ON A MAXIMAL OUTER AREA PROBLEM
 FOR A CLASS OF
 MEROMORPHIC UNIVALENT FUNCTIONS

Stephen M. Zemyan

Abstract

For $0<p<1$, let S_{p} denote the class of functions $f(z)$ which are meromorphic and univalent in the unit disk U, with the normalisations $f(0)=0, f^{\prime}(0)=1$ and $f(p)=\infty$, and let $S_{p}(a)$ denote the subclass of S_{p} consisting of those functions in S_{p} whose residue at the pole is equal to a. In this paper, we determine, for values of the residue a in a certain disk Δ_{p}, the greatest possible outer area over all functions in the class $S_{p}(\alpha)$. We also determine additional information concerning extremal functions if the residue a does not lie in Δ_{p}.

1. Introduction.

For $0<p<1$, let S_{p} denote the class of functions $f(z)$ which are meromorphic and univalent in the unit disk $U=\{z:|z|<1\}$, with the normalisations $f(0)=0, f^{\prime}(0)=1$ and $f(p)=\infty$.

Many authors have considered this class in their research.

Received 5 February 1986.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/86 $\$ \mathrm{~A} 2.00+0.00$
K. Ladegast, in an extensive paper [3], derived many inequalities satisfied by functions belonging to S_{p}. Y. Komatu, in two successive papers [2], derived many inequalities which must hold for the coefficients of functions belonging to S_{p}. Z. Lewandowski and E. zyotkiewicz, [4] and [5], established several variational formulae for the class S_{p} and showed how they might be used to obtain results about functions in S_{p} which are solutions to certain extremal problems. More recently, Z. Lewandowski, R. J. Libera and E. Złotkiewicz [6] have used sophisticated conformal mapping techniques to study the complement of the range of functions belonging to certain subclasses of S_{p}. In the present paper, we study the complement of the range of functions belonging to certain subclasses of S_{p}.

Define the set

$$
\Omega_{p}=\left\{a: a=\operatorname{Res}_{z=p} f(z), f \in S_{p}\right\}
$$

In [8], it has been determined that

$$
\Omega_{p}=\left\{-p^{2}\left(1-p^{2}\right)^{\varepsilon}:|\varepsilon| \leq 1\right\}
$$

Now consider the subclasses $S_{p}(a)$ of S_{p} defined by

$$
S_{p}(a)=\left\{f \in S_{p}: \operatorname{Res}_{z=p} f(z)=a\right\}
$$

Every function $f(z)$ in $S_{p}(a)$ will have an expansion of the form

$$
f(z)=\frac{a}{z-p}+\frac{a}{p}+\left(1+\left(\frac{a}{p^{2}}\right)\right) z+\sum_{k=2}^{\infty} \alpha_{k} z^{k}
$$

due to the normalisations described above.
The outer area $\bar{A}(f)$ of $f(z)$ (the area of the complement of the range of $f(z)$ is finite and can be expressed in terms of the residue a and the coefficients α_{k}. Indeed, with the aid of Green's Formula, we have

$$
\begin{equation*}
\bar{A}(f)=\lim _{r \rightarrow 1} \frac{-1}{2 i} \int_{|z|=r} \bar{f} d f \tag{1}
\end{equation*}
$$

$$
=\frac{\pi|a|^{2}}{\left(1-p^{2}\right)^{2}}-\sum_{k=1}^{\infty} k\left|\alpha_{k}\right|^{2} .
$$

Since $\bar{A}(f)$ must be non-negative, we obtain the following inequality

$$
\begin{equation*}
\sum_{k=1}^{\infty} k\left|\alpha_{k}\right|^{2} \leq \frac{|a|^{2}}{\left(1-p^{2}\right)^{2}} \tag{2}
\end{equation*}
$$

which we may call the Area Theorem for the Class ${\underset{\sim}{p}}^{S_{p}(a)}$. Equality holds in (2) if and only if $\bar{A}(f)=0$. In [7], it was shown that there exists functions $f \in S_{p}(a)$ such that $\bar{A}(f)=0$ for values of a in an open and dense subset D_{P} of Ω_{p}. Consequently, for $a \in D_{p}$, we may conclude that

$$
\min _{f \in S_{p}(a)} \bar{A}(f)=0
$$

This minimal problem remains open if $a \in \Omega_{p}-D_{p}$.
In this paper, we are concerned with the corresponding maximal
problem

$$
\max _{f \in S_{p}(a)} \bar{A}(f)
$$

Expression (1) above suggests that the outer area would attain its greatest value only for a function of the form

$$
\begin{equation*}
F(z ; p, a)=\frac{a}{z-p}+\frac{a}{p}+\left(1+\frac{a}{p^{2}}\right) z . \tag{3}
\end{equation*}
$$

