
J. Fluid Mech. (2022), vol. 930, A6, doi:10.1017/jfm.2021.906

On the merging and splitting processes in the
lobe-and-cleft structure at a gravity current head

Albert Dai1,† and Yu-Lin Huang1

1Department of Engineering Science and Ocean Engineering, National Taiwan University, Taipei, Taiwan

(Received 8 March 2021; revised 3 October 2021; accepted 12 October 2021)

High-resolution simulations are performed for gravity currents propagating on a no-slip
boundary to study the merging and splitting processes in the lobe-and-cleft structure at
a gravity current head. The simulations reproduce the morphological features observed
in the laboratory and provide more detailed flow information to elucidate the merging and
splitting processes. Our mean lobe width b̃ and mean maximum lobe width b̃max satisfy the
empirical relationships b̃/d̃ = 7.4Re−0.39

f and b̃max/d̃ = 12.6Re−0.38
f , respectively, over

the front Reynolds number in the range 383 ≤ Ref ≤ 3267, where the front Reynolds
number is defined as Ref = ũf d̃/ν̃, ũf is the front velocity, d̃ is the height of the gravity
current head and ν̃ is the fluid kinematic viscosity. When measured in terms of the
viscous length scale δ̃ν = ν̃/ũ∗, where ũ∗ is the shear velocity at the gravity current
head, the mean lobe width and the mean maximum lobe width increase with increasing
front Reynolds number and asymptotically approach 126δ̃ν and 230δ̃ν at Ref = 3267,
respectively. The vortical structure inside a lobe has an elongated tooth-like shape and a
pair of counter-rotating streamwise vortices are positioned on the left- and right-hand sides
of each cleft. For the merging process, it requires the interaction of three tooth-like vortices
and the middle tooth-like vortex breaks up and reconnects with the two neighbouring
tooth-like vortices. Therefore, a cleft may continually merge with another neighbouring
cleft but may never disappear. For the splitting process, even before the new cleft appears,
a new born streamwise vortex is created by the parent vortex of opposite orientation and
the parent vortex can be either the left part or the right part of the existing tooth-like
vortex inside the splitting lobe. The new born streamwise vortex then induces the other
counter-rotating streamwise vortex as the new cleft develops. The initiation of the splitting
process can be attributed to the Brooke–Hanratty mechanism reinforced by the baroclinic
production of vorticity. Depending on the orientation of the parent vortex, the resulting
new cleft after the splitting process can shift laterally in the positive or negative spanwise
direction along the leading edge of the gravity currents as the lobe-and-cleft structure
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moves forward in the streamwise direction. For gravity currents propagating on a no-slip
boundary, the lobe-and-cleft structure is self-sustaining and the manifestations of the
merging and splitting processes are in accord with reported laboratory observations.

Key words: gravity currents

1. Introduction

Gravity currents are flows driven by a density difference and occur ubiquitously in
geophysical environments, including see-breeze fronts, pyroclastic flows, powder-snow
avalanches and turbidity currents (Simpson 1997) and in man-made environments such as
the accidental release of dense industrial gases (Fannelop 1994). At the leading edge of the
gravity currents, the characteristic morphological features in a three-dimensional view are
the lobes and clefts. The lobes are described as projecting noses with bulges or buttresses
which continually change shape and the clefts are described as deep indentations which
divide the lobes along the front (Simpson 1972). The existence of lobes and clefts at the
leading edge of the gravity currents is known to have implications for the frontal mixing in
gravity currents (Simpson 1982), erosional and depositional patterns in turbidity currents
(Allen 1971, 1985; Espath et al. 2015) and the dynamics of powder-snow avalanches
(Jackson, Turnbull & Munro 2013).

Our understanding of the lobe-and-cleft structure at the leading edge of the gravity
currents is largely based on laboratory experiments (e.g. Simpson 1972; Cenedese &
Adduce 2008; La Rocca et al. 2008; Adduce, Sciortino & Proietti 2012) and numerical
simulations (e.g. Daly & Pracht 1968; Härtel, Meiburg & Necker 2000b; Cantero et al.
2007b, 2008; Ottolenghi et al. 2018) of gravity currents in a lock-exchange configuration.
It is generally accepted that, based on laboratory experiments and numerical simulations,
the generation of the lobe-and-cleft structure requires a no-slip boundary and the
lobe-and-cleft structure is suppressed with a free-slip boundary (Simpson 1972; Britter
& Simpson 1978; Härtel et al. 2000b; Xie, Tao & Zhang 2019). Due to the presence of a
no-slip boundary, the lowest streamlines in the flow relative to the head must be towards
the rear and the foremost point of a bottom-propagating gravity current head must be raised
some distance above the bottom boundary. In a translating coordinate system which moves
with the gravity current head, the stagnation point is located below and slightly behind the
foremost point in the vicinity of the wall (Härtel et al. 2000b). This feature of the flow
topology gives rise to an unstably stratified region between the stagnation point and the
foremost point (Hartel, Carlsson & Thunblom 2000a) and the mechanism that leads to
the initial formation of the lobe-and-cleft structure is shown to be the Rayleigh–Taylor
instability (Xie et al. 2019). The characteristic initial lobe width based on the linear
stability analysis has been found to agree with the lobe width based on three-dimensional
direct numerical simulations of the initial formation of the lobe-and-cleft structure (Hartel
et al. 2000a; Xie et al. 2019).

Once the lobes and clefts form at the leading edge of the gravity currents, the lobes
move laterally along the leading edge while continuing to grow, shrink or breakdown into
smaller ones. The clefts may continually merge with neighbouring clefts while new clefts
appear as the large lobes split into smaller ones. The merging of clefts and splitting of
lobes in the lobe-and-cleft structure continue ceaselessly as the gravity currents propagate
in the streamwise direction. We should remark that the characteristic initial lobe width
based on linear stability analysis corresponds to the initial formation of the lobe-and-cleft
structure. When the above merging and splitting processes are clearly recognized, the lobe
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Merging and splitting in the lobe-and-cleft structure

width is notably greater than the initial lobe width and does not correspond to the linearly
unstable mode (Xie et al. 2019).

When the merging and splitting processes are present, the experiments of Simpson
(1972) indicate the following empirical relationship for the lobe width

b̃

d̃
= 7.4Re−0.39±0.02

f and
b̃max

d̃
= 12.6Re−0.38±0.02

f , (1.1a,b)

where b̃ is the overall mean lobe width, b̃max is the mean of the maximum lobe width and
d̃ is the height of the gravity current head. Here, the front Reynolds number is defined as
Ref = ũf d̃/ν̃, where ũf is the front velocity and ν̃ is the kinematic viscosity of fluid. The
front Reynolds number in the experiments of Simpson (1972) was in the range 3 × 102 ≤
Ref ≤ 104.

