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Abstract
Kähler–Einstein currents, also known as singular Kähler–Einstein metrics, have been introduced and constructed
a little over a decade ago. These currents live on mildly singular compact Kähler spaces X and their two defining
properties are the following: They are genuine Kähler–Einstein metrics on 𝑋reg, and they admit local bounded
potentials near the singularities of X. In this note, we show that these currents dominate a Kähler form near the
singular locus, when either X admits a global smoothing, or when X has isolated smoothable singularities. Our
results apply to klt pairs and allow us to show that if X is any compact Kähler space of dimension three with log
terminal singularities, then any singular Kähler–Einstein metric of nonpositive curvature dominates a Kähler form.
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Introduction

Introducing the main problem

Einstein metrics are a central object in differential geometry. A Kähler–Einstein metric on a complex
manifold is a Kähler metric whose Ricci curvature is proportional to the metric tensor. A foundational
result of Yau [Yau78] allows one to construct many examples of these fundamental objects.

In connection with the minimal model program, singular Kähler–Einstein metrics on mildly sin-
gular Kähler varieties X have been constructed in [EGZ09, BG14, BBE+19] and further studied by
many authors (see [GZ17, Bou18, Don18, Li22] and the references therein). These are Kähler forms
𝜔KE = 𝜔 + 𝑑𝑑𝑐𝜑KE on the regular part 𝑋reg of X, where 𝑐1 (𝑋) = 𝜆[𝜔] is proportional to a reference
Kähler class [𝜔], such that

Ric(𝜔KE) = 𝜆𝜔KE

and which admit bounded (or mildly unbounded) local potential near the singularities 𝑋sing. In particular,
𝜔KE uniquely extends as a positive closed current to X.

One constructs 𝜔KE = 𝜔 + 𝑑𝑑𝑐𝜑KE by solving a complex Monge–Ampère equation

(𝜔 + 𝑑𝑑𝑐𝜑KE)
𝑛 = 𝑒−𝜆𝜑KE𝜇𝑋 , (KE)

where 𝑛 = dimC 𝑋 and 𝜇𝑋 is an appropriate volume form.
Due to the presence of singularities, the geometry of these Kähler–Einstein currents is quite myste-

rious despite recent important progress [DS14, HS17]. Understanding the asymptotic behavior of 𝜑KE
near 𝑋sing is a major open problem.

In this note, we partially address the following basic question:

Main Question. Is the Kähler–Einstein metric 𝜔KE solving Equation (KE) a Kähler current, that is,
does 𝜔KE dominate a Kähler form?

Note that, unless X is smooth, 𝜔KE is never dominated by a Kähler form, cf Corollary 1.9.

Known cases. Although the question sounds much easier than asking for asymptotics of 𝜔KE, it has
not yet been addressed in full generality and only a handful of particular cases seem to be understood,
which we briefly survey below.

• Orbifold singularities. If X has only finite quotient singularities (i.e., X is an orbifold), then 𝜔KE is
a smooth orbifold Kähler metric (i.e., it is a Kähler metric in the local smooth uniformizing charts).
In particular, 𝜔KE is a Kähler current. Since two-dimensional log terminal singularities are quotient
singularities, it follows that the main question admits a positive answer in dimension two for log terminal
singularities. More generally, 𝜔KE is orbifold-smooth near any quotient singularity of X at least when X
is projective [LT19]; in particular, it is a Kähler current on the orbifold locus of X.

• Limits of smooth spaces. Other examples include when X admits a crepant resolution or when X can
be suitably obtained as limit of smooth Kähler–Einstein manifolds [RZ11b, DS14, HS17]. The common
thread in the situations appearing in loc. cit. is that one can embed 𝜄 : 𝑋 ↩→ P𝑁 with𝜔KE = 𝜔FS |𝑋 +𝑑𝑑

𝑐𝜑
and approximate (𝑋, 𝜔KE) by a sequence of compact Kähler manifolds (𝑋𝑘 , 𝜔𝑘 ) such that there are

- embeddings 𝜄𝑘 : 𝑋𝑘 ↩→ P𝑁 with 𝜔𝑘 = 𝜔FS | 𝜄𝑘 (𝑋𝑘 ) + 𝑑𝑑𝑐𝜑𝑘 and ‖𝜑𝑘 ‖𝐿∞ (𝑋𝑘 ) � 𝐶,
- uniform Ricci lower bounds Ric𝜔𝑘 � −𝐶𝜔𝑘
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for some uniform constant𝐶 > 0. From these estimates, an easy application of Chern–Lu formula yields
𝜔𝑘 � 𝐶−1𝜔FS | 𝜄𝑘 (𝑋𝑘 ) from which the strict positivity of 𝜔KE follows.

In summary, the ideas above allow to treat the case of singular Kähler–Einstein varieties that are
degenerations of smooth Kähler manifolds with uniform lower Ricci bound and uniform 𝐿∞ bound for
its potential.

Unfortunately, general singular Kähler–Einstein metrics 𝜔KE on a singular space X arise by construc-
tion as limits of smooth Kähler metrics 𝜔𝜀 on a desingularization 𝜋 : 𝑋 → 𝑋 such that Ric𝜔𝜀 → −∞

along any divisor 𝐸 ⊂ 𝑋 with positive discrepancy. Moreover, a general singular variety cannot be ob-
tained as a degeneration of smooth varieties since there might be (even local and topological) obstruc-
tions to smoothability. This prevents one from directly applying the above ideas to a general singular
Kähler–Einstein space. This paper grew out of an attempt to find the largest possible field of application
of the general technique recalled above. More precisely, the goal of the present paper is threefold:

A. Formulate a general framework where the above global strategy applies mutatis mutandis, including
nonprojective Kähler spaces as well as singular pairs.

B. Provide a local version of the approach that enables to treat isolated smoothable singularities.
C. Develop a systematic use of the technique in order to enlarge the class of singularities (beyond the

smoothable or crepant ones) for which one can answer positively the main question above, using a
several step degeneration process.

So far, most (general) results about singular Kähler–Einstein metrics have been derived by establishing
uniform a priori estimates on smooth approximants (space and metric). The novelty of our approach
is that, given a singular space/metric (𝑋, 𝜔KE), we are able to answer the main question positively for
(𝑋, 𝜔KE) as soon as one can suitably approximate our space/metric by a possibly singular space/metric
on which we can qualitatively answer the main question, as long as we have a lower bound on the Ricci
curvature and a uniform bound on a suitable potential. We refer to the last paragraph of this introduction
or §5 for an explicit application of this principle.

Statement of the results

Let us now get a bit more explicit and expand what we mean by the above-stated goals. Our first main
result is as follows:

Theorem A. Let X be a normal compact Kähler space with log terminal singularities such that 𝐾𝑋 ∼Q
O𝑋 , and let 𝛼 be a Kähler class. If X is smoothable, then the unique singular Ricci-flat metric 𝜔KE ∈ 𝛼
dominates a Kähler form.

This strict positivity result actually holds in more general contexts [canonically polarized varieties,
Q-Fano varieties, Kawamata log terminal (klt) pairs] as we explain in Theorem 2.8. The existence of a
global smoothing is a rather restrictive assumption, although it holds, for example, at the boundary of
the moduli space of positively curved Kähler–Einstein metrics. The latter has a natural compactification
arising from the Gromov–Hausdorff topology, and the geometric meaning of the boundary points was
elucidated in [DS14, SSY16].

An isolated singularity is more likely to admit a local smoothing. Shifting perspective, we use the
local singular theory developed in [GGZ23] to establish a positivity result of solutions to local Monge–
Ampère equations at isolated smoothable singularities. As a consequence, we obtain our second main
result.

Theorem B. Let X be a normal compact Kähler space with log terminal singularities such that 𝐾𝑋 ∼Q
O𝑋 , and let 𝛼 be a Kähler class. The unique singular Ricci-flat metric 𝜔KE ∈ 𝛼 dominates a Kähler
form near any smoothable isolated singularity.

The result is more general, and we refer the reader to Theorem 4.1 and Corollary 4.6 for more precise
results, including the case of klt pairs with isolated singularities.
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As recalled earlier, the basic idea is not new. Deforming X in a smooth Kähler approximant 𝑋𝑡 ,
we would like to use Chern–Lu formula [Che68, Lu68] and establish a uniform lower bound for
smooth approximants 𝜔KE,𝑡 � 𝐶−1𝜔𝑡 on nearby smooth fibers. This requires to establish uniform a
priori bounds for families of degenerate complex Monge–Ampère potentials, a theme which has known
important progress in the last decade (see [RZ11a, SSY16, DNGG23]), but which still requires further
understanding in order to extend Theorem B to the positively curved setting.

Our last result answers the main question positively in dimension three, in nonpositive curvature,
unconditionally to any smoothability assumptions on the singularities.

Theorem C. Let X be a normal compact Kähler space of dimension three with log terminal singularities
such that 𝐾𝑋 ∼Q O𝑋 , and let 𝛼 be a Kähler class. The unique singular Ricci-flat metric 𝜔KE ∈ 𝛼
dominates a Kähler form.

Here again, there is a version of this statement in negative curvature, cf Theorem 5.3, which surpris-
ingly requires significantly more work than the Calabi–Yau case, cf below. The general idea behind the
proof of Theorem C is that one can reduce the situation to the smooth case via a two-step degeneration.
More precisely it goes as follows.

Step 1. One can reduce to the case where X has canonical singularities, up to passing to the index
one cover.

Step 2. The first degeneration amounts to considering a terminalization 𝜋 : 𝑋 → 𝑋 . Since X is
canonical, 𝜋 is crepant, that is, 𝐾𝑋 = 𝜋∗𝐾𝑋 is trivial. Now, one can realize 𝜋∗𝜔KE as limit of singular
Ricci flat metrics 𝜔𝜀 ∈ 𝜋∗𝛼 + 𝜀𝛽, where 𝛽 is a Kähler class on 𝑋 .

Step 3. Now, 𝑋 has terminal singularities of index one, hence these are (locally) smoothable by a
classification result of Reid and we can apply Theorem B to (𝑋, 𝜔𝜀) and use Chern–Lu inequality on
the singular space 𝑋 to conclude.

In the case where 𝐾𝑋 is ample, the terminalization map is not crepant anymore. Instead, a boundary
divisor Δ̂ arises on 𝑋 so that 𝐾𝑋 + Δ̂ = 𝜋∗𝐾𝑋 and we are then required to generalize Theorem B to
the case of klt pairs. This is not as innocuous as it may sound since, even though 𝑋 has only isolated
singularities, it is not the case for the pair (𝑋, Δ̂) anymore! Taking care of this difficulty involves an
additional (third) degeneration process (cf. Theorem 4.5), highlighting the guiding principle of this
article.

Contents
We recall basic facts from analysis on complex spaces in Section 1. We prove Theorem A in Section 2,
using uniform a priori estimates from [SSY16, DNGG23]. We study holomorphic families of Dirichlet
problems for the complex Monge–Ampère equation in Section 3, using a priori estimates from [GL10,
GGZ23], and prove Theorem B in Section 4. We use the previous techniques, together with some classical
facts from the Minimal Model Program in dimension three, to establish Theorem C in Section 5.

1. The Monge–Ampère operator on complex spaces

In this section, we let X be a reduced complex analytic space of pure dimension 𝑛 � 1. We will denote
by 𝑋reg the complex manifold of regular points of X. The set

𝑋sing := 𝑋 \ 𝑋reg

of singular points is an analytic subset of X of complex codimension � 1.
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1.1. Plurisubharmonic functions

By definition, for each point 𝑥0 ∈ 𝑋 there exists a neighborhood U of 𝑥0 and a local embedding
𝑗 : 𝑈 ↩→ C𝑁 onto an analytic subset of C𝑁 for some 𝑁 � 1.

Using these local embeddings, it is possible to define the spaces of smooth forms of given degree on
X. The notion of currents on X is then defined by duality by their action on compactly supported smooth
forms on X. The operators 𝜕 and 𝜕, d, 𝑑𝑐 and 𝑑𝑑𝑐 are then well defined by duality (see [Dem85] for a
careful treatment).

In the same way, one can define the analytic notions of holomorphic and plurisubharmonic functions.
There are essentially two different notions:
Definition 1.1. Let 𝑢 : 𝑋 −→ R ∪ {−∞} be a given function.

1. We say that u is plurisubharmonic on X if it is locally the restriction of a plurisubharmonic function
on a local embedding of X onto an analytic subset of C𝑁 .

2. We say that u is weakly plurisubharmonic on X if u is locally bounded from above on X and its
restriction to the complex manifold 𝑋reg is plurisubharmonic.

Fornaess and Narasimhan proved in [FN80] that u is plurisubarmonic on X if and only if for any
analytic disc ℎ : D −→ 𝑋 , the restriction 𝑢 ◦ ℎ is subharmonic on D or identically −∞.

If u is weakly plurisubharmonic on X, u is plurisubharmonic on 𝑋reg, hence upper semicontinuous on
𝑋reg. Since no assumption is made on u at singular points, it is natural to extend u to X by the following
formula:

𝑢∗(𝑥) := lim sup
𝑋reg�𝑦→𝑥

𝑢(𝑦), 𝑥 ∈ 𝑋. (1.1)

The function 𝑢∗ is upper semicontinuous, locally integrable on X and satisfies 𝑑𝑑𝑐𝑢∗ � 0 in the sense
of currents on X. By Demailly [Dem85], the two notions are equivalent when X is locally irreducible.
More precisely, we will need the following result:
Theorem 1.2. [Dem85] Assume that X is a locally irreducible analytic space and 𝑢 : 𝑋 −→ R∪ {−∞}

is a weakly plurisubharmonic function on X, then the function 𝑢∗ defined by (1.1) is plurisubharmonic
on X.

Observe that since u is plurisubharmonic on 𝑋reg, we have 𝑢∗ = 𝑢 on 𝑋reg. Hence, 𝑢∗ is the upper
semicontinuous extension of 𝑢 |𝑋reg to X.

