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ON NEWTON'S METHOD AND NONDISCRETE
MATHEMATICAL INDUCTION

lOANNIS K. ARGYROS

The method of nondiscrete mathematical induction is used to find sharp error bounds for
Newton's method. We assume only that the operator has Holder continuous derivatives.
In the case when the Frechet-derivative of the operator satisfies a Lipschitz condition, our
results reduce to the ones obtained by Ptak and Potra in 1972.

1. INTRODUCTION

Consider the equation

(1) F(x) = 0

where F is a nonlinear operator from a Banach space E into itself. The most important
iterative procedure for solving (1) is given by Newton's iteration, namely:

(2) xn+1=xn-{Fl{xn))-
1F{xn), n = 0 ,1,2, . . . .

One of the basic assumptions for the convergence of (2) is that F must be twice-
differentiable in some ball around the initial iterate (see [2, 6, 7]), or that the linear
operator F' must satisfy a Lipschitz condition of the form

(3) \\F'{x)-F'{y)\\<l\\x-y\\ for all z,t/e £.

Ptak, among others, has given sufficient conditions for the convergence of (2) to

a solution of (1) under assumption (3), using the method of nondiscrete mathematical

induction ([3, 4]).

There are, however, many interesting problems in the literature where the operator

F' does not satisfy (3), ([3, 5] and the references there). Instead F' is Holder continuous

on some set E\ C E.

Here, restricting ourselves to operators that are only once differentiable, we extend

the results obtained in [4]. When (3) is satisfied, our results reduce to the ones in [4].

In particular, using the method of nondiscrete mathematical induction, as in [4], we

study the following important problems:

(i) we give sufficient conditions for the convergence of (2) to a solution x* of

(i);
(ii) we find estimates for the distances ||xn — £*||, n = 1,2,....
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132 I.K. Argyros [2]

Finally, we provide two examples, one from a real scalar case and one using a

second order differential, equation, where the results of Ptak, [4] cannot be applied but

ours can.

2. PRELIMINARIES

We assiune that F is once Frechet-differentiable [2] and F'(x) is the first Frechet-
derivative at a point x 6 E. It is well known that F'(x) € L(E), the space of bounded
linear operators from E to E. We say that the Frechet-derivative F'(x) is Holder
continuous over a domain E\ C E if for some c > 0, p £ [0,1], for all x,y 6 E\,

(4) \\F\x)-FXy)\\^c\\x-y\*.

In this case we say that F'(-) E HE^IP)-

We will need the following result whose proof can be found in [2].

LEMMA 1. Let F: E —» E and Ej C E. Assume Et is open and that F'(-) exists

at each point of E\. If for some convex set Ei C E\, we have F'(-) € HE2{
CIV) > then

for all x,y £ E2

(5) \\F(x) - F(y) - F'(x)(x - y)\\ < ̂  ||z - y\]1+p .

A central part in the method of noiidiscrete induction is played by the notion of

rate of convergence.

Let T denote the positive real axis or an interval of the form T = (0, b).

DEFINITION 1: A funciton w. T —> T is called a rate of convergence on T if the

series

(6) <r(r) =
n=0

is convergent for each r € T, where the iterates u/n) of u> are defined as follows:

(">(r)), n = 0 , 1 , 2 , . . . .

It can easily be checked that the funcitons w and a satisfy the equation

(7) a(W(r)) = c(r) - r, r G T.

Write U(x, r) = {y £ E/\\x — y\\ < r} . We will need the following lemmas whose proofs
can be found in [4, 5].
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[3] Newton's method 133

LEMMA 2.

(a) If we can attach to the iteration (2) for some XQ G E a rate of convergence w

on an interval T and a family of sets Z(r) C E, r 6 T such that:

(8) x0 £ Z(r0) for certain r0 £ T,

and

(9) (r E T and x e Z(r)) —•+ x - (F1(x)y1 F(x) € U{x,r) n Z(w(r)),

tiien the iteration (2) yields a sequence {xn} n — 1,2,... which converges to a point
x* £ E, such that:

(10) x B €

(11) | | * n - *

and

(12) | | « » - x * | | <o-(w<">(r0)), 71 = 1 ,2 , . . . ;

(b) if, in addition, for a certain n £ {1,2, . . . } the condition

(13) s c_ , ez ( | | * n -*„_ ! ! ! )

if fulfilled, then for this n the inequality

(14) K-**|K/?(||Sn-Zn-l||)

is satisfied, where

(15) /?(r) = «r(r ) - r .