In laboratory scale gravity currents, the lobe size is dependent on the Reynolds number,
where the Reynolds number on the laboratory scale is typically in the range from O(102)

to O(104). In the geophysical scale gravity currents, the lobe size is between d̃ and 2d̃
(Lawson 1971; O’Donnell, Ackleson & Levine 2008; Mayor 2011; Warrick & Stevens
2011; Horner-Devine & Chickadel 2017) and there is no evidence of Reynolds number
dependence, where the Reynolds number on the geophysical scale often exceeds O(106).
Horner-Devine & Chickadel (2017) speculate that the lobes and clefts in the geophysical
scale gravity currents may result from the collapse of Kelvin–Helmholtz billows (Parsons
1998). More detailed field observations are still necessary to determine the lobe-and-cleft
generation mechanism in the geophysical scale gravity currents (Horner-Devine &
Chickadel 2017) and the lobes and clefts in the geophysical scale gravity currents are not
within the scope of this study.

Our aim in this study is to deepen the understanding of the vortical structure and
the mechanism responsible for the merging of clefts and splitting of lobes for gravity
currents propagating on the no-slip boundary. As we will show later, for the merging
process, it requires the interaction of three tooth-like vortices and the middle tooth-like
vortex breaks up and reconnects with the two neighbouring tooth-like vortices. For
the splitting process, a new born streamwise vortex is created by the parent vortex of
opposite orientation, attributed to the Brooke–Hanratty mechanism reinforced by the
baroclinic production of vorticity, and the parent vortex can be either the left part or
the right part of the existing tooth-like vortex inside the splitting lobe. To the best of
our knowledge, even though the lobe width has been measured in experiments (Simpson
1972) for planar gravity currents and in numerical simulations (Cantero, Balachandar &
Garcia 2007a; Cantero et al. 2007b) for cylindrical and planar gravity currents, there is
no existing report in the literature that documents the evolution of the vortical structure
inside the splitting lobe and the mechanism responsible for the splitting process. Our
investigation is conducted by means of three-dimensional high-resolution simulations
of the incompressible Navier–Stokes equations with the Boussinesq approximation. The
problem is designed following the experiments of Simpson (1972) in that the gravity
currents are produced from a full-depth lock-exchange configuration and the lock length is
sufficiently long such that the gravity currents are maintained in the slumping phase. In the
slumping phase, the leading edge of the gravity currents travels at approximately constant
speed and we may systematically vary the Reynolds number in the problem. The paper is
organized as follows. In § 2, we describe the formulation of the problem. The qualitative
and quantitative results are presented in § 3. Finally, conclusions are drawn in § 4.
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x1

x3

L̃0

H̃
g̃

L̃x1

ρ̃1 ρ̃0

Figure 1. Sketch of the initial condition for a full-depth lock-exchange flow. The heavy fluid has density
ρ̃1, height H̃ and length L̃0. The ambient fluid of the same height has density ρ̃0 and length L̃x1 − L̃0. The
coordinate system follows the right-hand rule, where x1, x2 and x3 represent the streamwise, spanwise and
wall-normal directions, respectively. Here, the gravity g̃ acts in the negative x3 direction and the positive
spanwise direction points into the paper.

2. Formulation

In the present work we focus on gravity currents in the slumping phase produced from
a full-depth lock-exchange set-up with a no-slip boundary. Figure 1 sketches the initial
condition for a full-depth lock-exchange flow. The height of the channel is H̃ and the width
of the channel is L̃x2 . The length of the channel is L̃x1 while the length of the heavy fluid on
the left side is L̃0. The heavy fluid on the left side has density ρ̃1 and the ambient fluid has
density ρ̃0. We assume that the density difference is sufficiently small, i.e. (ρ̃1 − ρ̃0) � ρ̃0,
such that the Boussinesq approximation (the influence of density variations is retained only
in the buoyancy term but neglected in the inertia and diffusion terms) can be adopted.

The governing equations under the Boussinesq approximation take the following
dimensionless form

∂uk

∂xk
= 0, (2.1)

∂ui

∂t
+ ∂(uiuk)

∂xk
= ρeg

i − ∂p
∂xi

+ 1
Re

∂2ui

∂xk∂xk
, (2.2)

∂ρ

∂t
+ ∂(ρuk)

∂xk
= 1

ReSc
∂2ρ

∂xk∂xk
, (2.3)

where the dimensionless parameters in the governing equations are the Reynolds number
Re and the Schmidt number Sc, defined by

Re = ũbH̃
ν̃

and Sc = ν̃

κ̃
, (2.4a,b)

respectively. The heavy fluid and ambient fluid are assumed to have identical kinematic
viscosity ν̃ and molecular diffusivity κ̃ in the density field. Here, ui denotes the velocity, ρ
the density, eg

i = (0, 0, −1)T the unit vector in the direction of gravity and p the pressure.
The set of (2.1)–(2.3) is made dimensionless by the lock height, H̃, as the length scale, the
buoyancy velocity

ũb =
√

g̃′
0H̃ with g̃′

0 = g̃
ρ̃1 − ρ̃0

ρ̃0
, (2.5)
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Merging and splitting in the lobe-and-cleft structure

as the velocity scale, where g̃ is gravity, and H̃ũ−1
b as the time scale. The dimensionless

density is given by

ρ = ρ̃ − ρ̃0

ρ̃1 − ρ̃0
, (2.6)

which varies in the range 0 ≤ ρ ≤ 1. Note that for the initial condition, ρ = 1 represents
the heavy fluid and ρ = 0 represents the ambient fluid.