Following [FN80], we say that X is Stein if it admits a C2-smooth strongly plurisubharmonic exhaus-
tion. We will use the following definition:
Definition 1.3. A domain Ω � 𝑋 is strongly pseudoconvex if it admits a negative C2-smooth strongly
plurisubharmonic exhaustion, that is, a function 𝜌 strongly plurisubharmonic in a neighborhood Ω′ of
Ω such that Ω := {𝑥 ∈ Ω′ ; 𝜌(𝑥) < 0} and

Ω𝑐 := {𝑥 ∈ Ω′; 𝜌(𝑥) < 𝑐} � Ω

is relatively compact for any 𝑐 < 0.
Our complex spaces will be assumed to be reduced, locally irreducible of dimension 𝑛 � 1. We

denote by PSH(𝑋) the set of plurisubharmonic functions on X.

1.2. Dirichlet problem on singular complex spaces

The complex Monge–Ampère measure (𝑑𝑑𝑐𝑢)𝑛 of a smooth psh function in a domain of C𝑛 is the radon
measure

(𝑑𝑑𝑐𝑢)𝑛 = 𝑐 det
(

𝜕2𝑢

𝜕𝑧𝑖𝜕𝑧 𝑗

)
𝑑𝑉eucl,
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where 𝑐 > 0 is a normalizing constant. The definition has been extended to any bounded psh function
by Bedford–Taylor, who laid down the foundations of pluripotential theory in [BT76, BT82].

The Dirichlet problem for the complex Monge–Ampère operator has been studied extensively by
many authors (see [GZ17] and the references therein).

The complex Monge–Ampère operator has been defined and studied on complex spaces by Bedford
in [Bed82] and Demailly in [Dem85]. It turns out that if 𝑢 ∈ PSH(𝑋) ∩ 𝐿∞

loc (𝑋), the Monge–Ampère
measure (𝑑𝑑𝑐𝑢)𝑛 is well defined on 𝑋reg and can be extended to X as a Borel measure with zero mass on
𝑋sing. Thus, all standard properties of the complex Monge–Ampère operator acting on PSH(𝑋)∩𝐿∞

loc (𝑋)
extend to this setting (see [Bed82, Dem85]).

The Dirichlet problem has been studied only recently in that context. We recall the following which
is a combination of [GGZ23] and [DFS23, Fu23].

Theorem 1.4. Let X be a Stein space of dimension 𝑛 � 1, reduced and locally irreducible, with an
isolated log terminal singularity 𝑋sing = {𝑝}. Let Ω ⊂ 𝑋 be a bounded strongly pseudoconvex domain
with smooth boundary. Fix a smooth volume form 𝑑𝑉 on X, 𝜙 ∈ C∞(𝜕Ω) and 0 < 𝑓 ∈ C∞(Ω \ {𝑝})
with 𝑓 ∈ 𝐿 𝑝 (Ω, 𝑑𝑉) for some 𝑝 > 1. Fix 𝜆 ∈ R+. Then there exists a unique plurisubharmonic function
u in Ω which satisfies the following:

◦ u is continuous on Ω with 𝑢 |𝜕Ω = 𝜙;
◦ u is smooth in Ω \ {𝑝}
◦ u satisfies (𝑑𝑑𝑐𝑢)𝑛 = 𝑒𝜆𝑢 𝑓 𝑑𝑉 .

As shown further in [GGZ23], one has a uniform a priori bound on ‖𝑢‖𝐿∞ (Ω) which depends on n,
𝑝 > 1 and ‖ 𝑓 ‖𝐿𝑝 (Ω) . This bound only weakly depends on the geometry of Ω ↩→ 𝑋 , as we indicate in
Theorem 3.6 so as to establish a uniform family version of this estimate.

1.3. Canonical measure of a Q-Gorenstein germ

Let (𝑋, 𝑥) be a germ of normal complex space of dimension n such that 𝑚𝐾𝑋 is Cartier for some integer
𝑚 � 1. If 𝜎 is a trivialization of 𝑚𝐾𝑋 over 𝑋reg, then the expression

𝑖𝑛
2
(𝜎 ∧ 𝜎̄)

1
𝑚

defines a positive measure 𝜇𝑋,𝜎 on 𝑋reg; we still denote by 𝜇𝑋,𝜎 its trivial extension to X. If 𝜏 is a
trivialization of 𝑚′𝐾𝑋 , then there exists 𝑔 ∈ O𝑋 (𝑋)

∗ such that 𝜇𝑋,𝜏 = |𝑔 |2𝜇𝑋,𝜎 so that the qualitative
behavior of the measure on the singular germ does not depend on the choice of 𝜎. In the following, one
will just write 𝜇𝑋 for 𝜇𝑋,𝜎 .

Let 𝜔 be a smooth Hermitian form on X, restriction of a smooth Hermitian form under an embedding
(𝑋, 𝑥) ↩→ C𝑁 . We denote by f the density of 𝜇𝑋 with respect to 𝜔𝑛, that is, 𝜇𝑋 = 𝑓 𝜔𝑛. In the following,
the 𝐿𝑝 spaces are considered with respect to 𝜔𝑛.

We will see below (cf proof of Lemma 1.6) that − log 𝑓 is quasi-psh; in particular, log 𝑓 ∈ 𝐿1. As a
consequence, one can make the following definition

Definition 1.5. Let 𝑋, 𝜇𝑋 , 𝜔, 𝑓 be as above. The Ricci curvature current of 𝜔 is defined as

Ric𝜔 := 𝑑𝑑𝑐 log 𝑓 = −𝑑𝑑𝑐 log
(𝜔𝑛

𝜇𝑋

)
.

This expression yields a (1, 1) current with potentials which is independent of the trivialization 𝜎. On
𝑋reg, it coincides with the usual Ricci curvature of the Kähler metric 𝜔, but we will see in the lemma
below that Ric𝜔 is not a smooth form unless X is smooth.

One can extend the definition of Ricci curvature for currents that are not necessarily smooth. More
precisely, let 𝑇 = 𝑑𝑑𝑐𝜑 be a positive (1, 1) current with potential 𝜑 ∈ 𝐿∞(𝑋). Assume that 𝑇𝑛 = 𝑔𝜔𝑛
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has a density g satisfying log 𝑔 ∈ 𝐿1. One defines Ric𝑇 := Ric𝜔 − 𝑑𝑑𝑐 log 𝑔 which yields a (1, 1)
current with potentials depending only on T (and not on 𝜔 or 𝜑). In particular, the construction can be
globalized to positive (1, 1) currents with local potentials on a normal complex space withQ-Gorenstein
singularities.

Recall that (𝑋, 𝑥) has log terminal singularities if and only if 𝜇𝑋 has finite mass, that is, 𝑓 ∈ 𝐿1. It is
standard to see that the latter condition is actually equivalent to having 𝑓 ∈ 𝐿𝑝 for some 𝑝 > 1, cf, for
example, [EGZ09, Lemma 6.4].

The following result shows that the measure 𝜇𝑋 has a singular density with respect to a smooth
volume form unless (𝑋, 𝑥) is smooth, compare [Li23].
Lemma 1.6. Let (𝑋, 𝑥) be a germ of normal complex space of dimension n such that 𝑚𝐾𝑋 is Cartier,
and let 𝜔 be a smooth Kähler metric. Let f be the density of 𝜇𝑋 with respect to 𝜔𝑛, that is, 𝜇𝑋 = 𝑓 𝜔𝑛.
We have

𝑓 ∈ 𝐿∞ ⇐⇒ (𝑋, 𝑥) is smooth.

Moreover, the latter condition is equivalent to the existence of 𝑘 ∈ R+ such that

Ric𝜔 � −𝑘𝜔.

Proof. In order to lighten the notation, we will assume that 𝑚 = 1. The proof of the general case is
essentially identical. One direction of the lemma is obvious, so we need to show that boundedness of
the density implies smoothness of the germ.

We can assume that we have an embedding 𝑋 ↩→ C𝑁 such that for all n-tuple 𝐼 ⊂ {1, . . . , 𝑁}, the
linear projections 𝑝𝐼 : 𝑋 → C𝑛 are finite maps. It is not difficult to check that there exists a smooth
function G on X such that 𝜔𝑛 = 𝑒𝐺𝜔𝑛

C𝑁
|𝑋 .

Given any I, there exists a holomorphic function 𝜁𝐼 on 𝑋reg such that 𝑑𝑧𝐼 |𝑋reg = 𝜁𝐼𝜎. By normality of
X, 𝜁𝐼 extends to a holomorphic function on X. This shows that 𝑓 = (𝑒𝐺

∑
𝐼 |𝜁𝐼 |

2)−1 up to some positive
constant. In particular, − log 𝑓 is quasi-psh.

Next, if f is bounded on X, then there exists I such that 𝜁𝐼 (𝑥) ≠ 0. In particular, 𝜁𝐼 is nonvanishing
on the germ (𝑋, 𝑥), and 𝑑𝑧𝐼 |𝑋reg is a trivialization of 𝐾𝑋reg . In other words, the map 𝑝𝐼 : 𝑋 → C𝑛 is
étale on 𝑋reg, hence everywhere by purity of the branch locus. This shows that (𝑋, 𝑥) is smooth.

As for the last claim, assume that (𝑋, 𝑥) is singular. Then 𝜓 := log(
∑
𝐼 |𝜁𝐼 |

2) is psh with analytic
singularities and satisfies 𝜓(𝑥) = −∞ and by definition, we have Ric𝜔 = −𝑑𝑑𝑐 (𝜓 + 𝐺). If the Ricci
curvature of 𝜔 were bounded from below, there would exist 𝐴 > 0 such that 𝑑𝑑𝑐 (𝐴‖𝑧‖2 − 𝜓) � 0. In
particular, 𝐴‖𝑧‖2 − 𝜓 would be psh on 𝑋reg, hence bounded above near x, which is absurd. �

Remark 1.7. The Ricci curvature of 𝜔 is, however, always bounded from above. This follows from the
fact that curvature decreases when passing to holomorphic submanifolds.
Remark 1.8. The first statement in Lemma 1.6 extends immediately to the setting of log pairs (𝑋, 𝐷).
Indeed, if 𝐷 ≠ ∅, let us write 𝐷 =

∑
𝑎𝑖𝐷𝑖 with 𝑎𝑖 ≠ 0 and work at a general point 𝑦 ∈ 𝐷𝑖 where

both X and D are smooth so that 𝐷𝑖 = (𝑔𝑖 = 0) for some holomorphic function 𝑔𝑖 defined near y. In a
neighborhood of y, the density of 𝜇 (𝑋,𝐷) looks like |𝑔𝑖 |

−2𝑎𝑖 hence it is not bounded.
Corollary 1.9. Let (𝑋, 𝜔) be a Stein or compact Kähler space with log terminal singularities admitting
a Kähler–Einstein metric 𝜔KE in the sense of [GGZ23] or [EGZ09], respectively. Assume that there
exists 𝐶 > 0 such that

𝜔KE � 𝐶𝜔 on 𝑋.

Then X is smooth.
Proof. Pick 𝑥 ∈ 𝑋 and choose a neighborhood U of x bearing a trivialization 𝜎 of 𝑚𝐾𝑈reg and
write 𝜇𝑈 := 𝑖𝑛

2
(𝜎 ∧ 𝜎̄)

1
𝑚 . Next, one can ensure that there exists 𝜑 ∈ PSH(𝑈) ∩ 𝐿∞(𝑈) such that
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𝜔KE |𝑈 = 𝑑𝑑𝑐𝜑. There exist 𝜆 ∈ R and a pluriharmonic (hence smooth) function h on U such that

𝜔𝑛
KE = 𝑒𝜆𝜑+ℎ𝜇𝑈 on 𝑈.

In particular, the domination 𝜔KE � 𝐶𝜔 implies that the density of 𝜇𝑈 with respect to 𝜔𝑛 is bounded.
The conclusion now follows from Lemma 1.6. �

2. Global smoothing

In this section, we show that singular Kähler–Einstein metrics are Kähler currents when the variety X
admits a global smoothing.

2.1. Kähler–Einstein currents

Let X be a Kähler normal compact space. The study of complex Monge–Ampère equations in this
context has been initiated in [EGZ09], providing a way of constructing singular Kähler–Einstein metrics
and extending Yau’s fundamental solution to the Calabi conjecture [Yau78]. More precisely, it is proven
there that given a Kähler metric 𝜔 on X, a nonnegative number 𝜆 ∈ {0, 1} and a nonnegative function
𝑓 ∈ 𝐿𝑝 (𝑋) for some 𝑝 > 1 (satisfying

∫
𝑋
𝑓 𝜔𝑛 =

∫
𝑋
𝜔𝑛 if 𝜆 = 0), then the equation

(𝜔 + 𝑑𝑑𝑐𝜑)𝑛 = 𝑓 𝑒𝜆𝜑 · 𝜔𝑛 (2.1)

has a unique solution 𝜑 ∈ PSH(𝑋, 𝜔) ∩ 𝐿∞(𝑋) (with the additional normalization sup𝑋 𝜑 = 0 if 𝜆 = 0).
Let us now explain the relation between Equation (2.1) above and the existence of singular Kähler–

Einstein metrics.
We choose a pair (𝑋, 𝐷) consisting of an n-dimensional compact Kähler variety X and a divi-

sor 𝐷 =
∑
𝑎𝑖𝐷𝑖 with 𝑎𝑖 ∈ [0, 1] ∩ Q. We assume that there exists an integer 𝑚 � 1 such that

𝑚(𝐾𝑋 +𝐷) is a line bundle. More precisely, we mean by this that the reflexive hull of the coherent sheaf(
det(Ω1

𝑋 ) ⊗ O𝑋 (𝐷)
) ⊗𝑚 is locally free.

Given a Hermitian metric h on 𝐾𝑋 +𝐷 and the singular metric 𝑒−𝜙𝐷 on 𝑋reg (unique up to a positive
multiple), one can construct a measure 𝜇 (𝑋,𝐷) ,ℎ on X as follows. If U is any open set where 𝑚(𝐾𝑋 +𝐷)

admits a trivialization 𝜎 on 𝑈reg, then the expression

(𝜎 ∧ 𝜎̄)
1
𝑚

|𝜎 |
2
𝑚

ℎ⊗𝑚

𝑒−𝜙𝐷

defines a measure on 𝑈reg which is independent of m as well as the choice of 𝜎 and can thus be patched
to a measure on 𝑋reg. Its extension by 0 on 𝑋sing is by definition 𝜇 (𝑋,𝐷) ,ℎ . We recall the following
properties satisfied by the measure 𝜇 := 𝜇 (𝑋,𝐷) ,ℎ , cf [EGZ09, Lemma 6.4].
◦ The Ricci curvature of 𝜇 on 𝑋reg is equal to −𝑖Θ(ℎ) + [𝐷].
◦ The mass

∫
𝑋
𝑑𝜇 is finite if and only if (𝑋, 𝐷) has klt singularities.