In Section 2, we prove that this is indeed the case, provided that the residue a belongs to a certain disk $\Delta_{p} \not \subset \Omega_{p}$. If $a \in \Omega_{p}-\Delta_{p}$, then this problem remains open. However, in Section 3, we introduce a variation for the class $S_{p}(a)$, (that is, a residue-preserving variation for the class S_{p}), which will be used to deduce information about the extremal functions in this case. Further results will depend upon either the successful invention of additional variational formulae for the class
$S_{p}(a)$, or the adaptation of variational formulae for the class S_{p} which already exist, such as the ones given in [5].

2. A Partial Solution.

In this section, we prove
THEOREM 1. The solution to the extremal problem

$$
\max _{f \in S_{p}(a)} \bar{A}(f)
$$

is given by (3) provided that the residue a belongs to the disk Δ_{p} of values determined by the inequality

$$
\begin{equation*}
\frac{|a| p^{2}}{\left|a+p^{2}\right|} \geq(1+p)^{2} \tag{4}
\end{equation*}
$$

Proof. Case I: $a=-p^{2}$. In this case,

$$
F\left(z ; p,-p^{2}\right)=\frac{p z}{p-z}
$$

Since $\alpha_{k}=0$ for $k \geq 1$, the formula for the outer area (1) gives $A(F)=\pi p^{4} /\left(1-p^{2}\right)^{2}$. Moreover, since any other function in $S_{p}\left(-p^{2}\right)$ must have at least one non-zero coefficient α_{k}, any other function in this class must also have a strictly smaller outer area. Finally, since F is linear-fractional, it must map U onto the exterior of a certain disk. This disk is centered at $-2 p /\left(1-p^{2}\right)$ and has radius $p^{2} /\left(1-p^{2}\right)$. Case II: $a \neq-p^{2}$. Since (3) is meromorphic and satisfies the appropriate normalisations, it remains to show that it is univalent on U. Since F can be written in the form

$$
F(z ; p, a)=\frac{a}{z-p}+\left(\frac{2 a}{p}+p\right)+\left(1+\frac{a}{p^{2}}\right)(z-p)
$$

It is sufficient to show that, under the assumed condition, the function $G(w)=A / w+B w$ is univalent on the set $U_{p}=\{w: w=\zeta-p, \zeta \in U\}$,
where $A=a$ and $B=1+a / p^{2}$. We note first that $\left|w_{1} w_{2}\right|<(1+p)^{2}$ for any $w_{1}, w_{2} \in U_{p}$.

Suppose now that G is not univalent; that is, that there exists $w_{1}, w_{2} \in U_{p}, w_{1} \neq w_{2}$, such that

$$
G\left(w_{1}\right)=\frac{A}{w_{1}}+B w_{1}=\frac{A}{w_{2}}+B w_{2}=G\left(w_{2}\right)
$$

Then a little arithmetic shows that

$$
(1+p)^{2}>\left|w_{1} w_{2}\right|=\left|\frac{A}{B}\right|=\frac{|a| p^{2}}{\left|a+p^{2}\right|}
$$

contrary to assumption. Hence, (4) implies that $F(z ; p, a)$ is univalent on U and thereby belongs to $S_{p}(a)$. Since (4) may be rewritten in the form

$$
\left|\frac{1}{a}+\frac{1}{p^{2}}\right| \leq \frac{1}{(1+p)^{2}}
$$

it is clear that the reciprocals $\{1 / a\}$ described by this condition belong to a disk; consequently, the set of residues $\{a\}$ do as well. In explicit form, we may write

$$
\Delta_{p}=\left\{s:\left|s+(1+p)^{2} \delta_{p}\right| \leq p \delta_{p}\right\}
$$