In all simulations discussed in this paper, we have used a Schmidt number of unity as
setting the Schmidt number to unity is a common practice in simulations (Cantero et al.
2007a,b; Dai 2015; Zgheib, Ooi & Balachandar 2016). Furthermore, it has been shown
that the influence of the Schmidt number is weak as long as Sc ≈ O(1) or larger (e.g.
Härtel et al. 2000b; Necker et al. 2005; Bonometti & Balachandar 2008). Since the gravity
currents in the designed problem are maintained in the slumping phase during which the
front travels at a constant speed ũf , we may define the dimensionless front speed in the
slumping phase

Fr = ũf

ũb
, (2.7)

as the Froude number. The front Reynolds number is defined as Ref = ũf d̃/ν̃, which is
related to Re in (2.4a,b) and Fr in (2.7) via

Ref = d̃

H̃
ReFr. (2.8)

The governing equations in the velocity–pressure formulation is solved in the
three-dimensional domain Lx1 × Lx2 × Lx3 = 17 × 1.5 × 1, where the length of the
heavy fluid is L0 = 8 such that the slumping phase continues for extended spatial and
temporal regions. Fourier expansion with periodic boundary condition is employed in the
streamwise and spanwise directions. Chebyshev expansion with Gauss–Lobatto quadrature
points is employed in the wall-normal direction. At the top and bottom walls, we employ
no-slip condition for the velocity field and no-flux condition for the density field. The
influence of the periodic boundary condition in the streamwise direction has been shown to
be unimportant unless when the gravity currents have approached the boundary to within
one length scale H̃ (Härtel et al. 2000b). Regarding the top boundary condition used in
the simulation, our experiences in the laboratory experiments show that the feature of
the lobe-and-cleft structure is persistent in the lock-exchange experiment irrespective of
whether there is a lid or not on the top boundary. It was also shown in the numerical
simulations by Cantero et al. (2007b) that with no-slip condition at the top and bottom
walls, the direct numerical simulation results agree with the lock-exchange experiments.
We should also remark that for the Boussinesq case as considered in this study and Cantero
et al. (2007b), the influence of the density difference on the free surface is relatively small
and the free surface can be assimilated to a top lid. For the non-Boussinesq case when
the density difference is not small, the amplitude of the waves on the free surface may
increase with the density difference and the experiments with a lid and without a lid may
differ sensibly.

We adopt the low-storage third-order Runge–Kutta scheme (Williamson 1980) for time
advancement. The convection and buoyancy terms are treated explicitly and the diffusion
terms are treated with Crank–Nicolson scheme. For the convection term, divergence and
convective forms are alternately used (Durran 1999) and the 3/2-rule technique is adopted
for the aliasing removal (Canuto et al. 1988). This de-aliased pseudospectral code has
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been employed in Cantero et al. (2007a,b) and Dai (2015) and Dai & Wu (2016) for
lock-exchange flows. The initial velocity field was set with a quiescent condition in all
simulations. The initial density field was prescribed as

ρ(x1, x2, x3)|t=0 = 1 + γ1

2
(1 − erf{

√
ReSc[x1 − (L0 + γ2)]}), (2.9)

which is unity in the heavy fluid region and zero for the ambient fluid region with an
error-function-type transition in the interface region, of which the thickness depends on
the Reynolds number and Schmidt number. The values of γ1 and γ2 were minute, uniform,
random disturbances selected in the range γ1 ∈ (−0.05, 0) and γ2 ∈ (−�x1/2, �x1/2)

following Härtel, Michaud & Stein (1997) and Cantero et al. (2006). In this study we
are interested in the lobe-and-cleft structure and the merging and splitting processes
within it. Therefore, the Reynolds number in the problem must be sufficiently high to
support the initial formation and subsequent evolution of the lobe-and-cleft structure.
We considered five Reynolds numbers, i.e. Re = 1788, 3450, 8950, 13000, 17000, which
correspond to the five front Reynolds numbers, i.e. Ref = 383, 743, 1799, 2618, 3267. To
be consistent with the resolution requirement that the grid spacing must be of the order
of O(ReSc)−1/2 (Härtel et al. 2000b; Birman, Martin & Meiburg 2005), we employed
the grid Nx1 × Nx2 × Nx3 = 616 × 56 × 88, 640 × 84 × 110, 1024 × 112 × 180, 1260 ×
140 × 220, 1440 × 160 × 256 in the three-dimensional simulations for the preceding five
Reynolds numbers. The time step was chosen such that the Courant number remained less
than 0.5.

3. Results

3.1. Flow at the leading edge of the gravity currents
A typical appearance of the lobe-and-cleft structure at the leading edge of the gravity
currents when the merging and splitting processes are at work is shown in figure 2. It is
clear that the lobe-and-cleft structure is of a three-dimensional nature and lobes of different
sizes coexist when the merging and splitting processes are at work. The experiments of
Simpson (1972), McElwaine & Patterson (2004) and numerical simulations of Härtel et al.
(2000b) show that there exists a regular pattern of lobes with a preferred lobe width during
the initial formation of the lobe-and-cleft structure. However, this regular pattern quickly
evolves into a state where the merging and splitting processes are at work and lobes of
different sizes may shift sideways along the advancing front. Furthermore, it was reported
that the lobes may grow, shrink or breakdown and a cleft may continually merge with
another neighbouring cleft.

In the upper part of the head, the surface behind the clefts steepens. In the lower part
of the head, the ambient fluid is diverted around the lobes and drawn into the clefts.
Therefore, the bottom density contour shows an imprint of the lobe-and-cleft structure,
where the heavy fluid advances in the lobe region and the ambient fluid is trapped in the
cleft region. Due to the action of buoyancy, the ambient fluid trapped in the cleft region
tends to rise in the head from the bottom boundary as shown by the mushroom-like shape
in the cross-sectional density contour in the back plane of figure 2.

In order to unambiguously measure the height of the head, the height of the foremost
point and the front location and to compare our results with the simulations of Härtel et al.
(2000b), here, we use the average in the spanwise direction for the dimensionless density
and velocity in three-dimensional simulations. The average of a variable f (x1, x2, x3) in
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x3

x2

x1

Figure 2. Three-dimensional view of the lobes and clefts at the leading edge of a gravity current propagating
on a no-slip boundary when the merging and splitting processes are at work. The Reynolds number in
the simulation is Re = 3450 and the time instance is chosen at t = 5.66 dimensionless units (H̃ũ−1

b ). Flow
field is visualized by a density isosurface of ρ = 0.2. Side plane: instantaneous streamlines in a translating
coordinate system. Bottom plane and back plane: density contours. Spacing between consecutive grid lines in
the streamwise and spanwise directions is chosen at one-tenth of a dimensionless unit.

the spanwise direction is defined as

f̄ (x1, x3) = 1
Lx2

∫ Lx2

0
f (x1, x2, x3) dx2, (3.1)

where the variable f can be the dimensionless density ρ(x1, x2, x3) and velocity
ui(x1, x2, x3), where i = 1, 2, 3 and Lx2 = 1.5 is chosen in the three-dimensional
simulations.