◦ If 𝜇 has finite mass, then the density f of 𝜇 wrt 𝜔𝑛 (i.e., 𝜇 = 𝑓 · 𝜔𝑛) satisfies 𝑓 ∈ 𝐿 𝑝 (𝑋) for some
𝑝 > 1.
From now on, we work in the following

Setup 2.1. Let (𝑋, 𝐷) be a pair where X is a compact normal Kähler space and D is an effective Q-
divisor. Assume that (𝑋, 𝐷) has klt singularities, pick a Kähler metric 𝜔 and a Hermitian metric h on
𝐾𝑋 + 𝐷, normalized so that

∫
𝑋
𝑑𝜇 (𝑋,𝐷) ,ℎ =

∫
𝑋
𝜔𝑛. We assume either

◦ 𝐾𝑋 + 𝐷 is ample and 𝜔 = 𝑖Θ(ℎ), or
◦ 𝐾𝑋 + 𝐷 ≡ 0 and h satisfies 𝑖Θ(ℎ) = 0, or else
◦ 𝐾𝑋 + 𝐷 is antiample and 𝜔 = −𝑖Θ(ℎ).
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Definition 2.2. In the Setting 2.1 above, a Kähler–Einstein metric 𝜔KE := 𝜔 + 𝑑𝑑𝑐𝜑KE is a solution of
the Monge–Ampère equation

(𝜔 + 𝑑𝑑𝑐𝜑KE)
𝑛 = 𝑒𝜆𝜑KE𝜇 (𝑋,𝐷) ,ℎ , (2.2)

where 𝜆 = 1, 0 or −1 according to whether we are in the first, second or third case. It satisfies

Ric(𝜔KE) = −𝜆𝜔KE + [𝐷] (2.3)

in the weak sense.

By the results [EGZ09] recalled above, Equation (2.2) admits a unique solution 𝜔KE whenever
𝜆 ∈ {0, 1}. Its potential 𝜑KE is globally bounded on X and 𝜔KE is a honest Kähler–Einstein metric on
𝑋reg \ Supp(𝐷), and it has cone singularities along D generically [Gue13]. For 𝜆 = −1, we refer the
reader to [BBE+19, Bou18].

Kähler–Einstein theory in positive curvature is notoriously more complicated than in nonpositive
curvature. For that reason, we will make additional assumptions when working in the log Fano case and
introduce the following

Setup 2.3. In the Setup 2.1 and in the case where −(𝐾𝑋 + 𝐷) is ample, we assume additionally that

◦ There exists a Kähler–Einstein metric 𝜔KE,
◦ Aut◦(𝑋, 𝐷) = 0.

The assumption on the automorphism group is to ensure uniqueness of the KE metric. Actually,
assuming existence of a Kähler-Einstein (KE) metric, its uniqueness is equivalent to the discreteness of
Aut(𝑋, 𝐷).

In summary, in Setup 2.3 above, there exists in each three cases a unique Kähler–Einstein metric
𝜔KE ∈ [𝜔]. This is by [EGZ09] if 𝐾𝑋 + 𝐷 � 0 and by [BBE+19, Theorem 5.1] if 𝐾𝑋 + 𝐷 < 0.

2.2. Kähler currents

Let us start by recalling the following terminology.

Definition 2.4. Let (𝑋, 𝜔) be a compact Kähler space, and let T be a closed, positive (1, 1)-current. We
say that T is a Kähler current if there exists 𝜀 > 0 such that the inequality 𝑇 � 𝜀𝜔 holds globally on X
in the sense of currents.

In our main case of interest, T will have local potentials, that is, there exist a finite open covering
𝑋 = ∪𝛼∈𝐼𝑈𝛼 and functions 𝑢𝛼 ∈ PSH(𝑈𝛼) such that 𝑇 |𝑈𝛼 = 𝑑𝑑𝑐𝑢𝛼. Up to refining the cover, one can
assume that 𝜔|𝑈𝛼 = 𝑑𝑑𝑐𝜑𝛼 for some strictly psh functions 𝜑𝛼 on 𝑈𝛼. Then T is a Kähler current if and
only if there exists 𝜀 > 0 such that for all 𝛼 ∈ 𝐼, one has 𝑢𝛼 − 𝜀𝜑𝛼 ∈ PSH(𝑈𝛼).

In the following, we will repeatedly use the following classical result:

Lemma 2.5. Let X be a normal complex space, and let T be a closed (1, 1)- current on X admitting
locally bounded potentials. Assume that there exists a closed analytic set 𝑍 � 𝑋 such that 𝑇 |𝑋\𝑍 � 0.
Then, 𝑇 � 0 everywhere on X.

Proof. The claim is an immediate application of Chern–Levine–Nirenberg inequality that ensures that
T puts no mass on pluripolar sets. Alternatively, fix an open neighborhood U of a point 𝑥 ∈ 𝑍 such that
𝑇 |𝑈 = 𝑑𝑑𝑐𝜑. One can choose 𝜑 such that 𝜑|𝑈\𝑍 is psh and locally bounded near Z, hence it extends to
a psh function 𝜓 on U. Since 𝜑 = 𝜓 almost everywhere on U, we have 𝑇 |𝑈 = 𝑑𝑑𝑐𝜓 � 0. �

The purpose of this section is to study when 𝜔KE is a Kähler current, by using a smoothability
assumption. Our results are inspired by a result due to Ruan and Zhang [RZ11b, Lemma 5.2], and the
main tool throughout the paper will be Chern–Lu inequality, which we recall below as it can be found
in, for example, [Rub14, Proposition 7.2]
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Proposition 2.6 (Chern–Lu inequality). Let X be a complex manifold endowed with two Kähler metrics
𝜔, 𝜔. Assume that there are constants 𝐶1, 𝐶2, 𝐶3 ∈ R such that

Ric𝜔 � −𝐶1𝜔 − 𝐶2𝜔, and Bisec𝜔 � 𝐶3.

Then, we have the following inequality on X

Δ𝜔 log tr𝜔𝜔 � −𝐶1 − (𝐶2 + 2𝐶3) tr𝜔𝜔.

Next, we introduce the following definition

Definition 2.7. Let (𝑋, 𝐷) be a klt pair with X compact, and let 𝜔 be a Kähler metric. We say that
(𝑋, 𝐷, [𝜔]) admits a Q-Gorenstein smoothing if there exists a triplet (X ,D, [𝜔X ]) consisting of a
normal complex space X , an effective Q-divisor D, and a smooth, (1, 1)-form 𝜔X on X admitting a
proper, surjective holomorphic map 𝜋 : X → D satisfying:

1. 𝐾X /D +D is a Q-line bundle.
2. Every irreducible component of D surjects onto D.
3. (X ,D) |𝜋−1 (0) � (𝑋, 𝐷).
4. For 𝑡 ≠ 0, (𝑋𝑡 , 𝐷𝑡 ) = (X ,D) |𝜋−1 (𝑡) is log smooth.
5. For 𝑡 ∈ D, 𝜔𝑡 := 𝜔X |𝑋𝑡 is Kähler and [𝜔0] = [𝜔].

Let us make few remarks:

1. If 𝐾𝑋 + 𝐷 is ample or antiample, then so is 𝐾𝑋𝑡 + 𝐷𝑡 for t small. Then, the last condition in the
definition above is automatic if 𝜔 ∈ ±𝑐1 (𝐾𝑋 + 𝐷), by using an embedding of X into P𝑁 × D via
sections of ±𝑚(𝐾𝑋𝑡 + 𝐷𝑡 ) for m large.

2. If 𝐾𝑋 +𝐷 is numerically trivial, then so is 𝐾𝑋𝑡 +𝐷𝑡 for t small, cf, for example, [DG18, Lemma 2.12].
3. The pair (𝑋𝑡 , 𝐷𝑡 ) is automatically klt for any 𝑡 ∈ D.

Theorem 2.8. Let (𝑋, 𝐷, [𝜔]) as in Setup 2.3, and assume that (𝑋, 𝐷, [𝜔]) admits a Q-Gorenstein
smoothing. Then, the Kähler–Einstein metric 𝜔KE is a Kähler current. That is, there exists 𝐶 > 0 such
that

𝜔KE � 𝐶−1𝜔.

Remark 2.9. Along the same lines, one can obtain the result above assuming instead that (𝑋, 𝐷) admits
a crepant resolution, that is, a proper bimeromorphic map 𝑝 : 𝑋 → 𝑋 such that 𝐾𝑋 +𝐷 = 𝑝∗(𝐾𝑋 +𝐷),
where 𝐷 is the proper transform of D.

Proof. We consider the smoothing 𝜋 : (X ,D) → D. Up to shrinking D slightly and adding 𝜋∗𝑑𝑑𝑐 |𝑡 |2

to 𝜔X , one can assume that the later form is strictly positive. Since 𝜔X is the restriction of a smooth
positive (1, 1)-form under local embedding X ↩→

loc
C𝑁 , one can assume that the bisectional curvature

of 𝜔X |X reg is bounded above by a given constant 𝐶1, maybe up to shrinking D just a little more. This is
because the bisectional curvature decreases when passing to holomorphic submanifolds. By the same
argument, we see the bisectional curvature of 𝜔𝑡 = 𝜔X |𝑋𝑡 is bounded above by 𝐶1, for any 𝑡 ∈ D.

For 𝑡 ∈ D, we consider 𝜔𝑡 = 𝜔𝑡 + 𝑑𝑑𝑐𝜑𝑡 the unique Kähler–Einstein metric of the pair (𝑋𝑡 , 𝐷𝑡 ). For
𝑡 ≠ 0, existence and uniqueness of 𝜔𝑡 is due to [Koł98] when 𝜆 � 0 and to [SSY16, LWX19], cf also
[PT23] when 𝜆 < 0. In the latter case, we need t to be small enough. The Kähler–Einstein metric solves

(𝜔𝑡 + 𝑑𝑑𝑐𝜑𝑡 )
𝑛 = 𝑒𝜆𝜑𝑡 𝑓𝑡𝜔

𝑛
𝑡 (2.4)

for some nonnegative function 𝑓𝑡 on 𝑋𝑡 satisfying
∫
𝑋𝑡

𝑓 𝑝𝑡 𝜔
𝑛
𝑡 � 𝐶 (𝑝, 𝜔) for some 𝑝 > 1 and some

constant 𝐶 (𝑝, 𝜔) independent of 𝑡 ∈ D. This is proved in [DNGG23, Lemma 4.4] assuming additionally
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𝑋0 has canonical singularities, but the klt case can be proved with minimal changes, cf also Equation
(3.6) in the next section.

If 𝜆 = 0, we normalize 𝜑𝑡 by sup𝑋𝑡
𝜑𝑡 = 0. We claim that up to shrinking D, there exists a constant

𝐶2 > 0 such that

‖𝜑𝑡 ‖𝐿∞ (𝑋𝑡 ) � 𝐶2 (2.5)

for any 𝑡 ∈ D.
If 𝜆 > 0, this is a consequence of [DNGG23, Theorem E]. If 𝜆 = 0, this is a consequence of the

proof of [DNGG23, Theorem 6.1]. Indeed, in loc. cit. the fibers are assumed to be canonical but this is
a mostly cosmetic assumption since going from canonical to klt singularities leaves the proof resting on
[DNGG23, Lemma 4.4] unchanged, as explained above. Finally, if 𝜆 < 0, the estimate (2.5) is proved
in [SSY16, Proposition 2.23], [LWX19, Theorem 1.2 (iii)] when D is plurianticanonical and in [PT23,
Theorem 5.10] in general.

Set 𝐸 := Supp(D). We choose a smooth Hermitian metric h on OX (𝐸), a section s of that line bundle
cutting out E, and we introduce the function 𝜓 := log |𝑠 |2ℎ . It satisfies 𝑑𝑑𝑐𝜓 = −𝑖Θℎ (𝐸) on X \ 𝐸 , hence
there exists a constant 𝐶3 > 0 such that

𝜓 � 𝐶3 and 𝑑𝑑𝑐𝜓 � −𝐶3𝜔 on X \ 𝐸. (2.6)

We introduce a number 𝜀 > 0 (meant to go to zero), and we assume wlog that 𝜀𝐶3 � 1. We also define
𝑣𝑡 := log tr𝜔𝑡

𝜔𝑡 , which is smooth on 𝑋𝑡 \ 𝐸 and globally bounded (for 𝑡 ≠ 0). We want to quantify that
bound.

On 𝑋𝑡 \ 𝐸 , we have Ric𝜔𝑡 � −𝜔𝑡 and Bisec(𝑋𝑡 , 𝜔𝑡 ) � 𝐶1. By Chern–Lu inequality, that is,
Proposition 2.6, we get

Δ𝜔𝑡
𝑣𝑡 � −1 − 2𝐶1𝑒

𝑣𝑡

Using the identity 𝜔𝑡 = 𝜔𝑡 + 𝑑𝑑𝑐𝜑𝑡 and the inequality (2.6), we get

Δ𝜔𝑡
(𝑣𝑡 − 𝐴𝜑𝑡 + 𝜀𝜓) � 𝑒𝑣𝑡 − 𝐶4,

where 𝐴 = 2(𝐶1 + 1) and 𝐶4 = 𝐴𝑛 + 1. The maximum of the term inside the Laplacian is attained on
𝑋𝑡 \ 𝐸 , and an easy application of the maximum principle shows

𝑣𝑡 (𝑥) � 𝐶5 − 𝜀𝜓(𝑥)

for any 𝑥 ∈ 𝑋𝑡 \𝐸 and 𝜀 > 0, and where𝐶5 = log𝐶4+2𝐴𝐶2+1. Passing to the limit when 𝜀 → 0, we find

𝜔𝑡 � 𝐶−1
5 𝜔𝑡 on 𝑋𝑡 \ 𝐸, for any 𝑡 ∈ D∗. (2.7)

Next, we choose a continuous family of smooth maps 𝐹𝑡 : 𝑋reg → 𝑋𝑡 inducing a diffeomorphism
onto their image and such that 𝐹0 = Id𝑋reg . We claim that 𝐹∗

𝑡 𝜔𝑡 converges locally smoothly to 𝜔KE on
𝑋reg \ 𝐸 when 𝑡 → 0. Thanks to Equation (2.7), this would imply that

𝜔KE � 𝐶−1
5 𝜔 on 𝑋reg \ 𝐸,

hence everywhere on X by Lemma 2.5.
Set 𝑋◦ := 𝑋reg \ 𝐸 . In order to show the convergence, we claim successively:

◦ The family of functions 𝐹∗
𝑡 𝜑𝑡 is precompact in the C2

loc(𝑋
◦)-topology.