where

$$
\delta_{p}=\frac{p^{2}(1+p)^{2}}{(1+2 p)\left(1+2 p+2 p^{2}\right)}
$$

This concludes the proof of the theorem.
For the sake of completeness, we now briefly discuss the mapping properties of $E(z ; p, a)$. Since F can be rewritten in the form

$$
\begin{aligned}
F(z ; p, a)= & \frac{2 a}{p}+p \\
& +2\left(\frac{a}{p^{2}}+1\right)\left(\frac{z-p}{2}+\frac{1}{2}\left(\frac{a p^{2}}{a+p^{2}}\right)\left(\frac{1}{z-p}\right)\right)
\end{aligned}
$$

it is easily seen to be the successive composition of three maps:
(1) $\zeta=C(z)=z-p$,
(2) $\xi=D(\zeta)=\zeta / 2+\beta / \zeta$,

$$
\beta=\frac{1}{2}\left(\frac{a p^{2}}{a+p^{2}}\right)
$$

and

$$
\text { (3) } \quad w=E(\xi)=(2 a / p+p)+2\left(1+a / p^{2}\right) \xi \text {. }
$$

Maps C and E are linear. Map D is discussed in [1, p. 64-67]; it univalently takes either the interior or the exterior of the circle $\{|\zeta|=|\sqrt{\beta}|\}$ onto the plane, cut from $-\sqrt{2 \beta}$ to $+\sqrt{2 \beta}$.

Since $|\sqrt{2 \beta}|=\left|\frac{a p^{2}}{a+p^{2}}\right|^{1 / 2} \geq(1+p)$, the set $C(U)$ is contained entirely in the interior of the circle $\{|\zeta|=|\sqrt{2 \beta}|\}$. The set $D(C(U))$ is the plane, except for a compact set of positive area, which contains the interval $[-\sqrt{2 \beta},+\sqrt{2 \beta}]$. Map E stretches and translates the set $D(C(U))$. If strict inequality holds in (4), then the set $F(U ; p, a)$ will have an analytic boundary. If equality holds in (4), then $F(U ; p, a)$ will have an analytic boundary except for one point; the tear-shaped exterior in this case is sometimes called a Joukowski aerofoil and is obtained whenever $a \in \partial \Delta_{p}$.

3. Additional Information.

The results to follow may be easily discussed in terms of the framework introduced here.

Let L_{p} denote the linear subspace of all functions of the form

$$
f(z)=\sum_{-\infty}^{+\infty} a_{n} z^{n}
$$

which are analytic on the annulus $A_{p}=\{z: p<|z|<1\}$, and satisfy the condition

$$
\sum_{-\infty}^{+\infty}|n|\left|a_{n}\right|^{2}<+\infty .
$$

For each $f(z)=\sum_{-\infty}^{+\infty} a_{n} z^{n}$ and $h(z)=\sum_{-\infty}^{+\infty} b_{n} z^{n}$ in L_{p}, the Hermitian Product

$$
\langle f, h\rangle=-\sum_{-\infty}^{+\infty} n a_{n} \bar{b}_{n}
$$

exists due to the Cauchy-Schwarz Inequality.
Suppose now that $f \in L_{p}$ and that G is analytic on the range of f, with $G \circ f \in L_{p}$. We wish to show that the Hermitian product $\langle f, G \circ f\rangle$ has an alternate formulation in terms of a contour integral involving f and G. If we write

$$
f(z)=\sum_{-\infty}^{+\infty} a_{n} z^{n} \text { and } \quad(G \circ f)(z)=\sum_{-\infty}^{+\infty} c_{n} z^{n},
$$

Then after a short computation, we obtain the relation

$$
\sum_{-\infty}^{+\infty} n a_{n} \bar{c}_{n} r^{2 n}=\frac{1}{2 \pi i} \int_{f(|z|=r)} \overline{G(w)} d w
$$

Consequently, it is now clear that

$$
\langle f, G \circ f\rangle=\lim _{p \rightarrow 1}\left(\frac{-1}{2 \pi i} \int_{f(|z|=r)} \overline{G(w)} d w\right),
$$

which is the formulation that we desired. Observe that, as a special case, if we let $G(w)=w$, we obtain, for $f \in S_{p}$, the relation $\langle f, f\rangle=\bar{A}(f) / \pi$. It is now apparent that $\langle f, f\rangle \geq 0$, and that equality holds if and only if $\bar{A}(f)=0$.