Figure 3 shows the spanwise-averaged flow field of the gravity current propagating on
a no-slip boundary at Re = 3450 in the coordinate system moving with the head. The
average of the spanwise velocity ū2 is approximately zero. Consistent with the observations
of Härtel et al. (2000b), our spanwise-averaged flow field of the head is very similar to the
corresponding two-dimensional flow field of the head.

In the translating coordinate system, we use a relative coordinate x′
1 = x1 − xf and a

relative velocity u′
1 = u1 − uf , where xf and uf are the front location and front speed

in the slumping phase, respectively. In the translating coordinate system moving at uf ,
the head is stationary while the ambient fluid is approaching the head from the far
end uniformly across the depth. In all cases considered in this study, the stagnation
point, as shown in figure 3, is located below the foremost point of the head and the
stagnation streamline close to the bottom boundary separates the ambient flow into two
parts. While the oncoming ambient fluid above the stagnation streamline passes up and
over the head, the oncoming ambient fluid below the stagnation streamline ends up being
pulled underneath the head. Previously, only the thin layer of ambient fluid below the
stagnation streamline was thought to flow into the clefts and the ratio of the amount
of ambient flow V̇u into the clefts to the total volume flux V̇0 can be estimated based
on the height of the stagnation streamline at the far upstream end. Table 1 lists the
fraction of the total volume flux that goes into the clefts based on the spanwise-averaged
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1.0

0.5x3

x1
′

0
–0.5 0.50

Figure 3. Spanwise-averaged flow field of the gravity current on a no-slip boundary at Re = 3450 in the
coordinate system moving with the head. The time instance is chosen at t = 5.66 dimensionless units (H̃ũ−1

b ).
The thick solid line represents ρ̄ = 0.2 and the velocity field (ū′

1, ū3) in the translating coordinate system is
visualized by the thin solid streamlines. The stagnation point in the translating coordinate system is designated
by the solid circle, of which the height is x3s above the bottom boundary, and the foremost point (nose) is
designated by the solid square, of which the height is x3n above the bottom boundary.

flow field as V̇u/V̇0|2D and shows that this fraction decreases as the Reynolds number
increases from 1.51 % at Re = 1788 (Ref = 383) to 1.10 % at Re = 3450 (Ref = 743),
0.74 % at Re = 8950 (Ref = 1799), 0.61 % at Re = 13 000 (Ref = 2619) and 0.55 %
at Re = 17000 (Ref = 3267). As a matter of fact, due to the three-dimensional nature
of the lobe-and-cleft structure, not only the ambient fluid underneath the stagnation
streamline can be diverted around the lobes and into the clefts but also the ambient fluid
above the stagnation streamline, if not flowing into the clefts directly, can do likewise.
Therefore, to estimate the fraction of the total volume flux going into the clefts in a
three-dimensional lobe-and-cleft structure, V̇u/V̇0|3D, we should consider that the ambient
fluid which is ultimately trapped into the clefts may come from various upstream regions.
To do this, we first calculate the ambient volume flux which passes up and over the
head in the three-dimensional translating coordinate system. The ambient volume flux
which goes into the clefts can then be calculated by subtracting the ambient volume
flux which passes up and over the head from the total volume flux. The fraction of the
total volume flux which goes into the clefts based on the three-dimensional lobe-and-cleft
structure V̇u/V̇0|3D, also listed in table 1, consistently decreases with increasing Reynolds
number as V̇u/V̇0|2D demonstrates. However, quantitatively, the estimates based on the
three-dimensional lobe-and-cleft structure V̇u/V̇0|3D are significantly greater than the
corresponding estimates based on the spanwise-averaged two-dimensional flow field
V̇u/V̇0|2D.

The evolution of the leading edge of the gravity current at Re = 3450 is shown as
solid lines on the (x1, x2) plane in figure 4. The leading edge is visualized by contours
of ρ = 0.1 close to the bottom boundary at x3 = 0.04. The dashed lines are drawn to
show the continuity of the clefts. The evolution of the lobes and clefts for other cases
are qualitatively similar and therefore are not shown here. It can be seen that a cleft may
continually merge with another neighbouring cleft and the lobes grow in size until they
breakdown into smaller ones. The blue circle in figure 4 indicates the location of the
merging, which will be discussed in § 3.2.1, and the red cross indicates the location of
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Re Ref Fr u∗ x3n x3s V̇u/V̇0|2D (%) V̇u/V̇0|3D (%)

1788 383 0.378 0.0966+0.0060
−0.0060 0.106+0.040

−0.023 0.037+0.007
−0.009 1.51+0.24

−0.26 5.38+0.34
−0.48

3450 743 0.389 0.0836+0.0197
−0.0090 0.094+0.026

−0.028 0.028+0.009
−0.008 1.10+0.24

−0.26 4.17+0.65
−0.45

8950 1799 0.427 0.0680+0.0032
−0.0034 0.071+0.014

−0.008 0.020+0.003
−0.004 0.74+0.14

−0.12 3.47+0.44
−0.39

13 000 2619 0.432 0.0573+0.0048
−0.0101 0.060+0.006

−0.011 0.017+0.004
−0.003 0.61+0.04

−0.04 3.04+0.78
−0.71

17 000 3267 0.438 0.0563+0.0032
−0.0029 0.055+0.012

−0.008 0.016+0.004
−0.004 0.55+0.07

−0.01 2.83+1.32
−0.82

Table 1. Quantitative information on the gravity current head in the slumping phase. The Reynolds number
(Re), front Reynolds number (Ref ) and Froude number (Fr) are defined by (2.4a,b), (2.8) and (2.7), respectively.
The friction velocity (u∗) in the gravity current head region is defined by (3.2a,b). The height of the foremost
point (nose) above the bottom boundary is x3n and the height of the stagnation point is x3s. The fraction of
the total volume flux into the clefts based on the stagnation streamline in the spanwise-averaged flow field is
V̇u/V̇0|2D and the fraction of the total volume flux into the clefts based on the three-dimensional lobe-and-cleft
structure is V̇u/V̇0|3D.