◦ Each cluster value 𝜔∞ = 𝜔 + 𝑑𝑑𝑐𝜑∞ of 𝐹∗
𝑡 𝜔𝑡 solves the Monge–Ampère equation

(𝜔 + 𝑑𝑑𝑐𝜑∞)
𝑛 = 𝑒𝜆𝜑∞ 𝑓0𝜔

𝑛 on 𝑋◦.
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◦ Each cluster value 𝜑∞ is globally bounded on 𝑋◦, hence its unique 𝜔-psh extension to X solves the
equation above on X.

By uniqueness of the Kähler–Einstein metric, it would then follow that 𝜔∞ = 𝜔KE, concluding the proof
of the convergence. Let us briefly justify each of the items above.

The first point follows from the local Laplacian estimate on 𝑋◦ obtained from Equation (2.7). Indeed,
once the Laplacian estimates are obtained, one can invoke Evans–Krylov and Schauder estimates since
𝐹∗
𝑡 𝜔𝑡 (resp. 𝐹∗

𝑡 𝐽𝑡 , 𝐹
∗
𝑡 𝑓𝑡 ) converges locally smoothly on 𝑋◦ to 𝜔 (resp 𝐽, 𝑓0) when 𝑡 → 0.

The second item is an immediate consequence of the first one. As for the last one, it is a consequence
of Equation (2.5). �

3. Isolated singularities

3.1. Families of Monge–Ampère equations in a local setting

Throughout this section, we will work in the following geometric context.

Setup 3.1. Let X � C𝑁 be a bounded normal Stein space of dimension 𝑛 + 1 endowed with a surjective
holomorphic map 𝜋 : X → D such that

1. X is Q-Gorenstein and 𝐾X /D ∼Q OX .
2. For every 𝑡 ∈ D, the schematic fiber 𝑋𝑡 = 𝜋−1 (𝑡) is irreducible and reduced.
3. 𝑋0 has klt singularities.

In the following, we fix a basepoint 0 ∈ 𝑋0.

The first item means that there exists an integer 𝑚 � 1 such that the reflexive hull of 𝐾 ⊗𝑚
X is trivial.

Once and for all, we pick a trivialization Ω ∈ 𝐻0(X , 𝑚𝐾X ), that is, Ω|Xreg is nonvanishing. We set
Ω𝑡 := Ω

(𝑑𝜋)⊗𝑚




𝑋𝑡

∈ 𝐻0(𝑋𝑡 , 𝑚𝐾𝑋𝑡 ); this induces a trivialization of 𝑚𝐾𝑋𝑡 , and we define the measure

𝜇𝑋𝑡 := 𝜇𝑋𝑡 ,Ω𝑡 = 𝑖𝑛
2
(Ω𝑡 ∧Ω𝑡 )

1
𝑚 on 𝑋𝑡 ,

cf §1.3. Recall that 𝑋𝑡 has klt singularities if and only if 𝜇𝑋𝑡 has finite mass on each compact subset of
𝑋𝑡 . Since 𝑋0 is klt, inversion of adjunction [KM98, Theorem 5.50] (cf also §3.2.1) shows that X is klt
in the neighborhood of 𝑋0, hence for any X ′ � X there exists 𝛿 > 0 such that X ′ ∩ 𝑋𝑡 is klt for |𝑡 | < 𝛿.
We will therefore shrink X so that each 𝑋𝑡 is relatively compact in a klt space for |𝑡 | small enough.

Definition 3.2. We will use the following terminology.

1. A holomorphic map 𝜋 : X → D as in Setup 3.1 is a smoothing of 𝑋0 if 𝜋 is smooth over D∗.
2. A normal Stein space X is smoothable if there exists a family 𝜋 : X → D as in Setup 3.1 such that

𝑋 � 𝑋0 = 𝜋−1(0) and X → D is a smoothing of 𝑋0.

In the geometric context provided by Setup 3.1, one can consider a natural family of Monge–Ampère
equations which we now describe and whose analysis will take up most of this section. We pick a smooth,
strictly psh nonpositive function 𝜌 on X such that 𝜕X = {𝜌 = 0} and set 𝜔 = 𝑑𝑑𝑐𝜌. The restriction
𝜔|𝑋𝑡 of 𝜔 to the fiber 𝑋𝑡 will be denoted by 𝜔𝑡 . Next, we extend F (resp. h) to a smooth function on X )

(resp. 𝜕X ) which we still denote by F (resp. h). We also choose a (small) neighborhood V of 𝜕X and
set 𝑉𝑡 = 𝑉 ∩ 𝑋𝑡 . We are interested in the Dirichlet problem, that is, finding a plurisubharmonic function
𝑢𝑡 ∈ PSH(𝑋𝑡 ) ∩ C0(𝑋𝑡 ) solution of{

(𝑑𝑑𝑐𝑢𝑡 )
𝑛 = 𝑒𝜆𝑢𝑡+𝐹𝑡 𝜇𝑋𝑡 on 𝑋𝑡

𝑢𝑡 |𝜕𝑋𝑡 = ℎ𝑡
. (MAt)

with 𝜆 ∈ {0, 1}. If 𝑋𝑡 is smooth, then the existence and uniqueness of 𝑢𝑡 is classical and provides a
solution which is smooth in 𝑋𝑡 (see [CKNS85, GL10]). In this more general setting, the existence and
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uniqueness of 𝑢𝑡 is provided by [GGZ23, Theorem A] for 𝜆 = 0 since 𝑋𝑡 is klt up to the boundary so
that the density of 𝜇𝑋𝑡 with respect to 𝜔𝑛

𝑡 belongs to 𝐿 𝑝 (𝑋𝑡 , 𝜔
𝑛
𝑡 ) for some 𝑝 > 1. The case 𝜆 = 1 can

be treated along very similar lines.
The main technical contribution of this section is summarized in the following result.

Proposition 3.3. Let 𝜋 : X → D be a family as in Setup 3.1, and let 𝑢𝑡 be the solution of the Monge–
Ampère equation (MAt). We have the following.

1. There exist constants 𝛿, 𝐶 > 0 such that for any |𝑡 | < 𝛿, we have ‖𝑢𝑡 ‖𝐿∞ (𝑋𝑡 ) � 𝐶.
2. If 𝜋 is smooth outside the basepoint 0 ∈ 𝑋0, then for any 𝑡 ≠ 0 Equation (MAt) admits a smooth

subsolution 𝑢𝑡 such that

𝑑𝑑𝑐𝑢𝑡 � 𝜀𝜔𝑡 on 𝑋𝑡 , and ‖𝑢𝑡 ‖C𝑘 (𝑉̄𝑡 )
� 𝐶 (𝑘)

for any 𝑘 ∈ N, where 𝜀, 𝐶 = 𝐶 (𝑘) > 0 are constant that do not depend on t.

The proof of Proposition 3.3 is quite lengthy and will be provided in §3.2 below.
Building upon Proposition 3.3, one can prove the following local version of Theorem 2.8, which will

also be useful for understanding global problems further along in the paper.

Theorem 3.4. Let 𝑋 ′ � C𝑁 be a normal, connected n-dimensional Stein space with an isolated klt
singularity at the origin. Let 𝑋 � 𝑋 ′ be a strongly pseudoconvex domain containing the origin and such
that 𝐾𝑋 ∼Q O𝑋 . Consider the solution 𝑢 ∈ PSH(𝑋) ∩ 𝐿∞(𝑋) of{

(𝑑𝑑𝑐𝑢)𝑛 = 𝑒𝜆𝑢+𝐹 𝜇𝑋 on 𝑋

𝑢 |𝜕𝑋 = ℎ,
(MA)

where 𝐹 ∈ C∞(𝑋), ℎ ∈ C∞(𝜕𝑋) and 𝜆 ∈ {0, 1}.
If X is smoothable, then 𝑑𝑑𝑐𝑢 is a Kähler current. More precisely, there exists 𝐶 > 0 such that

𝑑𝑑𝑐𝑢 � 𝐶−1𝜔C𝑁 |𝑋 .

The proof of Theorem 3.4 is provided in §3.3. Its flavor is very similar to the proof of its global
counterpart, but the a priori estimates in the local setting require significantly more work. The latter are
quite classical on a fixed manifold, and one only needs to check that the arguments can be made to work
in families, which we have chosen to do carefully in the appendix of the preprint version of this text.

3.2. Proof of Proposition 3.3

The proof involves a careful analysis of the behavior of the measure 𝜇𝑋𝑡 which is achieved using the
semistable reduction theorem following the lines of [DNGG23, §4]. The two items in the theorem are
then proved separately.

3.2.1. Semistable model
By [KKMSD73], one can find a semistable model of 𝜋. More precisely, up to shrinking D, there exists
a finite cover 𝜑 : 𝑡 ↦→ 𝑡𝑘 of the disk for some integer 𝑘 � 1 and a proper, surjective birational morphism
𝑔 := Y → X ′ := (X ×𝜑D)

𝜈 from a smooth manifold Y , where 𝜈 stands for the normalization, as below

Y X ′ X

D D

𝑝

𝑓

𝑔 ℎ

𝜋′ 𝜋

𝜑

(3.1)
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such that around any point 𝑦 ∈ 𝑝−1 (0), there exists an integer ℓ � 𝑛 + 1 and a system of coordinates
(𝑧0, . . . , 𝑧𝑛) centered at y and such that 𝑝(𝑧0, . . . , 𝑧𝑛) = 𝑧0 · · · 𝑧ℓ . Moreover, 𝜋′ is smooth (resp. g is
étale) away from ℎ−1 (Sing(𝜋)), and that set has 𝜋′-relative codimension at least two.

Thanks to the generic smoothness theorem, one can shrink D so that p is smooth away from 0. In
particular, the induced morphism 𝑓 |𝑌𝑡 : 𝑌𝑡 → 𝑋𝜑 (𝑡) is a resolution of singularities for any 𝑡 ≠ 0, where
𝑌𝑡 = 𝑝−1 (𝑡). We want to understand the behavior of the measures (or volume forms) 𝜇𝑋𝑡 when 𝑡 → 0.
This can be achieved quite explicitly on Y via pull back by f as we now explain.

As we mentioned above, 𝜋 and 𝜋′ are smooth in codimension one (even in codimension two); this
implies that X ′ → X ×𝜑 D is isomorphic in codimension one, hence 𝑋 ′

0 → (X ×𝜑 D)0 is finite and
generically 1− 1. Next, (X ×𝜑 D)0 → 𝑋0 is finite and 1− 1 on points. Therefore, 𝑋 ′

0 → 𝑋0 is finite and
generically 1 − 1, hence it is isomorphic since 𝑋0 is normal. In particular, 𝑋 ′

0 is irreducible and has klt
singularities.

Next, we write

𝐾Y + 𝑌0 = 𝑔∗(𝐾X ′ + 𝑋 ′
0) +

∑
𝑖∈𝐼

𝑎𝑖𝐸𝑖 , (3.2)

where the 𝐸𝑖’s are g-exceptional divisors and𝑌0 is the strict transform of 𝑋 ′
0; it is irreducible. One should

observe that some of the divisors 𝐸𝑖’s may be irreducible components of 𝑝−1 (0) so that the inclusion
𝑌0 � 𝑝−1 (0) is strict in general. The divisors 𝐸𝑖 not included in the fiber 𝑝−1 (0) surject onto D since
we have assumed that 𝑝−1 (𝑡) is irreducible for 𝑡 ≠ 0. In other words, we have

∀𝑖, 𝑔(𝐸𝑖) ∩ 𝑋 ′
0 ≠ ∅. (3.3)

The divisor 𝐸 :=
∑
𝑖∈𝐼 𝐸𝑖 is the exceptional locus of g and 𝐸 + 𝑌0 has simple normal crossing support.

Now, restrict Equation (3.2) to each irreducible component of 𝑌0 and use adjunction to obtain

𝐾𝑌0 = 𝑔∗𝐾𝑋 ′
0
+
∑
𝑖∈𝐼

𝑎𝑖𝐸𝑖 |𝑌0 . (3.4)

Since 𝐸 + 𝑌0 is SNC, 𝑔 |𝑌0 : 𝑌0 → 𝑋 ′
0 is a log resolution of 𝑋 ′

0 and we find that

∀𝑖, 𝑎𝑖 > −1. (3.5)

Indeed, since 𝑋 ′
0 is klt, the inequality above holds for for any i such that 𝐸𝑖 ∩ 𝑌0 ≠ ∅. And that set of

indices i coincides with the full set I thanks to Equation (3.3) and the connectedness of the fibers of g.

3.2.2. Analysis of 𝜇𝑡
Let 𝜔 be a fixed Kähler metric on X , and let us define the function 𝛾 on Xreg = X \ Sing(𝜋) by

𝑖𝑛
2
(Ω ∧Ω)

1
𝑚 = 𝑒−𝛾𝜔𝑛 ∧ 𝑑𝜋 ∧ 𝑑𝜋.