The above Lemma is a corollary of the induction theorem of Ptak [5], which we
will use in the above simplified version. As in [4], we call (12) a priori estimates and
(14) a ptoteriori estimates.

We can now easily prove the following lemma.

LEMMA 3. Let T denote an interval of the form T = (0,1) . Then the function

(16) « ( r ) = rp+1
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is a rate of convergence on T and the corresponding function <r(r) satisfies the estimate

(17) 0<(r{r)^r + Tl-^r^.

3. MAIN RESULTS

THEOREM 1. Let Ej C E and F: Ex -» E. Assume F'(-) € HEi(c,p) on a
convex set E% C E^. Let Xo be such that:

(18)

for all x £ E2 and some Cj > 0.
Assume that F'(XQ) has a bounded inverse F'(xo)~ £ L(E) with

(19) 1

(20)

and that the function g defined by

(21) g(r) = dClr
1+P + — 5 - - 1 )r - dc,ror" + r0

\1 +p J
has a minimum positive zero r* > ro .

Moreover, assume that

(22) dCl(r*)p < 1.

Then

( 2 3 )

If U(xo,r*) C E2 then the iteration (2) is well defined, remains in {7(zo>''*)
converges to a solution x* of (1).

PROOF: By the Banach lemma, F'(x) has a bounded inverse, since

\\F'(x) - F'(xo)\\ < Cl\\x - xQ\\e < C l ( r Y < I ,

and

"1"s( 2 4 )
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The operator P given by

is well defined on U(xo,r*). Assume now that x, P{x) G U(xo,r*) and using (5), we
obtain

\\P\x) - P(x)\\ = || - {F>{P{x)))-1F(P{x))\\

U)"F{x)~F'ix)iP(x)~*m

= g(\\P(x) - x\\,\\P(x) - xo\\),

where

Define the real sequence {sk}, k = 0,1,2,... by s0 = 0, $1 = TQ and

(25) Sk+i — Sk = —p • — — (sk — sjt-i) p .

Now we have

Sj — $i ^ 5r0 < '"Oj

^2 ^ ^i "I" ^ o == r o ( l H" 9) ^ •
1 - 9

Using (23) and g(r*) = 0 we get r0 = (1 - g)r*. That is

<r*.

By induction we can easily get

— 3k ^ q(a/fe - Sk-l),

— -Sfc < r 0 ,

and

Sk+l < r •

That is,

Urn sk = «*, - ^ - = r*.
fc—>oo 1 — <J
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By the basic majorant Theorem 2.3 of Rheinboldt [6], there exists an x* G U(xo,r*)

such that

P(x*) = x* and lim xk — x*.
k—*oo

Finally,

-*OII + ll^(*o)(**+i-**)ll
\\F'(xo)\\) | | « f c + 1 -

since xk £ {/(a;o)r*)- Letting k —» oo, we easily obtain from the above inequality that

F(x*) = 0,

since {xk} is a Cauchy sequence and (cir* + ||F'(a;o)||) is a constant.
The proof of the theorem is now complete. |

THEOREM 2. Let E be a Banach space and let XQ £ E. Let F be an operator
mapping U* = U(xo.,r) into E and suppose that F(-) £ Hu*(c,p). Under the hy-
potheses of Theorem 1 in U* assume that for some r 6 T, Xo and some p G [0,1]
tJiere exists an increasing positive function h(r) such that

(26) h(r) >crp + h(u{r)),

(27) h{w{r))>-J-, W(r) = r ' + 1 .