8 10 12 14 16
0

0.5

1.0

1.5

x1

x2

Figure 4. The evolution of the leading edge of the gravity current at Re = 3450 on the (x1, x2) plane. The flow
is from the left to right and the leading edge is visualized by contours of ρ = 0.1 close to the bottom boundary
at x3 = 0.04 as solid lines. Time interval between consecutive contours is chosen at �t = 0.28. The dashed
lines show the continuity of the clefts. The blue colour © and red colour × indicate the locations where the
merging process in § 3.2.1 and the splitting process in § 3.2.2 occur.

the splitting, which will be discussed in § 3.2.2. Following Simpson (1972), the mean of
the lobe width b̃ in figure 4 for the gravity currents in the slumping phase can be measured
by counting the number of lobes in the spanwise direction and the mean of the maximum
lobe width b̃max can be measured immediately before the splittings occur.

Figure 5 shows the mean of the lobe width and the mean of the maximum lobe width
in the spanwise direction. The lobe width and the maximum lobe width are sampled
following Simpson (1972) for the mean values when the merging and splitting processes
are at work and for a time span of approximately ten dimensionless time units. Our
simulation results agree quantitatively with Simpson (1972) and confirm the dependence
of the lobe width on the front Reynolds number as indicated in (1.1a,b).

With the help of high-resolution simulations, the shear stress that the gravity currents
impart on the bottom boundary can be evaluated. The spanwise-averaged dimensionless
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b̃max /d̃

b̃/d̃

Ref

10 000200 1000

4.0

1.0

0.1

Figure 5. Ratio of the mean of the lobe width to the height of the gravity current head, b̃/d̃, and ratio of
the mean of the maximum lobe width to the height of the gravity current head, b̃max/d̃, against the front
Reynolds number Ref . Symbols: �, experimental results of b̃/d̃ by Simpson (1972); 
, numerical results of
b̃/d̃ by Cantero et al. (2007b); �, numerical results of b̃/d̃ in present study; ◦, experimental results of b̃max/d̃
by Simpson (1972); •, numerical results of b̃max/d̃ in present study. The solid and dashed lines represent the
empirical relationships b̃/d̃ = 7.4Re−0.39

f and b̃max/d̃ = 12.6Re−0.38
f for the mean of the lobe width and the

mean of the maximum lobe width, respectively.

bottom shear stress and the dimensionless friction velocity are defined as

τ̄b = 1
Re

∂ ū1

∂x3

∣∣∣∣
x3=0

and u∗ =
√

τ̄b, (3.2a,b)

respectively, where ū1 is the spanwise-averaged dimensionless velocity in the streamwise
direction. The dimensional viscous length scale is δ̃ν = ν̃/ũ∗, where ũ∗ is the shear
velocity, and the dimensionless viscous length scale is δν = Re−1u∗−1. The bottom shear
stress is spatially dependent and assumes its maximum value in the gravity current head
region. The maximum dimensionless friction velocity in the gravity current head region is
included for reference in table 1.

Now we are in a good position to measure the lobe width in terms of the viscous
length scale, as figure 6 shows b̃/δ̃ν and b̃max/δ̃ν against the front Reynolds number for
all the cases considered in this study. We should remark that in the range of the front
Reynolds number considered in this study, 383 ≤ Ref ≤ 3267, the mean of the lobe width
b̃ increases from 60δ̃ν at Ref = 383 to 77δ̃ν at Ref = 743, 110δ̃ν at Ref = 1799, 121δ̃ν

at Ref = 2619, 126δ̃ν at Ref = 3267 and the mean of the maximum lobe width b̃max

increases from 120δ̃ν at Ref = 383 to 172δ̃ν at Ref = 743, 211δ̃ν at Ref = 1799, 222δ̃ν at
Ref = 2619, 230δ̃ν at Ref = 3267. The influence of the front Reynolds number diminishes
as the front Reynolds number increases and the mean of the lobe width and the mean of the
maximum lobe width appear to asymptotically approach approximately 126δ̃ν and 230δ̃ν at
Ref = 3267, respectively. This finding suggests that there may exist a characteristic pattern
of turbulent structures in the near-wall region of the lobes and clefts. In the following
sections, we will present the vortical structures and the mechanisms responsible for the
merging and splitting processes in the lobes and clefts.
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Ref

5000200 1000
40

100

400

200

b̃/δ̃v

b̃max /δ̃v

Figure 6. Mean of the lobe width and mean of the maximum lobe width in terms of the viscous length scale
against the front Reynolds number. Symbols: �, mean of the lobe width in terms of the viscous length scale,
i.e. b̃/δ̃ν ; •, mean of the maximum lobe width in terms of the viscous length scale, i.e. b̃max/δ̃ν . The solid and
dashed lines are added as a visual guide to show the data trend.

3.2. Vortical structures in the lobes and clefts
Previous direct numerical simulations have demonstrated that gravity currents at
sufficiently large Reynolds numbers can develop zones with different turbulent
characteristics and the flow close to the wall resembles the turbulent boundary layer flow
with streamwise vortical structures, low-speed and high-speed streaks (Cantero et al. 2008;
Espath et al. 2015). In a turbulent channel flow, these streamwise vortical structures close
to the wall appear in the viscous wall region, defined as x+

3 = x3/δν � 50 (Pope 2000;
Adrian 2007).

To visualize the three-dimensional vortical structures in the lobes and clefts of the
gravity currents, figure 7 shows the swirling strength for the leading edge of the gravity
current at Re = 3450 and the time instance is chosen at t = 3.14 dimensionless units
(H̃ũ−1

b ). The swirling strength, λci, is the absolute value of the imaginary part of the
complex eigenvalue of the velocity gradient tensor and is suitable to pick out regions
of intense vorticity. It corresponds to the part of vorticity associated with rotation and
discriminates against the contribution made by shear (Chakraborty, Balachandar & Adrian
2005; Adrian 2007). Our observations on the vortical structures in other cases in this study
are qualitatively similar and only the vortical structures of the gravity current at Re = 3450
are shown here. It is clear from figure 7 that an elongated tooth-like vortex forms the basis
of a lobe and a pair of counter-rotating streamwise vortices are positioned on both the
left- and right-hand sides of each cleft. As shown by the experiments of Simpson (1972),
McElwaine & Patterson (2004), once the lobes and clefts form at the leading edge of the
gravity currents, a cleft may continually merge with another neighbouring cleft while a
new cleft may appear as a large lobe splits into two smaller ones. In what follows, we will
investigate the merging of two clefts and the splitting of a lobe into two smaller ones by
examining the vortical structures in the lobes and clefts.