The main result in this section is the following:

Lemma 3.5. Up to shrinkingD, there exists 𝑝 > 1 and a constant𝐶 > 0 such that for any 𝑡 ∈ D, one has∫
𝑋𝑡

𝑒−𝑝𝛾𝜔𝑛
𝑡 � 𝐶. (3.6)

Proof of Lemma 3.5. Equation (3.2) can be reformulated by saying that the form 𝑓 ∗( 1
𝜋𝑚Ω) is a holo-

morphic section of 𝑚𝐾Y on Y \ 𝑝−1 (0) with a (possibly negative) vanishing order 𝑚𝑎𝑖 along 𝐸𝑖 and
a pole or order m along 𝑌0. Given 𝑦 ∈ 𝑌0, pick a coordinate chart (𝑈, 𝑧) centered at y such that
𝑝(𝑧0, . . . , 𝑧𝑛) = 𝑧0 · · · 𝑧ℓ for some ℓ � 𝑛 + 1. We can relabel the coordinates so that (𝑧1, . . . , 𝑧𝑛) are a
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system of coordinates on 𝑌0 and 𝑈 ∩ 𝑌0 = (𝑧0 = 0). Note that (𝑧1, . . . , 𝑧𝑛) remains a system of coordi-
nates on 𝑌𝑡 for |𝑡 | small. One can choose an injection {1, . . . , ℓ} → 𝐼 such that 𝑈 ∩ 𝐸𝑖 = (𝑧𝑖 = 0) for
1 � 𝑖 � ℓ and 𝐸𝑖 ∩𝑈 = ∅ for the other indices 𝑖 ∈ 𝐼.

On 𝑈 \ 𝑝−1 (0), one can write

𝑓 ∗
(

1
𝜋𝑚

Ω

)
= 𝑎(𝑧0, . . . , 𝑧𝑛)

(
𝑑𝑧0
𝑧0

∧ 𝑑𝑧1 ∧ · · · ∧ 𝑑𝑧𝑛

) ⊗𝑚
(3.7)

for some holomorphic function a on𝑈 \𝐸 such that 𝑏(𝑧) := 𝑧
𝑚𝑎−1
1 · · · 𝑧

𝑚𝑎−ℓ
ℓ 𝑎(𝑧) extends holomorphically

across E, where one defines 𝑥− := −min{0, 𝑥} for any 𝑥 ∈ R. Since 𝑚𝑎𝑖 > −𝑚 from Equation (3.5), we
get 0 � 𝑚𝑎−𝑖 < 𝑚.

We have

𝑓 ∗
Ω

(𝑑𝜋)⊗𝑚
=

𝑓 ∗Ω
(𝑑𝑝)⊗𝑚

=
𝑓 ∗( 1

𝜋𝑚Ω)

(
𝑑𝑝
𝑝 )⊗𝑚

as well as 𝑑𝑧0
𝑧0

∧ 𝑑𝑧1 ∧ · · · ∧ 𝑑𝑧𝑛 = 𝑑𝑝
𝑝 ∧ 𝑑𝑧1 ∧ · · · ∧ 𝑑𝑧𝑛 on U. Combining those two identities with

Equation (3.7) and recalling that we defined Ω𝑡 = Ω
(𝑑𝜋)⊗𝑚 |𝑋𝑡 , we get on 𝑈 ∩ 𝑌𝑡 :

𝑓 ∗Ω𝑡 = 𝑎(𝑧) (𝑑𝑧1 ∧ · · · ∧ 𝑑𝑧𝑛)
⊗𝑚

and therefore there exists 𝐶 > 0 such that

𝑓 ∗𝜇𝑋𝑡 � 𝐶
𝑖𝑑𝑧1 ∧ 𝑑𝑧1 ∧ · · · ∧ 𝑖𝑑𝑧𝑛 ∧ 𝑑𝑧𝑛∏ℓ

𝑖=1 |𝑧𝑖 |
2𝑎−𝑖

. (3.8)

Arguing as in the proof of [RZ11a, Thm. B.1(i)], we can shrink X further so that there exist bounded
holomorphic functions (𝜎1, · · · , 𝜎𝑟 ) on X satisfying 𝑉 (𝜎1, . . . , 𝜎𝑟 ) ⊂ Xsing and

𝛾 = log
∑
𝑗

|𝜎𝑗 |
2 +𝑂 (1). (3.9)

It follows from Equation (3.9) that there exists a constant 𝐴 > 0 such that 𝑓 ∗𝛾 � 𝐴 log |𝑠𝐸 |
2, where

𝑠𝐸 ∈ 𝐻0 (X ,OX (𝐸)) cuts out the exceptional divisor E and | · | is a smooth Hermitian metric on OX (𝐸).
Next, since 𝑓 : 𝑌𝑡 → 𝑋𝑡 is generically finite (with degree bounded independently of t), we get for any
𝑝 = 1 + 𝛿: ∫

𝑋𝑡

𝑒−𝑝𝛾𝜔𝑛
𝑡 �

∫
𝑌𝑡

𝑒−𝛿 𝑓
∗𝛾 𝑓 ∗(𝑖𝑛

2
Ω𝑡 ∧Ω𝑡 )

1
𝑚 �

∫
𝑌𝑡

|𝑠𝐸 |
−2𝛿𝐴𝑑𝜇𝑋𝑡 .

Now, one can cover 𝑌𝑡 by finitely many open sets 𝑈𝑡 = 𝑈 ∩ 𝑌𝑡 as above. On U, the system of
coordinates (𝑧0, . . . , 𝑧𝑛) induces a system of coordinates (𝑧1, . . . , 𝑧𝑛) on 𝑈𝑡 such that we have

|𝑠𝐸 |
−2𝛿𝐴𝜇𝑋𝑡 � 𝐶

ℓ∏
𝑖=1

|𝑧𝑖 |
−2(𝛿𝐴+𝑎−𝑖 ) 𝑖𝑑𝑧1 ∧ 𝑑𝑧1 ∧ · · · ∧ 𝑖𝑑𝑧𝑛 ∧ 𝑑𝑧𝑛

for some uniform constant C thanks to Equation (3.8). Since 𝑈 � C𝑛+1, the 𝑈𝑡 live in a fixed compact
subset of C𝑛 and the lemma follows by taking 𝛿 <

1−max 𝑎−𝑖
𝐴 . �

3.2.3. Proof of the uniform estimate
The first item of Proposition 3.3 is a consequence of Equation (3.6) and the following more general
statement.
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Theorem 3.6. Let 𝜋 : X → D be a family as in Setup 3.1. Fix 𝑝 > 1, 𝜆 ∈ R+, ℎ ∈ C∞(𝜕X ) and
𝑓𝑡 ∈ 𝐿 𝑝 (𝑋𝑡 ). There exists a unique plurisubharmonic function 𝑢𝑡 ∈ PSH(𝑋𝑡 ) ∩ C0(𝑋𝑡 ) solution of{

(𝑑𝑑𝑐𝑢𝑡 )
𝑛 = 𝑓𝑡𝑒

𝜆𝑢𝑡𝜔𝑛
𝑡 on 𝑋𝑡

𝑢𝑡 |𝜕𝑋𝑡 = ℎ𝑡 .

Moreover, ‖𝑢𝑡 ‖𝐿∞ (𝑋𝑡 ) � 𝐶‖ 𝑓𝑡 ‖
1/𝑛
𝐿𝑝 (𝑋𝑡 )

, where C only depends on 𝑝, 𝑛 and ‖ℎ𝑡 ‖𝐿∞ (𝜕𝑋𝑡 ) .

Proof. The existence and uniqueness of 𝑢𝑡 is proved in [GGZ23, Theorem A] when 𝜆 = 0; the case
𝜆 > 0 can be treated similarly.

The key point here is to show that the solutions 𝑢𝑡 are uniformly bounded on 𝑋𝑡 when 𝑡 ∈ D varies,
as soon as the densities 𝑓𝑡 are uniformly bounded in 𝐿𝑝 . This follows from the analysis developed in
[GGZ23], which is an extension of Kolodziej’s technique [Koł98]. Indeed, [GGZ23, Proposition 1.8]
(applied with 𝑣 = 0) shows that 𝑢𝑡 is globally bounded on 𝑋𝑡 , while the uniform bound (3.6) allows one
to show that this bound is also independent of t. We provide a sketch of the proof as a courtesy to the
reader.

Step 1. We claim that there exists 𝑚1, 𝐶1 � 1 such that∫
𝑋𝑡

exp(−2−𝑚1𝑣𝑡 )𝜔
𝑛
𝑡 � 𝐶1, (3.10)

for all 𝑡 ∈ D and for all 𝑣𝑡 ∈ F𝑡 , where

F𝑡 :=
{
𝑤 ∈ PSH(𝑋𝑡 ) ∩ 𝐿∞(𝑋𝑡 ), 𝑤 |𝜕𝑋𝑡 = 0 and

∫
𝑋𝑡

(𝑑𝑑𝑐𝑤)𝑛 � 1
}
.

Indeed, the family F𝑡 is relatively compact, and any function w in F𝑡 belongs to the domain of
definition of the complex Monge–Ampère operator, with zero boundary values and Monge–Ampère
mass less than 1. It follows from Demailly’s comparison theorem that the Lelong number 𝜈(𝑤, 𝑥) is less
than 1 at a smooth point and less than mult(𝑋𝑡 , 𝑥)−1/𝑛 if x is singular.

If 𝑝𝑡 : 𝑋̃𝑡 → 𝑋𝑡 is the blow up of a (single) smooth subvariety, then 𝜈(𝑤, 𝑝𝑡 (𝑦)) � 𝜈(𝑤 ◦ 𝑝𝑡 , 𝑦) �
2𝜈(𝑤, 𝑝𝑡 (𝑦)) if y belongs to the exceptional set 𝐸𝑡 of 𝑝𝑡 , while 𝜈(𝑤 ◦ 𝑝𝑡 , 𝑦) = 𝜈(𝑤, 𝑝𝑡 (𝑦)) otherwise.
This can be checked by embedding 𝑋𝑡 locally in C𝑁 and using the explicit expression of the blow up of
a smooth subvariety in the Euclidean space. We infer that there exists 𝑚1 ∈ N such that 𝜈(𝑤 ◦ 𝑓 , 𝑦) �
2𝑚1𝜈(𝑤, 𝑓 (𝑦)) � 2𝑚1 for all 𝑦 ∈ 𝑌𝑡 .

We thus have a uniform control of the Lelong numbers of the compact family 𝑓 ∗F𝑡 . Using the
subextension trick [GGZ23, Lemma 1.7], we further reduce to controlling∫

𝑋 ′
𝑡

exp(−2−𝑚1𝑣𝑡 )𝜔
𝑛
𝑡 =

∫
𝑌 ′
𝑡

exp(−2−𝑚1𝑣𝑡 ◦ 𝑓 )𝜔𝑛
𝑡

on a relatively compact subset 𝑋 ′
𝑡 � 𝑋𝑡 . We finally invoke Skoda’s uniform integrability theorem which

holds for holomorphic families; see [DNGG23, Theorem 2.9].
Step 2. We claim that for all compact subsets 𝐾 ⊂ 𝑋𝑡 ,

Vol𝜔𝑡 (𝐾) � 𝐶1 exp
(
−

1
2𝑚1 Cap(𝐾, 𝑋𝑡 )1/𝑛

)
, (3.11)

where Cap(𝐾, 𝑋𝑡 ) := sup{
∫
𝐾
(𝑑𝑑𝑐𝑤)𝑛, 𝑤 ∈ PSH(𝑋𝑡 ) with 0 � 𝑤 � 1} denotes the Monge–Ampère

capacity.
Indeed, set 𝜆 = Cap(𝐾, 𝑋𝑡 )−1/𝑛 and 𝑣𝑡 = 𝜆ℎ∗𝐾,𝑋𝑡

, where ℎ∗𝐾,𝑋𝑡
denotes the relative extremal func-

tion of the compact set K (see [GZ17, Definition 4.30]). It follows from [GZ17, Theorem 4.34] that

https://doi.org/10.1017/fms.2024.54 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.54


Forum of Mathematics, Sigma 17

∫
𝑋𝑡
(𝑑𝑑𝑐𝑣𝑡 )

𝑛 = 1 and 𝑣𝑡 + 𝜆 = 0 a.e. on K, hence

Vol𝜔𝑡 (𝐾) =
∫
𝐾

exp(−2−𝑚 [𝜆 + 𝑣𝑡 ])𝜔
𝑛
𝑡

� exp(−2−𝑚𝜆)
∫
𝑋𝑡

exp(−2−𝑚𝑣𝑡 )𝜔𝑛
𝑡

� 𝐶1 exp
(
−

1
2𝑚1 Cap(𝐾, 𝑋𝑡 )1/𝑛

)
,

where the last inequality follows from Equation (3.10).
Step 3. Let Φ denotes the maximal psh extension of h to X : This is the largest psh function in X

which lies below h at the boundary. It is uniformly bounded in X , satisfies 𝑢𝑡 � Φ𝑡 and coincides with
h at the boundary. We claim that for all 𝑠, 𝛿 > 0

𝛿𝑛Cap{𝑢𝑡 −Φ𝑡 < −𝑠 − 𝛿 − 1} �
𝑐𝑛,𝑝 ‖ 𝑓𝑡 ‖𝐿𝑝 (𝑋𝑡 )

2𝑚1𝑞
Cap{𝑢𝑡 −Φ𝑡 < −𝑠 − 1}2, (3.12)

where 1/𝑝 + 1/𝑞 = 1. It follows indeed from [GKZ08, Lemma 1.3] that

𝛿𝑛Cap{𝑢𝑡 −Φ𝑡 < −𝑠 − 𝛿 − 1} �
∫
{𝑢𝑡−Φ𝑡<−𝑠−1}

(𝑑𝑑𝑐𝑢𝑡 )
𝑛.

Since (𝑑𝑑𝑐𝑢𝑡 )
𝑛 = 𝑓𝑡𝜔

𝑛
𝑡 , we can apply Hölder inequality, together with Equation (3.11) and the elemen-

tary inequality exp(−𝑥−1/𝑛) � 𝑐𝑛,𝑝𝑥
2𝑞 , valid for all 𝑥 > 0, to conclude.

