley algebra).
Mim,v) = {[W,l}, dim W, =0.

4. Symmetric Siegel domains

Let C be an S-algebra corresponding to [W]e M(m,v) as in the pre-
vious section, and F':(Y,7) X (Y,7) - X¢ X = X>, be the V’-positive
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hermitian map associated to C. We want to describe the Satake’s
third condition (iii) for D(V%, F) in terms of the S-algebra C. The re-
lations cited in Lemma of §2 will be used consistently throughout the
following computations. Recall

F(u,v) = {@ + 9y) + =10y + G0y}  for w,veY,
R@u = 3" (@u = 3(ru + ur) = §(xdt + yx) for xe X, ueY,

and hence
PR
R(x)u = }ait , R(@x)u = jux for xe X, ueY,
~

R(x + v—=Tyu = H@h + yax) + jiyad + ywy)}  for z,ye X, uel.
We have

16R(F(u, )R@u = (g + ouw)(@d) + Ga)(@y + 0y)
+ H{0GY) + GO@D) + @)@Gy) + GOY} ,

8F(u, R(x)v) = 4(yx) + (@d)y + ~ —Ha(y») + (G(xd)y} ,

16R(F(u, R(@)v)u = (@(yx) + (@)wad + w@(yzr) + (@0)y)
+ H{laG2) + G@duld + ula(ya) + G@))ul},

and hence the condition (iii) is equivalent to

(M + 2w)(ed) + F{(@Gy) + GO (xi)}
= ((yx) 4+ @0)wd + j{la@w») + G@d))yli}
for each u,veY, ze¢X.

Comparing the C,; . ,,-components, we get the equivalent conditions

{(ui.m+lvm+1,k)(xktul.m+1) + (vi,m+1um+1.k)(xkzut,m+1)
1=k, 4=m

+ (ui,m+l(jvm+1,k))(xkl(jul.m+1)) + ((j’vi,m-x-l)um+1,k)(xk4(jut,m+l))}

= ISkZIS {Us, m 1V i1, 168D Ut mr1 + (BixVh,ms D Umsr, DU, mrr
<k, £=m

+ [ui,mn((jvm+1,k)xkl)]jue,m+1 + [(xilc(jvk,'m+1))um+1,£]juz.m+1}
foreach 1 <i<m, u= U, Vv =wWeY, t=@)eX.

In the following, the general element of C;;, (1 <4,k <m) and Cipyy
(1 £1 < m) will be denoted by x;, and u;,v;, w;, - - - respectively. If we
write the above conditions for
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x:xm-{—xfz, k;é?:,gf,ﬁ’t,
X =2y + ¥, kE+1,

T = Xy rh = x4,
we have the following three conditions:

(1ii-1) () (@eu) + @U@ + V)@ + aud) ()
+ (U @pgud + UdvH@Eiue + ((vduF (@ iu,)
+ (GvduP)(xhgus)
= (U WEze)u, + FBEu + [u((GvH)ze)liv,
+ [u(GuPai)liug if k#4d, £#1.

(1ii-2) (@F)(@aus) + WP (@hu) + uf)(wuu) + (Vu)(ehu,)
+ (U@ wiue) + @gvE)(@hu) + ((GvIuF)(@qiv)
+ ((Gvdud)(zfiu,)
= (u,(VF ) + (u(VETF)U; + 1§;§]m (@vR)uFu,

+ (@uvudu, + [ (GoHew)liue + [u((GvHri)liu,
+ 1;4‘;” ((@igvud)iu, + [(xw@o)uFliv, ifb+1.

(1ii-3) (P (@u) + @uH)(@u) + wugvHgiv) + ((Gvdud)(eu,)
= (u(vFr,)Du; + 1SkZS:m ((@pvuPue + (w,(GvFe)iu,

+ 20 (@uivdudiuy for each 1 <i<m.
1Sk=m

Thus the condition (iii) is equivalent to the conditions (iii-1), (iii-2),
(iii-3) as a whole. In the equality (iii-1), (w0 (@u) = (U)X IU, =
(u,(v¥we))u,. In the same way, (U0 (@iur) = UVFTE))ue, (UJVE)(@rdu,)
= [u(GoHzedliu, and (U gvF)(@fiug) = lu@Gviaipliv,,  Furthermore
waud)(@tue) = (uP)zidu, = W UFTENUy = V(@ru)*)ux. In the same
way, ((Gvuf)(xFju.) = (Gvxu)®)ju,. Thus (iii-1) is equivalent to

(ii-1)  (ud)@eau) + @(Teu)®)ur + ((Gv)u)i(@su)

+ (Gv)(@ru)®ju, = 0 iftk+id, £+1.
In the lefthand side of the equality (iii-2), (uvF)(@;ue) + (VUF)N(@ur)
= ((uvH2)ur + (uF)z;dur = UFru))ue + V(ufeyg))uy. In the same

In the righthand side of (iii-2), (u,(vFxENu; + (Xupv)uH)u; = (uvHafIu;
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+ @ua@ud))u, = wWoH@hu) + vu((uHu). In the same way, [u,((GvF)
X xf)ju; + (@uivdud)ju, = ugvH@hiu) + 2ul(GvduF)iu;l. Thus (iii-2)
is equivalent to

(ii-2)  @Fu)®u, + uH@hu) + (vd)@hiud*iue + (Gv)ud)i@huy)
= Tu{(VsuPu; + (GuF)iu}
+ 1; {(@avduPu, + [G@pve))ufljug ifi+k.