3.2.1. Merging process
For illustrative purposes, here, we show a typical merging process in the lobe-and-cleft
structure at the leading edge of the gravity current at Re = 3450. The location of the
merging process which we are examining is marked as the blue circle in figure 4.
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x3

x2

x1

Figure 7. Volumetric rendering of λci for the gravity current propagating on a no-slip boundary at Re = 3450.
The time instance is chosen at t = 5.66 dimensionless units (H̃ũ−1

b ). Spacing between consecutive grid lines in
the streamwise and spanwise directions, i.e. x1 and x2, is chosen at one tenth of a dimensionless unit.

To visualize the merging process, figure 8 shows the isosurface of the swirling strength
(λci = 1.4) at the leading edge of the gravity current at Re = 3450 and the time instances
are chosen at t = 5.66 (a), 6.79 (b), 7.92 (c) and 9.05 (d) dimensionless units (H̃ũ−1

b )
throughout the merging process. The red and blue colours of the isosurfaces of the swirling
strength represent the orientation of the vortex in the positive and negative streamwise
directions, respectively. Prior to the merging, as shown in figure 8, there are three tooth-like
vortices in the spatial range 0.3 < x2 < 0.8 and it requires three lobes, namely two clefts,
to accomplish the merging process. As the two clefts approach each other, the middle
lobe bounded by the two clefts shrinks in size. The middle tooth-like vortex breaks up
into two legs, of which one leg reconnects with the left tooth-like vortex and the other
leg reconnects with the right tooth-like vortex. These two reconnected vortical structures
recede as the gravity current propagates forward and the two unbroken tooth-like vortices
remain in the same place after the merging process.

The merging process can also be visualized by the streamwise velocity contours close
to the bottom in the viscous wall region. Figure 9 shows the streamwise velocity and
wall-normal velocity contours taken at a horizontal slice at x+

3 = x3/δν = 8.6 at the
leading edge of the gravity current at Re = 3450. Here, the vertical distance from the
bottom boundary x+

3 is measured in viscous length scale or wall unit. The spatial domain
in figure 9 follows figure 8 and the time instances are likewise chosen at t = 5.66 (a),
6.79 (b), 7.92 (c) and 9.05 (d) dimensionless units (H̃ũ−1

b ). The streamwise velocity is
higher in the lobes than in the clefts and the wall-normal velocity is towards the bottom
boundary in the lobes while the wall-normal velocity is away from the bottom boundary in
the clefts. The locations of the clefts correspond to the locations of the low-speed streaks
in figure 9. During the merging process, it is observed that the two low-speed streaks
approach each other, as shown in figure 9(a,b) and a new low-speed streak develops,
as shown in figure 9(c,d). The original two low-speed streaks prior to merging are
disconnected from the new low-speed streak in the new cleft, as shown in figure 9(c,d).
This typical merging process requires the interaction of three lobes. Therefore, a cleft
may continually merge with another neighbouring cleft but may never disappear. Our
observation on the merging of two clefts is consistent with the experimental investigations
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x1

x2
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10.7
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11.7

11.5

11.3

11.1

0.8 0.7 0.6 0.5 0.4 0.3 0.8 0.7 0.6 0.5 0.4 0.3
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(b)(a)

(c) (d )

Figure 8. Visualization from the top view of the merging of two clefts using the isosurface of the swirling
strength λci = 1.4 in the region 0 ≤ x+

3 ≤ 36 at t = 5.66 (a), 6.79 (b), 7.92 (c) and 9.05 (d) dimensionless
units (H̃ũ−1

b ) for the gravity current propagating on a no-slip boundary at Re = 3450. The location of the
merging process is shown in figure 4 by a blue circle.

of Simpson (1972), McElwaine & Patterson (2004) in that clefts can only merge but never
disappear and with the numerical investigation of Espath et al. (2015) in that the merging
process requires the interaction of three tooth-like vortices.

Following Dagaut et al. (2021), it would be interesting and instructive to look at the
bottom friction coefficient, namely the dimensionless bottom shear stress, within the lobes
and clefts. Figure 10 shows the dimensionless bottom shear stress at the leading edge of
the gravity current at Re = 3450. Here, the spatial domain and time instances are chosen
the same as figure 9. It is worth noting that the distribution of the bottom shear stress is
similar to the streamwise velocity contour in that the bottom shear stress is higher in the
lobes than in the clefts and the bottom shear stress continuously adjusts itself with the
merging process.

3.2.2. Splitting process
As a new cleft forms, there exist a pair of counter-rotating streamwise vortices positioned
on both the left- and right-hand sides of the cleft. Prior to splitting, however, there are
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Figure 9. Visualization from the top view of the merging of two clefts using the streamwise velocity colour
contours taken at a horizontal slice at x+

3 = 8.6 at t = 5.66 (a), 6.79 (b), 7.92 (c) and 9.05 (d) dimensionless
units (H̃ũ−1

b ) for the gravity current propagating on a no-slip boundary at Re = 3450. Thin line contours
show the wall-normal velocity with solid line for positive wall-normal velocity and dashed line for negative
wall-normal velocity.

no pre-existing counter-rotating streamwise vortices inside the splitting lobe. As such, the
pair of counter-rotating streamwise vortices positioned on the left- and right-hand sides of
the new cleft must develop themselves as the splitting process evolves.

For illustrative purposes, we examine a typical splitting process in the lobe-and-cleft
structure at the leading edge of the gravity current at Re = 3450. The splitting process
which we are now examining is located at the red cross symbol in figure 4 and, strictly
speaking, the new cleft cannot be seen from the three-dimensional isosurface of density
until t = 14.43 dimensionless units (H̃ũ−1

b ). Figure 11 shows the swirling strength at the
leading edge of the gravity current at t = 12.45 prior to the time when the new cleft
manifests itself on the isosurface of density. At t = 12.45, as shown in figure 11, there
exists a tooth-like vortex which represents the lobe structure spanning 0.7 < x2 < 1.2.
Additionally, at x1 ≈ 12.8 and x2 ≈ 0.83 there is a streamwise vortex which is smaller in
size compared with the existing tooth-like vortex in the lobe and is closer to the bottom
boundary. We shall term this smaller streamwise vortex the new born vortex. As time
proceeds, the new born streamwise vortex grows in size and induces the other streamwise
vortex of opposite orientation. The pair of counter-rotating streamwise vortices develop
themselves and a new cleft forms in the splitting lobe. Based on our simulation results, the

930 A6-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

90
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.906


Merging and splitting in the lobe-and-cleft structure

10.5

10

1

10

1

10.3

10.1x1

x1

x2 x2

9.9

9.7

11.0

10.8

10.6

10.4

10.2

11.5

11.3

11.1

10.9

10.7

11.9

11.7

11.5

11.3

11.1

0.8 0.7 0.6 0.5 0.4 0.3 0.8 0.7 0.6 0.5 0.4 0.3

0.8 0.7 0.6 0.5 0.4 0.3 0.8 0.7 0.6 0.5 0.4 0.3

(b)(a)

(c) (d )

(×10–3)

(×10–3)

Figure 10. Visualization from the top view of the dimensionless bottom shear stress τb using colour contours
at t = 5.66 (a), 6.79 (b), 7.92 (c) and 9.05 (d) dimensionless units (H̃ũ−1

b ) for the gravity current propagating
on a no-slip boundary at Re = 3450.

new born streamwise vortex can be either in the positive or in the negative streamwise
direction. No preference over new born streamwise vortex in the positive or negative
streamwise direction can be detected.