Conclusion. It follows from Equation (3.12) that the function 𝑔(𝑠) := Cap{𝑢𝑡 − Φ𝑡 < −𝑠 − 1}1/𝑛

satisfies 𝛿𝑔(𝑠+𝛿) � 𝐵𝑔(𝑠)2 for all 𝑠, 𝛿 > 0, with 𝐵 = 𝑐1/𝑛
𝑛,𝑝 ‖ 𝑓𝑡 ‖

1/𝑛
𝐿𝑝 (𝑋𝑡 )

2−𝑚1𝑞/𝑛. We can invoke DeGiorgi’s
lemma (see [GKZ08, Lemma 1.5] with 𝜏 = 1) to conclude that 𝑔(𝑠) = 0 for 𝑠 � 4𝐵𝑔(0). Thus,
𝑢𝑡 � Φ𝑡 − 4𝐵𝑔(0) − 1, which yields a uniform lower bound on 𝑢𝑡 if we can uniformly bound 𝑔(0) from
above.

To estimate 𝑔(0) = Cap{𝑢𝑡 − Φ𝑡 < −1}1/𝑛, we let 𝑤𝑡 denote the extremal function of the set
{𝑢𝑡 −Φ𝑡 < −1}. Recall that −1 � 𝑤𝑡 � 0, hence

𝑤𝑡𝑑𝑑
𝑐 (Φ𝑡 − 𝑢𝑡 )

𝑛 � 𝑛(−𝑤𝑡 ) (Φ𝑡 − 𝑢𝑡 )
𝑛−1𝑑𝑑𝑐𝑢𝑡 � 𝑛(Φ𝑡 − 𝑢𝑡 )

𝑛−1𝑑𝑑𝑐𝑢𝑡 .

Using Stokes theorem n times, we thus obtain, following [Bło93],

Cap{𝑢𝑡 −Φ𝑡 < −1} �
∫
𝑋𝑡

(Φ𝑡 − 𝑢𝑡 )
𝑛 (𝑑𝑑𝑐𝑤𝑡 )

𝑛

� 𝑛!
∫
𝑋𝑡

(𝑑𝑑𝑐𝑢𝑡 )
𝑛 � 𝑛!‖ 𝑓𝑡 ‖𝐿𝑝 (𝑋𝑡 )Vol𝜔𝑡 (𝑋𝑡 )

1/𝑞 ,

which shows that 𝑔(0) is uniformly bounded from above by 𝑐′𝑛‖ 𝑓𝑡 ‖
1/𝑛
𝐿𝑝 (𝑋𝑡 )

. �

3.2.4. Existence of a suitable subsolution
The exceptional divisor E of g satisfies that there exist positive rational numbers (𝑏𝑖)𝑖∈𝐼 such that
−
∑
𝑖∈𝐼 𝑏𝑖𝐸𝑖 is g-ample, hence f -ample as well. On each OY (𝐸𝑖), one can pick a section 𝑠𝑖 cutting out

𝐸𝑖 as well as a smooth Hermitian metric ℎ𝑖 such that 𝜌′ := 𝑓 ∗(𝐴𝜌) +
∑
𝑖∈𝑖 𝑏𝑖 log |𝑠𝑖 |

2
ℎ𝑖

is strictly psh on
Y for 𝐴 � 1.

From now on, we assume that 𝜋 is smooth away from our distinguished point 0 ∈ 𝑋0 ⊂ X . This
ensures for all 𝑡 ≠ 0, 𝜌′ is bounded on 𝑌𝑡 � 𝑋𝜑 (𝑡) and that 𝜌′ is smooth on 𝜕𝑌 � 𝜕𝑋 .
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Next, one defines for 𝛿 > 0 small enough (to be determined later) the function

𝑣 = 𝑣 𝛿 := 𝜌′ +
∑
𝑖∈𝐼

|𝑠𝑖 |
2𝛿
ℎ𝑖
.

Up to scaling the metrics ℎ𝑖 , we find that v is strictly psh. More precisely, we can cover Y with finitely
many coordinate charts (𝑈𝛼)𝛼 such that 𝑈𝛼 ∩ 𝐸 = (𝑧1 · · · 𝑧ℓ𝛼 = 0) for some number ℓ𝛼 � 𝑛 and in
these charts we have

𝑑𝑑𝑐𝑣 |𝑈𝛼 � 𝑐

[
𝜔Y |𝑈𝛼 +

ℓ𝛼∑
𝑘=1

𝑖𝑑𝑧𝑘 ∧ 𝑑𝑧𝑘

|𝑧𝑘 |2(1−𝛿)

]
(3.13)

for some 𝑐 > 0 and some fixed Kähler metric 𝜔Y on Y . In particular, it follows from Equation (3.13)
above and Equation (3.8) that

(𝑑𝑑𝑐𝑣 |𝑌𝑡 )
𝑛 � 𝑐′ 𝑓 ∗𝜇𝑋𝑡 on 𝑌𝑡

for some uniform 𝑐′ > 0. Since v is uniformly bounded above on Y and F is bounded on X , we can
scale up v so that

(𝑑𝑑𝑐𝑣 |𝑌𝑡 )
𝑛 � 𝑒𝜆𝑣+ 𝑓

∗𝐹𝑡 𝑓 ∗𝜇𝑋𝑡 on 𝑌𝑡 .

Given 𝑡 ∈ D∗, there exists s such that 𝜑(𝑠) = 𝑡, and we denote by 𝑣𝑡 the function on 𝑋𝑡 defined by 𝑣 |𝑌𝑠
under the identification 𝑌𝑠 � 𝑋𝑡 via f. Clearly, 𝑣𝑡 satisfies

(𝑑𝑑𝑐𝑣𝑡 )
𝑛 � 𝑒𝜆𝑣𝑡+𝐹𝑡 𝜇𝑋𝑡 on 𝑋𝑡 .

At this point, 𝑣𝑡 is not a subsolution of Equation (MAt) because the boundary condition is not satisfied.
So we pick a cut-off function 𝜒 compactly supported on X and satisfying 𝜒 ≡ 1 near 0. Next, we still
denote by h an arbitrary smooth extension of h from 𝜕X to X . Finally, we set

𝑢𝑡 := 𝜒𝑣𝑡 + 𝐵𝜌 + (1 − 𝜒)ℎ.

One can easily see that for B large enough, 𝑢𝑡 is a subsolution of Equation (MAt). Moreover, it is obvious
on the shape of 𝑢𝑡 that the estimates claimed in the second item of Proposition 3.3 are satisfied.

3.3. Proof of Theorem 3.4

In this final subsection, we borrow the notation of Setup 3.1 and assume that 𝜋 is smooth outside of
0 ∈ 𝑋0. We consider the solution 𝑢𝑡 of Equation (MAt).

First, we are going to derive higher-order estimates near 𝜕𝑋𝑡 of 𝑢𝑡 of Equation (MAt). We will then
conclude the proof of Theorem 3.4 by using Chern–Lu inequality as in the proof of Theorem 2.8.

Lemma 3.7. There exists 𝐶1 > 0 such that for all 𝑡 ≠ 0, ‖𝑢𝑡 ‖C1 (𝜕𝑋𝑡 )
� 𝐶1.

Proof. Let H be an arbitrary smooth extension of h to X . For A large enough, the function 𝑣 := 𝐴𝜌 −𝐻
is a smooth psh function near X such that 𝑣𝑡 = −ℎ𝑡 on 𝜕𝑋𝑡 . Thus, 𝑢𝑡 +𝑣𝑡 is psh in 𝑋𝑡 with zero boundary
values. It follow from the maximum principle that 𝑢𝑡 + 𝑣𝑡 � 0 in 𝑋𝑡 . Using the subsolution constructed
in the previous subsection, we obtain a two-sided bound

𝑢𝑡 � 𝑢𝑡 � −𝑣𝑡 ,

with 𝑢𝑡 = 𝑢𝑡 = −𝑣𝑡 = ℎ𝑡 on 𝜕𝑋𝑡 . The desired uniform C1-bound on 𝜕𝑋𝑡 follows. �
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Once ‖𝑢𝑡 ‖C1 (𝜕𝑋𝑡 )
is under control, one can obtain a global control of ‖𝑢𝑡 ‖C1 (𝑉𝑡 )

in a neighborhood
𝑉𝑡 of 𝜕𝑋𝑡 that avoids the singular point. The proof of the following proposition is given in the appendix
of the preprint version as Proposition 6.1.
Proposition 3.8. There exists 𝐶 ′

1 > 0 such that for all 𝑡 ≠ 0, ‖𝑢𝑡 ‖C1 (𝑉𝑡 )
� 𝐶 ′

1.
In the appendix of the preprint version, we explain how to derive Laplacian estimates near the

boundary from lower order ones, cf. Theorem 6.3 there, as a combination of the main results of [CKNS85,
GL10] in the setting of holomorphic families. It is then straightforward to obtain the following
Proposition 3.9. There exists 𝐶2 > 0 such that for all 𝑡 ≠ 0, we have

‖Δ𝑢𝑡 ‖𝐿∞ (𝜕𝑋𝑡 ) � 𝐶2.

Proof. It follows from Proposition 3.3 and Lemma 3.7 that the assumptions of Theorem 6.3 in the
preprint version are met and that we have uniform upper bounds on ‖𝑢𝑡 ‖C1 (𝑉𝑡 )

, ‖𝑣𝑡 ‖C2 (𝑉𝑡 )
, ‖ 𝑓𝑡 ‖C1 (𝑉𝑡 )

,
‖ℎ‖C4 (𝜕𝑋𝑡 )

, 𝜀−1, 𝛿−1. The proposition follows. �

End of the proof of Theorem 3.4. Pick a Kähler metric 𝜔 on X , and set 𝜔𝑡 := 𝜔|𝑋𝑡 . Since (𝑑𝑑𝑐𝑢𝑡 )
𝑛 is

uniformly comparable to 𝜔𝑛
𝑡 in a small neighborhood of 𝜕𝑋𝑡 , the uniform bound ‖Δ𝑢𝑡 ‖𝐿∞ (𝜕𝑋𝑡 ) � 𝐶2

actually yields a uniform constant 𝑐2 > 0 such that

𝑐−1
2 𝜔𝑡 � 𝑑𝑑𝑐𝑢𝑡 � 𝑐2𝜔𝑡 on 𝜕𝑋𝑡 . (3.14)

Indeed, let 𝜎 := inf𝑡 inf 𝑝∈𝜕𝑋𝑡 lim inf𝑧→𝑝,𝑧∈𝜕𝑋𝑡

𝜃𝑛𝑡 (𝑧)

𝜔𝑛
𝑡 (𝑧)

; we have 𝜎 > 0 since 𝜋 is smooth along
𝜕X and ‖𝑢𝑡 ‖𝐿∞ (𝑋𝑡 ) is uniformly bounded below by Theorem 3.6. Given 𝑝 ∈ 𝜕𝑋𝑡 , we have
lim sup𝑧→𝑝,𝑧∈𝑋𝑡

tr𝜔𝑡
𝜃𝑡 (𝑧) � 𝐶 by our boundary Laplacian estimate, hence

lim sup
𝑧→𝑝,𝑧∈𝑋𝑡

tr𝜃𝑡𝜔𝑡 (𝑧) � 𝜎−1𝐶𝑛−1,

and Equation (3.14) follows.
Arguing as in the proof of Theorem 2.8, we consider 𝑣𝑡 = log tr𝜃𝑡 (𝜔𝑡 ), where 𝜃𝑡 = 𝑑𝑑𝑐𝑢𝑡 and deduce

from the Chern–Lu formula that

Δ 𝜃𝑡 (𝑣𝑡 − 𝐴𝑢𝑡 ) � 𝑒𝑣𝑡 − 𝐶3, (3.15)

for uniform constants 𝐴,𝐶3 > 0. We infer that 𝑣𝑡 � 𝐶4 is uniformly bounded from above. Indeed, either
the maximum of the function 𝑣𝑡 − 𝐴𝑢𝑡 is reached in 𝑋𝑡 , and the bound follows from Equation (3.15)
and the uniform bound on 𝑢𝑡 or the maximum of 𝑣𝑡 − 𝐴𝑢𝑡 is reached on 𝜕𝑋𝑡 and we conclude from
Equation (3.14).

Therefore, 𝑑𝑑𝑐𝑢𝑡 � 𝐶−1
4 𝜔𝑡 in 𝑋𝑡 for all 𝑡 ≠ 0. Similarly to what we have done at the end of the proof

of Theorem 2.8, we conclude by letting 𝑡 → 0 that 𝑑𝑑𝑐𝑢0 � 𝐶−1
4 𝜔0, hence 𝜔KE = 𝑑𝑑𝑐𝑢0 is a Kähler

current. The proof of Theorem 3.4 is complete.

4. Kähler–Einstein currents near isolated smoothable singularities

We now use the previous analysis to establish the strict positivity of singular Kähler–Einstein metrics
of nonpositive curvature near smoothable isolated singularities.

4.1. The case of klt spaces X

Theorem 4.1. Let X be a compact Kähler normal space with klt singularities such that either 𝐾𝑋 is
ample or 𝐾𝑋 ∼Q O𝑋 . Then a Kähler–Einstein metric 𝜔KE in the sense of Definition 2.2 is a Kähler
current near an isolated smoothable singularity of X.
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Remark 4.2. In the case where X is a Q-Fano Kähler–Einstein variety (i.e., −𝐾𝑋 is ample), we expect a
similar result to hold as well, but this requires a better understanding of local families of Kähler–Einstein
metrics of positive curvature.
Proof. We work near an isolated singular point a. We let B denote a small strictly pseudoconvex
neighborhood of a in X, isomorphic to the trace of a ball in some local embedding in C𝑁 , and let 𝜌
denote a local smooth potential for 𝜔 = 𝑑𝑑𝑐𝜌 in B.

Recall from [EGZ09, Pău08] that the Kähler–Einstein potential 𝜑KE is smooth in 𝐵 \ {𝑎}. Define
𝜆 = 1 if 𝐾𝑋 is ample, and 𝜆 = 0 if 𝐾𝑋 ≡ 0, and set 𝐹 = 𝜆𝜌. The local theory recalled in Section 1.2
shows that 𝜓 = 𝜌 + 𝜑KE is the unique solution of the Dirichlet problem

(𝑑𝑑𝑐𝑤)𝑛 = 𝑒𝜆𝑤+𝐹 𝜇 (𝑋,𝑎) ,ℎ in 𝐵, with 𝑤 |𝜕𝐵 = 𝜓 |𝜕𝐵 .