Furthermore (iii-3) is equivalent to

(iii-8)’ >0 {wauPHu, + (Grdudiut =0 for each 1<i<m.
1sks=m
k#1

Now, if m = 1, the conditions (iii-1)’, (iii-2)’, (iii-3)’ are always satisfied.
If m = 2, the condition (iii-1)’ for &k = ¢ # ¢ implies

4.1 waudu, + ((vdu)ju, =0  if i+ Fk,

or equivalently

4.1y uHwe + @wHdue + ((dudiwe + ((vJwdiju, =0  if i+Fk.

Actually the condition (4.1) is equivalent to three conditions (iii-1)/,
(iii-2y’, (iii-3)’. In fact; assume (4.1), then replacing w, = z,u, in (4.1),
we get (iii-1)’. Replacing u, = 2fu; and w, = u, in (4.1), we know
that the lefthand side of (iii-2)’ is 0. The righthand side of (iii-2) is
also 0 by (4.1). (iii-3)’ follows from (4.1). These prove the required
assertion.

Now we are in a position to prove Theorem B in Introduction.

Proof of Theorem B. Passing to the F’-module W, the condition
(4.1) is equivalent to

4.2) @w)u + [Z(Gv)wlju =0 for u,ve Wg.
Recalling that (#(uv), ) = (uv, ) = (u, 1) for 1¢ P, we get
Puv) = 3, (u,cv)e for u,ve Wy .

0=sisv-1

Thus (4.2) is equivalent to

> @, cu)(eu, w) — (G, c;u)(cu, jw)} = 0 for u,v,we Wy,
0=2isy-1
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or equivalently

2. @, cau)equ, jw) + (v, cu)(eu, w)} =0 for u,v,we Wg .
0=isv-1

Thus the condition (4.2) is equivalent to

(%) > Leu, vXeu, wy =0 for u,v,weW.
0<isy-1
This proves Theorem B. q.e.d.

Let M (m,v) denote the set of those [W]e IM(n,v) defining sym-
metric Siegel domains.

LEMMA. Let [WleD(m,v), N=dim W and p: F;, — End W be the
representation defined by the F:-module structure on W.
1) If m =2, then

NN — v +2) = ;Z:lTrp(ck)lz .

2) If v=38, then Trp(c;) =0 for each 1 <k <v — 1.

3) If m=2and v+2, then N=0 or N=yvp — 2,

4) If m=2 and v =2, then [W]=[Wy,l, t.e., W is the direct
sum of N-copies of an trreducible C.-module over C.

Proof. 1) Let m = 2. Take an orthonormal basis {u;, ---,uy} of
W, and put

Oapre = {Crllgy Upy for1<k=v—-1,1ZaB8<N.

Then @,,x = —az. and p(c,) (1 < k < v — 1) has the matricial representa-
tion (@.s1)12a, p<v- From the polarized form

v—1
S e, v e, wy + e, v{cu, wyt =0 for w,u, v, weW
=0
of the condition (}), we have
v—1
5'119675 + 67,95016 + ’CZ:; (af,sakaark + a’ﬁrkaﬁmk) =0

for each 1 £ a,8,7,0 < N. Putting =« and § =y, we get
1+ 6, + ; (@ ety + Aoy Opar) = 0 .
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Taking the sum over « and y, we get
N*+ N + 2 (Tr p(e))’ + 25 Tr (p(ee)) = 0.

Since p(cy)? = p(c}) = —1y and hence Tr (o(c)?) = —N, we have

NN +1) + z; (Tr p(cr))) — (v —1)N =0
Hence
NN —-v+2)= ~§; (Tr p(ep))* = ; |Tr p(cu) [ .

2) We may asume F: + K, since K has no modules other than the
trivial one. Let (F2)" denote the orthogonal complement in F: of the
center of F:, with respect to the standard inner product on F:. Then
(F2) is closed under the bracket product [2,x] = A¢ — ¢4 and coincides
with the commutator subalgebra [(F2)°, (F2)’]. The assertion follows from
the fact that each ¢; 1 <k < v — 1) belongs to (F2)° for v = 3.

3) is an immediate consequence of 1) and 2).

4) As we have seen in §3, if m =2 and v = 2, then M(m,v) =
{w,s;r,seZ,r=58=0}, dmW,,=r+s, W,, =W ®...0W»®

N
r

weod ... WP, where W® and W® are inequivalent irreducible C,-
S ————

s

modules over C. Let W=W,, and [W]leM,(m,v). We may assume
that p(c,) has the matricial representation

(" =)

and hence |Tr p(c)f = (r — s)®. Now the assertion 1) implies
(r+4 8y =(@—s?,
and hence r = s = 0. q.e.d.