In order to identify the mechanism responsible for the creation of the new born
streamwise vortex, we study the vorticity equation at the location where a lobe splits into
two and the new cleft forms. We take the curl of the momentum equation (2.2) and the
streamwise component of the vorticity equation is

Dω1

Dt
= ω1

∂u1

∂x1︸ ︷︷ ︸
S1

−∂u3

∂x1

∂u1

∂x2︸ ︷︷ ︸
S2

+ ∂u2

∂x1

∂u1

∂x3︸ ︷︷ ︸
S3

− ∂ρ

∂x2︸ ︷︷ ︸
S4

+ 1
Re

∇2ω1︸ ︷︷ ︸
S5

, (3.3)

where S1, S2, S3, S4 and S5 represent the stretching of x1 vorticity, twisting of x2 vorticity,
tilting of x3 vorticity, baroclinic production of vorticity and diffusion of x1 vorticity,
respectively. We remark that the component (∂u1/∂x3)(∂u1/∂x2) in the twisting of x2
vorticity and the component −(∂u1/∂x3)(∂u1/∂x2) in the tilting of x3 vorticity have no
net effects because they cancel exactly.

Figure 12 shows the contribution of the tilting of x3 vorticity, i.e. the S3 term, to Dω1/Dt
and the contribution of the baroclinic production of vorticity, i.e. the S4 term, to Dω1/Dt
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Figure 11. Three-dimensional top view of the initiation of the splitting process using the isosurface of the
swirling strength λci = 1.6 at t = 12.45 dimensionless units (H̃ũ−1

b ) for the gravity current propagating on a
no-slip boundary at Re = 3450. The location of the splitting process is shown in figure 4 by a red cross.

at t = 11.88 (a), 12.45 (b), 13.01 (c) and 13.58 (d) dimensionless units (H̃ũ−1
b ). It is worth

noting that, prior to the new cleft appearing on the density isosurface, the contribution
from the S3 term comes inside the splitting lobe, as shown in figure 12(a). When the
splitting process is initiated, the contribution from the S4 term reinforces the S3 term, as
shown in figure 12(b–d), as the new cleft develops. The contributions of the stretching
of x1 vorticity, twisting of x2 vorticity and diffusion of x1 vorticity, i.e. the S1, S2 and S5
terms, are less or even of opposite sign to the time rate of change of streamwise vorticity
and are not shown for brevity. The signature of the Brooke–Hanratty mechanism (Brooke
& Hanratty 1993) is that, close to the no-slip boundary, the largest contribution to the
time rate of change of the streamwise vorticity, Dω1/Dt, in the new born streamwise
vortex comes from the tilting of x3 vorticity, i.e. the S3 term in (3.3). The baroclinic
production of vorticity, i.e. the S4 term in (3.3), was not seen in Brooke & Hanratty
(1993) for flows of a homogeneous fluid and is unique in the generation of vorticity in
the lobe-and-cleft structure in gravity currents where density variation is essential. The
baroclinic production of vorticity tends to consistently enhance the vorticity generated by
the tilting of x3 vorticity. As the pair of counter-rotating streamwise vortices develop and
an indentation begins to show on the lobe, the baroclinic production of vorticity term
generates positive streamwise vorticity on the right of the new cleft and negative vorticity
on the left of the new cleft when looking in the positive streamwise direction. Therefore,
the initiation of the splitting process can be attributed to the Brooke–Hanratty mechanism
reinforced by the baroclinic production of vorticity. When the splitting process is initiated,
a new born vortex, which is of opposite orientation to the parent vortex, can be created
close to the bottom boundary at a location where the parent vortex lifts. The tooth-like
vortex existing inside a lobe plays the role of the parent vortex and the new born vortex
can be created by either the left part or the right part of the tooth-like vortex.

An important manifestation of the Brooke–Hanratty mechanism in the creation of a
new born vortex is the shifting of lobes at the leading edge of the gravity currents.
The creation of a new born vortex occurs at a location where the parent vortex causes
high-momentum fluid to impinge on the bottom boundary. The impingement of fluid onto
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Figure 12. Visualization from the top view of the splitting process using the tilting of x3 vorticity, i.e. the S3
term in (3.3), and the baroclinic production of vorticity, i.e. the S4 term in (3.3), taken at a horizontal slice at
x+

3 = 8.6 at t = 11.88 (a), 12.45 (b), 13.01 (c) and 13.58 (d) dimensionless units (H̃ũ−1
b ) for the gravity current

propagating on a no-slip boundary at Re = 3450. The contribution of the S3 term is visualized by the colour
contours and the positive and negative contributions of the S4 term are represented by the thin solid and dashed
lines, respectively. The thick solid line represents ρ = 0.1 at x+

3 = 8.6. The location of the splitting process is
shown in figure 4 by a red cross.

the bottom boundary creates a high-pressure region and the fluid close to the bottom
boundary is redirected in the spanwise direction. The appearance of the high-pressure
region is associated with the shifting of the parent vortex away from the high-pressure
region. As shown in figure 13(b) at t = 12.45, the parent vortex causes the impingement
of fluid onto the bottom boundary and the new born vortex is created close to x2 ≈ 0.83.
The parent vortex moves away from the high-pressure region and shifts in the negative
spanwise direction (to the right in figure 13). This observation on the shifting of the parent
vortex explains that the cleft, commencing at the red cross (x1 ≈ 13.92, x2 ≈ 0.81) in
figure 4, migrates in the negative spanwise direction as shown by the continuity of the
cleft (dashed line) in figure 4.