We assume that (𝑋, 𝑎) is a smoothable singularity in the sense of Definition 3.2, and we let 𝜋 : X → D

denote a smoothing so that 𝐵 = 𝜋−1 (0) and 𝑋𝑡 = 𝜋−1 (𝑡) is smooth for all 𝑡 ≠ 0. We let h denote a
smooth extension of (𝜌 + 𝜑KE)|𝜕𝐵 to 𝜕X and still denote by F a smooth extension of F to X . It follows
from Proposition 3.3 that there exists a unique function 𝑢𝑡 ∈ PSH(𝑋𝑡 ) ∩ C0(𝑋𝑡 ) such that{

(𝑑𝑑𝑐𝑢𝑡 )
𝑛 = 𝑒𝜆𝑢𝑡+𝐹𝑡 𝜇𝑡 on 𝑋𝑡

𝑢𝑡 |𝜕𝑋𝑡 = ℎ𝑡
. (4.1)

together with a uniform bound ‖𝑢𝑡 ‖𝐿∞ (𝑋𝑡 ) � 𝐶0. We can thus apply Theorem 3.4 and conclude that
𝑑𝑑𝑐𝑢0 = 𝑑𝑑𝑐𝜓 = 𝜔𝐾𝐸 is a Kähler current near a. �

4.2. The case of klt pairs (𝑋,Δ)

We would now like to investigate the strict positivity of Kähler–Einstein currents 𝜔KE associated to
compact klt pairs (𝑋,Δ) near a smoothable isolated singularity 𝑥 ∈ 𝑋 . There are two possibilities.

Case 1. If 𝑥 ∉ Supp(Δ), then one can find a neighborhood U of x such that 𝜕𝑈 ∩ Supp(Δ) = ∅ so
that 𝜔KE is smooth on 𝜕𝑈, and the same arguments used in the proof of Theorem 4.1 will carry over
mutatis mutandis to show that 𝜔KE is a Kähler current near x.

Case 2. If 𝑥 ∈ Supp(Δ), then as a singularity of the pair (𝑋,Δ), it is not isolated anymore. This
reflects on the metric side as well since on the boundary 𝜕𝑈 of a small neighborhood of x, 𝜔KE is not
smooth anymore. More precisely, 𝜔KE has conic singularities, to be understood in a generalized sense
since Δ may not have simple normal crossings (snc) support near 𝜕𝑈. Even if Δ were smooth (or snc)
away from x, the local analysis developed so far could not be applied directly and one would have to
derive boundary Laplacian estimate in this singular conic setting which probably requires a lot of work.
Instead, we can regularize the conic singularities globally to avoid boundary problems when applying
Chern–Lu inequality. This will require us to assume that each component Δ 𝑖 of Δ is Q-Cartier and that
any singularity of X is isolated and smoothable.

We will state the main result of this section with a slightly weaker assumption than local smoothability,
which will be useful later when we work with threefolds.
Definition 4.3. We say that a germ of normal complex space (𝑋, 𝑥) is Q-smoothable if there exists a
finite Galois quasi-étale cover 𝑝 : 𝑌 → 𝑋 with Y normal and connected such that for all 𝑦 ∈ 𝑝−1 (𝑥),
(𝑌, 𝑦) is smoothable in the sense of Definition 3.2.

In the definition above, one can always shrink Y and assume that 𝑝−1 (𝑥) is a singleton.
It will be convenient to introduce the following setup.

Setup 4.4. Let (𝑋, 𝜔𝑋 ) be an n-dimensional compact Kähler space endowed with an effectiveQ-divisor
Δ =

∑
𝑎𝑖Δ 𝑖 such that (𝑋,Δ) has klt singularities. We assume that each component Δ 𝑖 of Δ is a Q-

Cartier divisor and that X has only Q-smoothable, isolated singularities.
We are now ready to state the main result.
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Theorem 4.5. Let (𝑋,Δ) be as in Setup 4.4, and consider the unique (normalized) solution 𝜑 ∈

PSH(𝑋, 𝜔𝑋 ) ∩ 𝐿∞(𝑋) of the Monge–Ampère equation

(𝜔𝑋 + 𝑑𝑑𝑐𝜑)𝑛 = 𝑒𝜆𝜑+𝐹 𝑑𝜇 (𝑋,Δ) ,ℎ

where 𝐹 ∈ C∞(𝑋), h is a smooth Hermitian metric on the Q-line bundle 𝐾𝑋 + Δ and 𝜆 ∈ {0, 1}.
Then, the current 𝜔𝜑 = 𝜔𝑋 + 𝑑𝑑𝑐𝜑 is a Kähler current.
As an immediate consequence of the theorem above, we get:

Corollary 4.6. Let (𝑋,Δ) be as in Setup 4.4 such that 𝐾𝑋 + Δ is ample (resp. 𝐾𝑋 + Δ ∼Q O𝑋 ). Then
the unique Kähler–Einstein metric 𝜔KE (resp. 𝜔KE ∈ {𝜔𝑋 }) solving

Ric𝜔KE = −𝜔KE + [Δ] (resp. Ric𝜔KE = [Δ])

is a Kähler current.
Remark 4.7. We would like to add two comments on the result above
- It is conceivable that one could remove the assumption on the components Δ 𝑖 of Δ being Q-Cartier

by considering a Q-factorialization 𝑌 → 𝑋 of X, but it is not completely clear how the smoothability
assumption would lift to Y.

- There is a noticeable difference between the assumptions of Theorem 4.1 and Corollary 4.6, as in the
latter one we need to assume that all singularities are isolated. It has to do with the fact that we deal
with isolated singular points that may not be isolated as singularity of the pair (𝑋,Δ) as explained
in the beginning of §4.2, and this requires a subtle combination of local and global methods. If one
is only interested in isolated singular points in 𝑋 \ Supp(Δ), then we would not need any global
assumptions on the singularities of X elsewhere, cf ibid.

Proof of Theorem 4.5. By assumption, one can find an integer 𝑚 > 0 and sections 𝑠𝑖 ∈

𝐻0 (𝑋,O𝑋 (𝑚Δ 𝑖)) such that div(𝑠𝑖) = 𝑚Δ 𝑖 . We pick Hermitian metrics ℎ𝑖 on theQ-line bundle 𝑂𝑋 (Δ 𝑖)

and define |𝑠𝑖 |
2 := |𝑠𝑖 |

2
ℎ⊗𝑚𝑖

. Since 𝐾𝑋 is Q-Cartier (as a difference 𝐾𝑋 = (𝐾𝑋 + Δ) − Δ) of Q-Cartier

divisors), one can find a metric ℎ𝑋 on 𝐾𝑋 such that ℎ = ℎ𝑋 ⊗
⊗

𝑖 ℎ
⊗𝑎𝑖
𝑖 . Setting 𝑏𝑖 := 𝑎𝑖

𝑚 , one can rewrite
the Monge-Ampère equation solved by 𝜑 as

(𝜔𝑋 + 𝑑𝑑𝑐𝜑)𝑛 = 𝑒𝜆𝜑+𝐹
𝑑𝜇𝑋,ℎ𝑋∏
𝑖 |𝑠𝑖 |

2𝑏𝑖
.

We consider the unique (normalized) solution 𝜑𝜀 of the regularized equation

(𝜔𝑋 + 𝑑𝑑𝑐𝜑𝜀)
𝑛 = 𝑒𝜆𝜑𝜀+𝐹

𝑑𝜇𝑋,ℎ𝑋∏
𝑖 (|𝑠𝑖 |

2 + 𝜀2)𝑏𝑖
.

and we set 𝜔𝜀 := 𝜔𝑋 + 𝑑𝑑𝑐𝜑𝜀 . It follows from [EGZ09, Pău08] that 𝜔𝜀 is a Kähler form on 𝑋reg for
any 𝜀 > 0, and moreover there is a uniform constant 𝐶0 > 0 such that

‖𝜑𝜀 ‖𝐿∞ (𝑋 ) � 𝐶0 and 𝜑𝜀 −→
𝜀→0

𝜑 in 𝐿1 (𝑋). (4.2)

thanks to [GZ12, Theorem C] applied to a desingularization of X. Therefore, we can reduce the proof
of the theorem to showing that there exists a constant 𝐶 > 0 independent of 𝜀 such that

𝜔𝜀 � 𝐶−1𝜔𝑋 on 𝑋. (4.3)

Claim 4.8. The uniform inequality (4.3) holds if for any 𝜀 > 0, one has the qualitative inequality

𝜔𝜀 � 𝐶−1
𝜀 𝜔𝑋 on 𝑋, (4.4)

where 𝐶𝜀 > 0 is a positive constant that may depend on 𝜀.
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Proof of Claim 4.8. Here again, the key tool is Chern–Lu inequality, Proposition 2.6. The bisectional
curvature of 𝜔𝑋 is bounded above since 𝜔𝑋 can be extended to a Kähler metric in local embeddings in
C𝑁 , and we need to bound Ric𝜔𝜀 from below.

A classical computation shows that if s is a holomorphic section cutting out a divisor D and if ℎ𝐷 is
a smooth Hermitian metric on 𝐿 := O𝑋 (𝐷), then

Θℎ𝐷 (𝐿) + 𝑑𝑑𝑐 log(|𝑠 |2ℎ𝐷 + 𝜀2) =
𝜀2

(|𝑠 |2ℎ𝐷 + 𝜀2)2
· |𝐷 ′𝑠 ∧ 𝐷 ′𝑠 |2ℎ𝐷 −

𝜀2

|𝑠 |2ℎ𝐷 + 𝜀2
· Θℎ𝐷 (𝐿).

In particular, if one choses a constant 𝐶𝐷 > 0 such that Θℎ𝐷 (𝐿) � 𝐶𝐷𝜔𝑋 , then

Θℎ𝐷 (𝐿) + 𝑑𝑑𝑐 log(|𝑠 |2ℎ𝐷 + 𝜀2) � −𝐶𝐷𝜔𝑋 . (4.5)

Since

Ric𝜔𝜀 = −𝜆𝜔𝜀 + 𝜆𝜔𝑋 − 𝑑𝑑𝑐𝐹 +
∑
𝑖

𝑏𝑖

(
Θℎ⊗𝑚𝑖

(O𝑋 (𝑚Δ 𝑖)) + 𝑑𝑑𝑐 log(|𝑠𝑖 |2 + 𝜀2)
)

and F is smooth (so that its Hessian is bounded with respect to 𝜔𝑋 ), inequality (4.5) ensures that one
can find 𝐶1 > 0 such that

Ric𝜔𝜀 = −𝜔𝜀 − 𝐶1𝜔𝑋 .

Finally, let 𝜓 ∈ PSH(𝑋, 𝜔𝑋 ) be such that (𝜓 = −∞) = 𝑋sing and 𝜓 |𝑋reg ∈ C∞(𝑋reg). For any 𝛿 > 0, the
smooth quantity

log tr𝜔𝜀𝜔𝑋 + 𝛿𝜓

on 𝑋reg tends to −∞ near 𝑋sing thanks to our assumption (4.4). In particular, the quantity above achieves
its maximum on 𝑋reg. Moreover, our curvature estimates coupled with Proposition 2.6 yield a constant
𝐶2 > 0 such that

Δ𝜔𝜀

[
log tr𝜔𝜀𝜔𝑋 + 𝛿𝜓

]
� −1 − 𝐶2tr𝜔𝜀𝜔𝑋

on 𝑋reg. Since −Δ𝜔𝜀𝜑𝜀 � −𝑛 + tr𝜔𝜀𝜔𝑋 , we infer that

Δ𝜔𝜀

[
log tr𝜔𝜀𝜔𝑋 + 𝛿𝜓 − (𝐶2 + 1)𝜑𝜀

]
� tr𝜔𝜀𝜔𝑋 − 𝐶3

where 𝐶3 = −1 + 𝑛(𝐶2 + 1). A classical application of the maximum principle shows that

tr𝜔𝜀𝜔𝑋 � 𝐶4𝑒
𝛿 (sup𝑋 𝜓−𝜓)

with 𝐶4 = 𝐶3𝑒
2𝐶0 (𝐶2+1) . Passing to the limit when 𝛿 → 0, we get

𝜔𝜀 � 𝐶−1
4 𝜔𝑋 on 𝑋reg,

hence everywhere on X by Lemma 2.5. The claim follows. �

In order to prove the theorem, we are left to establishing the qualitative estimate (4.4). In order to
achieve that, we use a local deformation argument. From now on, 𝜀 > 0 is fixed and all subsequent
constants are allowed to depend on 𝜀. Since 𝜔𝜀 is smooth on 𝑋reg, it is enough to work in small neigh-
borhoods of the finitely many singular points in X. From now on, we pick a small Stein neighborhood
𝑈 ′ of x admitting a quasi-étale cover 𝑝 : 𝑉 ′ → 𝑈 ′ such that 𝑝−1 (𝑥) = {𝑦} is a singleton and (𝑉 ′, 𝑦)
admits a smoothing V → D whose fibers 𝑉𝑡 satisfy 𝑉0 � 𝑉 ′.
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One can assume that𝑈 ′ is small enough so that𝜔𝑋 |𝑈 ′ = 𝑑𝑑𝑐𝜌 for some smooth strictly psh function 𝜌
on𝑈 ′. Next, since p is quasi-étale, we have 𝐾𝑉 ′ = 𝑝∗𝐾𝑈 ′ and the smooth Hermitian metric ℎ𝑈 ′ := ℎ𝑋 |𝑈 ′

on 𝐾𝑈 ′ pulls back to a smooth Hermitian metric ℎ𝑉 ′ on 𝐾𝑉 ′ satisfying 𝑝∗
(
𝑑𝜇𝑈 ′,ℎ𝑋

)
= 𝑑𝜇𝑉 ′,ℎ𝑉 ′ .