Tiien the iteration (2) is well defined, remains in U* and converges to a solution x* of

The following statements are true:

(28) * » e (

(29) | |*n-*„_,!! <w(n)(r0),

(30) IK-*

and if

Xn_! £ Z(\\xn - Xn^

then
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Here,

(31) Z(r) = {x e E/\\x - s o i l < <r(ro)-a(r), F'(x) has a bounded inverse

and where w, a and (3 are as defined in Lemma 3.

PROOF: By Lemma 2 we need to show that (8), (9) and (13) are satisfied. We

easily obtain that Z(r0) — {xo}, so that (7) is satisfied. Let x 6 Z(r) and set

(32) y^x-(F'(x)yiF(x).

Using (7), (26), (27) and (31), we obtain

\\v - *o|| < ||y - z|| + ||z - xo|| ^ r + <r(r0) - <r(r) = <r(r0) - <r(w(r)),

WF'iy)-1 It"1 > WF'(x)-1 II"1 - | |F'(s) - JF'(y)|| > h(r) - cr* > h(u(r)).

By (32),

(34) F(y) = F(y) - F{x) - F'(x)(x - y);

therefore, (5) and (33) give

that is, (9) is satisfied since y € Z(u>(r)). By Lemma 2 the sequence xn converges to

the point x* and the relations (10)-(12) are satisfied.

The rest of the proof of the theorem follows exactly as in [4].

Set y = xn+i, x = xn in (34) and use the continuity of F' to finally obtain

F(x*) = 0, that is, x* is a solution of (1). The proof is now completed using Lemma

3 to obtain the a priori and a posteriori estimates claimed in this theorem. |

Note that for p — 1, Theorem 3.1 in [4] can be obtained as a special case of
the above theorem. Remarks similar to the one's following Theorem 3.1 in [4] would
follow, but we leave them to the motivated reader. Instead, we provide two possible
applications.

Remark. As an example for a function h satisfying (2) and (27), set

(35) h(r) = c(100 + rp + 2ln(r))

where p = - and T = (e" 4 5 ^" 1 ) . It can easily be checked that (26) and (27) are

satisfied.
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4. APPLICATIONS

Example 1. Consider the function G defined on [0,6] by

G(t) = lt3/2 + t - 3
3

for some b > 0.

Let || • || denote the max norm on R, then

\\G"(t)\\ = max

which implies that the basic hypothesis in [2] (or (3)) for the application of Newton's

method is ndt satisfied for finding a solution of the equation

(36) G(t) = 0.

However, it can easily be seen that G'(t) is Holder continuous on [0,6] with

c = 1 and p — —.

Therefore, under the assumptions of Theorem 2, iteration (2) will converge to a solution

t* of (36).

A more interesting nontrivial application for Theorem 2 is given by the following

example.

Example 2. Consider the differential equation

(37) V l '
as(O) = x(l) = 0.

We devide the interval [0,1] into n subintervals and we set h = — . Let {v*} be the
n

points of subdivision with

0 = v0 < vi < ••• < vn = 1.

A standard approximation for the second derivative is given by

n xi-l - 2xi + xi+l t \ • 1 o 1
x{ = — , Xi=x[Vi), i = 1,2,...,n - 1.

Take x0 = xn = 0 and define the operator F: R""1 -» R""1 by

(38) F(x) = H(x) + h\{x)
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H =

r 2 - l
- 1 2 - 1 0

0 - 1 2 - 1
- 1 2 J

x
1+p

n-lJ

and

x =

Then

Newton's method cannot be applied to the equation

(39) F(x) = 0.

We may not be able to evaluate the second Frechet-derivative since it would involve
the evaluation of quantities of the form x~p and they may not exist.

Let x € R""1, h e R n - ' x R n - 1 and define the norms of x and H by

||x|| = max^ \xj\

n-l

11*11 = m«— 1
fc = l

For all x, z E R n - 1 for which |XJ| > 0, |zf| > 0, i = 1,2,... ,n - 1 we obtain, for

P = 5 say,
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Therefore, under the assumptions of Theorem 2, iteration (2) will converge to the

solution x* of (39).
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