The set M,(m,v) can be determined by the above Lemma. For
example, let m =2, v =24 + 2 (¢/ = 1). Recall that F;, = C,,,, and

Mm,v) ={[W,sl;r, seZ, r=s=0}, dim W, , =24r + s) .

If [W,leM(m,v), from Lemma 3) it follows
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r+s8=0 or 2r+s)=2¢,

and hence the possibilities are one of

1) ¢=21, r=s8=0,

2) 4=1,r=1,s=0 (v=4, dimW,,=2),

8) £=2,r=1 =0 (v =6, dim W,, =4).
We shall show that for each of the above (r,s), W = W, , satisfies the
condition (#).

Case 1). The condition (#) is clearly satisfied, since W = {0}.

Case 2). Note first that in terms of the sesqui-linear map H, the
condition (#) is written equivalently as

{H(u, vYu, wy = 2{u, v)¥u, w for u,v,weW .

Let W = C* with the hermitian inner product {u,v) = ‘uw. The R-
linear map p: P, — M,(C) defined by

1 0 ¥+y=1 0
P(Co) = (O 1> ’ P(Cl) = ( 0 _m> )
0 —1 0 —a/ =1
P(Cz) = <1 0 ) ’ P(Cs) = (-&f—_l 0 )

gives rise to an irreducible F:-module structure on W satisfying {Au,v)
= {u, ). Through the injective map p, we identify P:; with a real
subspace of M,(C), and thus (P:)¢ with M,C). Then the hermitian
inner product <{, > on (P:)° is given by

Q> =3Tr ('R for 2,pe M,C).
Now the sesqui-linear map H: C? X C* — M,(C) is given by
H(u,v) = 2u'v for u,veC?.

In fact, <2,2u'v) = Tr 2A(v'w) = Tr Q)'u = {Av,u)> for each 2ae M,(C).
Hence we have
{Hu, v)u, w)y = L2wdu, wy = 2{u(*vuw), w)
= 2{u, v)<u, w) for u,v,weC?.
This shows the condition (}) for W.

Case 3). Let W = C* with the hermitian inner product {u, v> = ‘uv.
The homomorphism p: F:;, — M,(C) defined by
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1o (v=1 0 ‘ 0
p(c) = Ll , ple) = 0 /-1 ,
0 0 0 l_m 0
1 0 —v-1
fo -1 0 lﬁ-‘l 0
0 —1 0 —4/-—1
oley) = ol oley) = N 0 ,
L0 . —«/—‘1] 0
o [o -1 . J 0 —y—1
0 —v/=1 0
p(e) = 0 —1 > o(c) = 0 /o1 ,
1 ol 0 V=1 o ' 0

gives rise to an irreducible F;-module structure on W satisfying {au,v)
= {u, ). It can be checked that the F:-module W satisfies the con-
dition (#).

It is verified that the above [W, ] defines actually the symmetric domain
of type (IV),,,, (II); and (EIII) respectively.

The set IM.(m,v) for each (m,v) is given as follows.
Case m=1. v=1, F, =R.
M(m,v) ={IW,;reZz, r =0}, dim W, =1r.

[W,] defines the symmetric domain of type (I),,,,-
Case m = 2.
(@ v=1. F;,=C,=R.

M(m,v) = {[Wl} , dim W, =0.

[W,] defines the symmetric domain of type (III),.
b)) v=2. F,=C,=C.

Mm,v) ={{W,l;rez, r=0}, dimW,,=r.

[W,,] defines the symmetric domain of type (I),,..,.
@ v=20+10U=1. F,=0C,

M(m,v) = {{W,]}, dimW,=0.
[W,] defines the symmetric domain of type (IV),.,,.
@ v=204+2U=1). F,=Cy,,.
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v+#4,6 M(m,v) ={{W,,]}, dimW,;,=0.
[W,,l defines the symmetric domain of type (IV),,,.
v=4 MWMm,v) = {[Wy,l, (W]}, dmW,, =0, dimW,,=2.
(W], [W,,] define symmetric domains of type (IV),, (II); respectively.
v==6 Mm,v) = {[Wy,l,[W,l}, dmW,, =0, dimW,,=4.

[Wiol, [W,,] define symmetric domains of type (IV),, (EIII) respectively.
Case m = 3.
(a) v=1. F), =R.

Ms(m,v) = {[W,]}, dimW,=0.

[W,] defines the symmetric domain of type (III),.
b)) v=2. F,=0C.

Me(m,v) ={W,l;reZ, r=0}, dim W, ,=1r.

[W,., defines the symmetric domain of type (D)., .,
¢ v=4. F,=H.

Ms(m,v) = {[W,),[W,]}, dimW,=0, dimW,=2.

[W,], [W,] define symmetric domains of type (II),,, (II),... respectively.
(d v=8. F, =K.

M(m,v) = {[W,]}, dimW,=0.
[W,] defines the symmetric domain of type (EVII).
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