Now let D be any open connected set in the complex plane. By $\Lambda(D)$ we shall denote the set of functions $h(w)$ which are holomorphic in D, and satisfy the Lipschitz condition

$$
\left|h\left(w_{1}\right)-h\left(w_{2}\right)\right| \leq K_{h}\left|w_{1}-w_{2}\right|
$$

for all $w_{1}, w_{2} \in D$, and some constant K_{h} which depends only upon h.
We are now ready to state and prove a Variational Lemma for the Class $S_{p}(a)$.

LEMMA. Suppose that $g(z) \in S_{p}(a)$ and that $\operatorname{ext}\{g(U)\} \neq \phi \cdot$ Let $L_{c}(w)=c w /(c+w)$ and $f_{c}(z)=L_{c}(g(z))$, where $-c \in \operatorname{ext}\{g(U)\}$. Then

$$
g_{t}(z)=g(z)+t Q(g(z))+O\left(t^{2}\right) \in S_{p}(a)
$$

for all complex $t,|t|$ sufficiently smalz, and $o\left(t^{2}\right)$ is uniform on compact subsets of U. Here,

$$
Q(w)=\left(\frac{c+w}{c}\right)^{2} h\left(\frac{c w}{c+w}\right)
$$

where $h \in \Lambda\left(f_{c}(U)\right)$ and $h(0)=h^{\prime}(0)=h(c)=h^{\prime}(c)=0$.
Proof. Let S denote the class of functions $f(z)$ which are analytic and univalent in the unit disk U and are normalized so that $f(0)=0$ and $f^{\prime}(0)=1$. A short argument shows that the function

$$
f_{c}(z)=\left(L_{c} \circ g\right)(z)=\frac{c g(z)}{c+g(z)}
$$

belongs to the class S and that $\operatorname{Res}_{z=p} g(z)=-f_{c}^{2}(p) / f_{c}^{\prime}(p)$. Now let $h(z) \epsilon \Lambda\left(f_{c}(U)\right)$ and assume that $h(z)$ and its first derivative vanish at $z=0$ and $z=c=f_{c}(p)$. Let t be any complex number and consider the function

$$
f_{c t}(z)=f_{c}(z)+t h\left(f_{c}(z)\right)
$$

For all t having sufficiently small absolute value, $f_{c t}(z)$ is univalent in U. Indeed, let z_{1} and z_{2} be distinct points of U.

Then

$$
\begin{aligned}
f_{c t}\left(z_{2}\right)-f_{c t}\left(z_{1}\right) & =f_{c}\left(z_{2}\right)-f_{c}\left(z_{1}\right) \\
& +t\left[h\left(f_{c}\left(z_{2}\right)\right)-h\left(f_{c}\left(z_{1}\right)\right)\right]
\end{aligned}
$$

and so

$$
\left|f_{c t}\left(z_{2}\right)-f_{c t}\left(z_{1}\right)\right| \geq\left|f_{c}\left(z_{2}\right)-f_{c}\left(z_{1}\right)\right| \cdot\left(1-K_{h}|t|\right)
$$

Thus, if $|t|<1 / K_{h}$, then $f_{c t}\left(z_{1}\right) \neq f_{c t}\left(z_{2}\right)$.
Due to the additional restrictions placed on $h(z)$, we must also have $f_{c t}(0)=0$ and $f_{c t}^{\prime}(0)=1$. Therefore, $f_{c t} \in S$ for all t sufficiently small in absolute value.

Now consider the function

$$
g_{t}(z)=\left(L_{f_{c t}}^{-1}(p) \circ f_{c t}\right)(z)=\frac{f_{c t}(p) f_{c t}(z)}{f_{c t}(p)-f_{c t}(z)}
$$