Depending on whether the parent vortex is in the positive (left part of the tooth-like
vortex) or negative (right part of the tooth-like vortex) streamwise direction, the new born
vortex can equally likely be in the negative or positive streamwise direction. For a new
born vortex in the positive streamwise direction, the parent vortex, which is of opposite
orientation of the new born vortex, must shift to the right of the new born vortex when
looking in the streamwise direction, as shown in figure 14(a). Likewise, for a new born
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Figure 13. Visualization from the back of the splitting process using the streamwise vorticity and velocity
(u2, u3) taken at a vertical cross-section. The streamwise vorticity is visualized by the colour contours with the
solid and dashed lines indicating the positive and negative vorticity contours. The velocity is represented by
the vectors. The four panels are taken at the streamwise location x1 = 12.70 and the time t = 11.88 (a), x1 =
12.90 and t = 12.45 (b), x1 = 13.13 and t = 13.01 (c), x1 = 13.36 and t = 13.58 (d) for the gravity current
propagating on a no-slip boundary at Re = 3450. The location of the splitting is shown in figure 4 by a red
cross.

vortex in the negative streamwise direction, the parent vortex must shift to the left of the
new born vortex when looking in the streamwise direction, as shown in figure 14(b). In
either case, the shifting of the parent vortex makes room for the new born vortex and
explains the direction of migration of the new cleft. As we have observed, a new cleft
can equally likely shift in the positive or negative spanwise direction as the leading edge
of the gravity currents moves forward in the streamwise direction. In the presence of a
no-slip boundary, the lobe-and-cleft structure at the leading edge of the gravity currents
is self-sustaining in that, while a cleft may continually merge with a neighbouring cleft,
new clefts may form due to the Brooke–Hanratty mechanism reinforced by the baroclinic
production of vorticity as long as the gravity currents continue to propagate forward.
Encouragingly, our observations on the splitting of lobes and the migration of the clefts
are in accord with the experimental observations of Simpson (1972) and McElwaine &
Patterson (2004) in that the lobe-and-cleft structure is self-sustaining and the new cleft
can equally likely shift in the positive or negative spanwise direction.

930 A6-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

90
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.906


Merging and splitting in the lobe-and-cleft structure

(b)(a)

x1
x2

x3
x1

x2
x3

Figure 14. Sketch of the splitting process inside a lobe. Blue and red colours represent the vorticity in the
negative and positive streamwise directions, respectively. In (a), the parent vortex is the right part (blue) of
the tooth-like vortex and the new born vortex is in the positive (red) streamwise direction. In (b), the parent
vortex is the left part (red) of the tooth-like vortex and the new born vortex is in the negative (blue) streamwise
direction.

4. Conclusions

Gravity currents in the slumping phase from a full-depth lock-exchange configuration
with a no-slip boundary are investigated by means of three-dimensional high-resolution
simulations of the incompressible Navier–Stokes equations with the Boussinesq
approximation. Our attention is focused on the evolution of the vortical structure and the
mechanism responsible for the merging of clefts and splitting of lobes for the gravity
currents propagating on a no-slip boundary.

Based on previously reported two-dimensional high-resolution simulations, only the
thin layer of ambient fluid underneath the stagnation streamline in a translating coordinate
system moving at the front speed, in which the head is held stationary, was thought to
flow into the clefts. The ratio of the amount of ambient fluid going into the clefts to the
total ambient volume flux, estimated based on the height of the stagnation streamline,
decreases as the front Reynolds number increases. Our three-dimensional high-resolution
simulations show that the lobe-and-cleft structure is of a three-dimensional nature. When
the merging and splitting processes are at work, lobes of different sizes coexist at the
leading edge of the gravity currents. Not only the ambient fluid underneath the stagnation
streamline can be diverted around the lobes and into the clefts but also the ambient fluid
above the stagnation streamline, if not flowing into the clefts directly, can do likewise.
Due to the action of buoyancy, the ambient fluid inside the cleft region tends to rise in the
head from the bottom boundary in mushroom-like shapes in the spanwise cross-sectional
density contours. Quantitatively the estimates for the ratio of the amount of ambient
fluid into the clefts to the total ambient volume flux based on the three-dimensional
high-resolution simulations are significantly greater than the estimates based on previously
reported two-dimensional simulations.

When the merging and splitting processes are at work, based on the three-dimensional
simulations the overall mean lobe width and the mean of the maximum lobe width
both agree with the empirical relationships originally proposed by Simpson (1972).
Furthermore, when measured in terms of the viscous length scale, δ̃ν = ν̃/ũ∗ where ν̃

is the kinematic viscosity of fluid and ũ∗ is the shear velocity at the gravity current head,
the mean of the lobe width and the mean of the maximum lobe width both increase with
increasing front Reynolds number from 60δ̃ν and 120δ̃ν at Ref = 383 to 126δν and 230δν

at Ref = 3267. The influence of the front Reynolds number gradually diminishes and the
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mean lobe width and the mean of the maximum lobe width approach asymptotically 126δν

and 230δν at Ref = 3267, respectively.
The vortical structure inside a lobe has an elongated tooth-like shape and a pair of

counter-rotating streamwise vortices are positioned on the left- and right-hand sides of
each cleft. For the merging process, it requires the interaction of three tooth-like vortices
and the middle tooth-like vortex breaks up and reconnects with the two neighbouring
tooth-like vortices. Since the merging process requires the interaction of three tooth-like
vortices, a cleft may continually merge with another neighbouring cleft but may never
disappear. For the splitting process, a new born streamwise vortex is created by the parent
vortex of opposite orientation, which can be either the left part or the right part of the
existing tooth-like vortex inside the splitting lobe. This new born streamwise vortex then
induces the other streamwise vortex of opposite orientation and a pair of counter-rotating
streamwise vortices are positioned on the left- and right-hand sides of the developing new
cleft. Depending on the orientation of the parent vortex, the new cleft develops after the
splitting process can shift laterally in the positive or negative spanwise direction along the
leading edge of the gravity currents as the lobe-and-cleft structure moves forward. The
initiation of the splitting process can be attributed to the Brooke–Hanratty mechanism
reinforced by the baroclinic production of vorticity. To the best of our knowledge, even
though the lobe width has been measured in the experiments (Simpson 1972) and in the
numerical simulations (Cantero et al. 2007a,b), there is no existing report in the literature
that documents the evolution of the vortical structure inside the splitting lobe and the
mechanism responsible for the splitting process. With the merging and splitting processes,
the lobe-and-cleft structure is self-sustaining for the gravity currents propagating on a
no-slip boundary and the manifestations of the merging and splitting processes in the
lobe-and-cleft structure are in accord with reported laboratory observations.
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