Next, we fix 𝑈 � 𝑈 ′ strongly pseudoconvex and set 𝑉 := 𝑝−1 (𝑈). The function 𝑣𝜀 := 𝑝∗(𝜌 + 𝜑𝜀)
satisfies {

(𝑑𝑑𝑐𝑣𝜀)
𝑛 = 𝑒𝜆𝑣𝜀+𝑝

∗ (𝐹−𝜆𝜌) 𝑑𝜇𝑉 ,ℎ𝑉∏
𝑖 ( |𝑝

∗𝑠𝑖 |2+𝜀2)𝑏𝑖
on 𝑉

𝑣𝜀 |𝜕𝑉 = 𝑝∗((𝜌 + 𝜑𝜀) |𝜕𝑈 ),

hence by Theorem 3.4 the current 𝑑𝑑𝑐𝑣𝜀 is a Kähler current. In particular, it dominates a multiple of
𝑝∗(𝜔𝑋 ) |𝑈 . Pushing forward, we get that in restriction to U, we have 𝜔𝜀 � 𝐶−1

𝜀 𝜔𝑋 and the theorem is
proved. �

5. Kähler–Einstein currents on threefolds

In this final section, we provide two results in dimension three (zero and negative curvature) ensuring
that Kähler–Einstein metrics on a compact klt space are Kähler currents without any extra assumption
on the singularities. Although the proofs of the two results follow the same lines, we have chosen to
write them separately to highlight the nontrivial simplifications occurring in the zero curvature case (or
dually to insist on the consequential additional difficulties popping up in the negative curvature case).

The crucial input specific to dimension three is Reid’s classification of terminal singularities:

Theorem 5.1. ([Rei80]) Let (𝑋, 𝑥) be an (isolated) terminal singularity of dimension three such that
𝐾𝑋 ∼Z O𝑋 . Then (𝑋, 𝑥) is a compound du Val singularity. In particular, any terminal singularity of
dimension three is Q-smoothable.

Recall that a compound du Val singularity is a hypersurface singularity isomorphic to ( 𝑓 + 𝑡𝑔 =
0) ⊂ C3 × C, where 𝑓 , 𝑔 ∈ C[𝑥, 𝑦, 𝑧] are such that ( 𝑓 = 0) ⊂ C3 is a du Val surface singularity, cf,
for example, [KM98, §4.2 & Definition 5.32]. Such a singularity can be smoothed out, for example, by
( 𝑓 + 𝑡𝑔 + 𝑠 = 0) ⊂ C3 × C × C, where the total space is a smooth hypersurface of C5.

The second statement follows from the first after considering the quasi-étale index one cover 𝑌 → 𝑋
making 𝐾𝑌 Cartier [KM98, Definition 5.19].

5.1. Calabi–Yau threefolds with klt singularities

Theorem 5.2. Let (𝑋, 𝜔𝑋 ) be a normal compact Kähler space of dimension three with klt singularities
such that 𝐾𝑋 ∼Q O𝑋 . Then the Kähler–Einstein metric 𝜔KE ∈ [𝜔𝑋 ] is a Kähler current.

Proof. Let 𝑝 : 𝑌 → 𝑋 be the quasi-étale index one cover of X. Clearly, 𝑝∗𝜔KE is the Kähler–Einstein
metric in the Kähler class 𝑝∗ [𝜔𝑋 ] so that if we prove the statement for Y, it will follow for X by push-
forward (since any Kähler form on Y dominates a multiple of 𝑝∗𝜔𝑋 ).

From now on, one can assume that 𝐾𝑋 ∼Z O𝑋 and, in particular, X has canonical singularities. Let us
consider a terminalization 𝜋 : 𝑋 → 𝑋 of X, cf [KM98, Theorem 6.23]. The complex space 𝑋 is Kähler,
and it has terminal singularities, hence isolated singularities. Moreover, one has 𝐾𝑋 = 𝜋∗𝐾𝑋 , that is, 𝜋
is crepant (but in general, the exceptional locus of 𝜋 might have codimension one components). This
implies that 𝐾𝑋 ∼Z O𝑋 so that 𝑋 has smoothable singularities by Theorem 5.1. Moreover, since 𝜋 is
crepant, it is automatically isomorphic over 𝑋reg.

We choose𝜔 a Kähler metric on 𝑋 , and one considers the singular Ricci flat metric𝜔𝜀 ∈ [𝜋∗𝜔𝑋+𝜀𝜔].
One can write 𝜔𝜀 = 𝜋∗𝜔𝑋 + 𝜀𝜔 + 𝑑𝑑𝑐𝜑𝜀 with sup𝑋 𝜑𝜀 = 0, where 𝜑𝜀 is a solution of (𝜋∗𝜔𝑋 + 𝜀𝜔 +

𝑑𝑑𝑐𝜑𝜀)
𝑛 = 𝑐𝜀𝜇𝑋̂ = 𝑐𝜀 𝑓 𝜔

𝑛, where 𝑐𝜀 = [𝜋∗𝜔𝑋+𝜀𝜔]𝑛

𝜇𝑋 (𝑋 )
and 𝑓 ∈ 𝐿1+𝛿 (𝑋, 𝜔𝑛) with 𝛿 > 0 since 𝑋̂ has
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terminal singularities. It follows from the techniques in [EGZ08, DP10] that

‖𝜑𝜀 ‖𝐿∞ (𝑋 )
� 𝐶0, and 𝜔𝜀 −→

𝜀→0
𝜋∗𝜔KE weakly, (5.1)

where 𝐶0 > 0 is independent of 𝜀. The discerning reader will have noticed that the situation is slightly
different from the one in loc. cit. since X is singular. To patch this little gap, one could, for example,
appeal to [DNGG23, Theorem A] applied to a desingularization of 𝑋 → 𝑋 with reference form the
pull-back of 𝜋∗𝜔𝑋 + 𝜀𝜔 to 𝑋 , and this would yield the uniform estimate. As for the stability statement,
it is a classical consequence of the uniform estimate: One first gets higher-order estimates locally on
𝑋reg using Tsuji’s trick and then one uses uniqueness of the Kähler–Einstein metric to conclude that the
relatively compact family (𝜑𝜀)𝜀>0 has a single cluster value in 𝐿1 (𝑋) which is nothing but 𝜑0.

The main point to establish is that there is a constant 𝐶 > 0 independent of 𝜀 such that

𝜔𝜀 � 𝐶−1𝜋∗𝜔𝑋 . (5.2)

Indeed, passing to the limit when 𝜀 → 0 would then imply that 𝜋∗𝜔KE � 𝐶−1𝜋∗𝜔𝑋 and the theorem
would follow by pushing forward by 𝜋.

Now, we know that inequality (5.2) holds for any 𝜀 > 0 with a constant 𝐶 = 𝐶𝜀 depending a priori
from 𝜀, as this is the content of Theorem 4.1. As before, we will use Chern–Lu inequality to make this
qualitative control quantitative.

Choose a function 𝜓 ∈ PSH(𝑋, 𝜔𝑋 ) be such that (𝜓 = −∞) = 𝑋sing and 𝜓 |𝑋reg ∈ C∞(𝑋reg). For any
𝛿 > 0, the smooth quantity

log tr𝜔𝜀𝜋
∗𝜔𝑋 + 𝛿𝜓

on 𝜋−1 (𝑋reg) ⊂ 𝑋 \ Exc(𝜋) tends to −∞ near 𝜋−1 (𝑋sing) since 𝜔𝜀 is a Kähler form. In particular, the
quantity above achieves its maximum on 𝑋reg.

Next, the bisectional curvature of 𝜋∗𝜔𝑋 is well defined and bounded above uniformly on 𝜋−1(𝑋reg),
while Ric𝜔𝜀 = 0. By Chern–Lu inequality (Proposition 2.6), we find a constant 𝐶2 > 0 such that

Δ𝜔𝜀

[
log tr𝜔𝜀𝜋

∗𝜔𝑋 + 𝛿𝜓
]
� −𝐶2tr𝜔𝜀𝜋

∗𝜔𝑋

on 𝜋−1 (𝑋reg). Since −𝑑𝑑𝑐𝜑𝜀 = −𝜔𝜀 + 𝜋∗𝜔𝑋 + 𝜀𝜔, we have

−Δ𝜔𝜀𝜑𝜀 � −𝑛 + tr𝜔𝜀𝜋
∗𝜔𝑋 ,

hence

Δ𝜔𝜀

[
log tr𝜔𝜀𝜋

∗𝜔𝑋 + 𝛿𝜓 − (𝐶2 + 1)𝜑𝜀
]
� tr𝜔𝜀𝜋

∗𝜔𝑋 − 𝐶3,

where 𝐶3 = −1 + 𝑛(𝐶2 + 1). Using Equation (5.1), we obtain in the end

tr𝜔𝜀𝜋
∗𝜔𝑋 � 𝐶4𝑒

𝛿 (sup𝑋 𝜓−𝜓)

with 𝐶4 = 𝐶3𝑒
𝐶0 (𝐶2+1) , holding on 𝜋−1 (𝑋reg) for any 𝛿 > 0. Equivalently, we have 𝜔𝜀 �

𝐶4𝑒
−𝛿 (sup𝑋 𝜓−𝜓) 𝜋∗𝜔𝑋 . After passing to the limit when 𝛿 → 0, one can appeal to Lemma 2.5 to obtain

Equation (5.2), hence the theorem. �

5.2. Canonically polarized threefolds with klt singularities

Theorem 5.3. Let X be a normal projective variety of dimension three with klt singularities such that
𝐾𝑋 is ample. Then the Kähler–Einstein metric 𝜔KE is a Kähler current.
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Proof. The reduction to the terminal case is a bit more involved here. More precisely, we cannot easily
assume that X has canonical singularities without resorting to a local argument which would collapse
since the singularities of X are not isolated. Instead, we use a Q-factorial terminalization 𝜋 : 𝑋 → 𝑋
whose existence (in any dimension) is guaranteed by [BCHM10, Corollary 1.4.3]. The map 𝜋 is such
that there exists an effective divisor Δ̂ on 𝑋 such that 𝐾𝑋 + Δ̂ = 𝜋∗𝐾𝑋 and (𝑋, Δ̂) is a terminal pair,
hence 𝑋 has isolated Q-smoothable singularities by Theorem 5.1. Moreover, 𝑋 is Q-factorial.

Next, let 𝜔 be a Kähler metric on 𝑋 and let us consider the twisted Kähler–Einstein metric 𝜔𝜀 ∈

𝑐1 (𝜋
∗𝐾𝑋 ) + 𝜀[𝜔], that is, the solution of

Ric𝜔𝜀 = −𝜔𝜀 + 𝜀𝜔 + [Δ̂] .

If 𝜔𝑋 ∈ 𝑐1 (𝐾𝑋 ) is a Kähler metric, say the curvature of an Hermitian metric h on 𝐾𝑋 , one can write
𝜔𝜀 = 𝜋∗𝜔𝑋 + 𝜀𝜔 + 𝑑𝑑𝑐𝜑𝜀 , where 𝜑𝜀 is a solution of

(𝜋∗𝜔𝑋 + 𝜀𝜔 + 𝑑𝑑𝑐𝜑𝜀)
𝑛 = 𝑒𝜑𝜀 𝜇

(𝑋̂ ,Δ̂) , 𝜋∗ℎ = 𝑒𝜑𝜀 𝑓 𝜔𝑛,

with 𝑓 ∈ 𝐿1+𝛿 (𝑋, 𝜔𝑛) with 𝛿 > 0 since 𝑋̂ has terminal singularities. As in the Calabi–Yau case, one has

‖𝜑𝜀 ‖𝐿∞ (𝑋 )
� 𝐶, and 𝜔𝜀 −→

𝜀→0
𝜋∗𝜔KE weakly, (5.3)

where 𝐶 > 0 is independent of 𝜀. The only difference with the Calabi–Yau case is that we first need to
show that there exists 𝐶 > 0 independent of 𝜀 such that

sup
𝑋

𝜑𝜀 � 𝐶. (5.4)

This is certainly classical, but we recall the argument for the reader’s convenience. First, one can assume
without loss of generality that 𝜇 := 𝜇

(𝑋̂ ,Δ̂) , 𝜋∗ℎ is a probability measure. By Jensen’s inequality, we infer
that ∫

𝑋
𝜑𝜀𝑑𝜇 � log

∫
𝑋
(𝜋∗𝜔𝑋 + 𝜀𝜔)𝑛 � 𝐶1

for some 𝐶1 > 0 independent of 𝜀. Let 𝑝 : 𝑋 → 𝑋 be a resolution of singularities, and let 𝜔𝑋 be a
Kähler metric on 𝑋 . Up to scaling the latter metric, one can assume that 𝑝∗(𝜋∗𝜔𝑋 + 𝜀𝜔) � 𝜔𝑋 and
𝑝∗𝜇 � 𝜔𝑛

𝑋
, where the latter follows since 𝑋 has terminal (hence canonical) singularities. By the usual

compactness properties of 𝜔𝑋 -psh functions, we find a constant 𝐶2 such that∫
𝑋
(sup
𝑋

𝜓 − 𝜓)𝜔𝑛
𝑋
� 𝐶2

for any 𝜓 ∈ PSH(𝑋, 𝜔𝑋 ). Now,

sup
𝑋

𝜑𝜀 =
∫
𝑋
(sup
𝑋

𝜑𝜀 − 𝜑𝜀)𝑑𝜇 +

∫
𝑋
𝜑𝜀𝑑𝜇

�
∫
𝑋
(sup
𝑋

𝑝∗𝜑𝜀 − 𝑝∗𝜑𝜀)𝜔
𝑛
𝑋
+ 𝐶1

� 𝐶1 + 𝐶2

since 𝑝∗𝜑𝜀 ∈ PSH(𝑋, 𝜔𝑋 ). Hence, Equation (5.4) follows.
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Coming back to proof of the main result, the remaining point to establish is that there is a constant
𝐶 > 0 independent of 𝜀 such that

𝜔𝜀 � 𝐶−1𝜋∗𝜔𝑋 . (5.5)

Thanks to Theorem 4.5, inequality (5.5) holds for any 𝜀 > 0 with a constant 𝐶 = 𝐶𝜀 depending a priori
from 𝜀. In order to make this bound quantitative, the exact same strategy as in the Calabi–Yau case
applies. �
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