A short argument shows that $g_{t}(z) \in S_{p}$ forall $t,|t|<1 / K_{h}$. Also, $\operatorname{Res}_{z=p} g_{t}(z)=-f_{c t}^{2}(p) / f_{c t}^{\prime}(p)=-f_{c}^{2}(p) / f_{c}^{\prime}(p)=\operatorname{Res}_{z=p} g(z)=a$, since $f_{c t}(p)=f_{c}(p)$ and $f_{c t}^{\prime}(p)=f_{c}^{\prime}(p)$. Hence, $g_{t}(z) \in S_{p}(a)$ for all $t,|t|<1 / K_{h}$. It remains to show that $g_{t}(z)$ has the prescribed form. Note first that, for any constant d, we have

$$
L_{d}^{-1}(x+t y)=L_{d}^{-1}(x)\left(1+t y\left(\frac{1}{x}+\frac{1}{d-x}\right)+o\left(t^{2}\right)\right)
$$

Using this relation, we get

$$
\begin{aligned}
g_{t}(z) & =L_{f_{c t}^{-1}}^{-1}(p)\left(f_{c t}(z)\right) \\
& =L_{c}^{-1}\left(f_{c}(z)+t h\left(f_{c}(z)\right)\right. \\
& =L_{c}^{-1}\left(f_{c}(z)\right)\left(1+\operatorname{th}\left(f_{c}(z)\right)\left(\frac{1}{f_{c}(z)}+\frac{1}{c-f_{c}(z)}\right)+o\left(t^{2}\right)\right) \\
& =g(z)+\operatorname{tg}(z)\left(h \circ L_{c} \circ g\right)(z)\left(\frac{1}{L_{c} \circ g(z)}+\frac{1}{c-L_{c} \circ g(z)}\right)+O\left(t^{2}\right) \\
& =g(z)+t Q(g(z))+O\left(t^{2}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
Q(w) & =w\left[\left(h \quad 0 L_{c}\right)(w)\right]\left(\frac{1}{L_{c}(w)}+\frac{1}{c-L_{c}(w)}\right) \\
& =\left(\frac{c+w}{c}\right)^{2} h\left(\frac{c w}{c+w}\right)
\end{aligned}
$$

A major consequence of this Variational Lemma is the following necessary orthogonality condition.

THEOREM 2. Let $g(z)$ be con extremal function for the problem

$$
\max _{f \in S_{p}(a)} \bar{A}(f)
$$

and assume that $\operatorname{ext}\{g(U)\} \neq \phi$. Then

$$
\langle g, Q \circ g\rangle=\lim _{r \rightarrow 1}\left(\frac{-1}{2 \pi i} \int_{g(|z|=r} \overline{Q(w)} d w\right)=0
$$

for every Q satisfying the conditions of the Variational Lemma.
Proof. If $g(z)$ has an expansion of the form

$$
g(z)=\frac{a}{z-p}+\sum_{0}^{\infty} \alpha_{k} z^{k}
$$

and $Q(g(z))$ has an expansion of the form

$$
Q(g(z))=\sum_{2}^{\infty} q_{k} z^{k}
$$

then $g_{t}(z)$ will have an expansion of the form

$$
g_{t}(z)=\frac{a}{z-p}+\alpha_{0}+\alpha_{1} z+\sum_{2}^{\infty}\left(\alpha_{k}+t q_{k}\right) z^{k}+o\left(t^{2}\right)
$$

Since $g(z)$ is an extremal function for the maximal problem, we must have $\vec{A}(g) \geq \vec{A}\left(g_{t}\right)$ for every complex t with $|t|<1 / K_{h}$. It follows from (1) that

$$
\sum_{2}^{\infty} k\left|\alpha_{k}+t q_{k}\right|^{2}+O\left(|t|^{2}\right) \geq \sum_{2}^{\infty} k\left|\alpha_{k}\right|^{2}
$$

Equivalently, we have

$$
\sum_{2}^{\infty} 2 k \operatorname{Re}\left(\frac{\bar{t}}{|t|} \alpha_{k} \bar{q}_{k}\right)+o\left(|t|^{2}\right) \geq 0
$$

for all $t,|t|<1 / K_{h} ;$ but this last inequality can hold only if

$$
\sum_{2}^{\infty} k \alpha_{k} \bar{q}_{k}=0
$$

The proof is now complete, since this last equality is equivalent to the result in the statement of the theorem, as we have shown earlier in this section.

As a specific example, we now show that the extremal function $g(z)$ and the functions $f_{c}^{N}(z), N \geq 2$, defined within the Variational Lemma above, are orthogonal in the space L_{p} with respect to the Hermitian product < , > .

COROLLARY 2.1. Suppose that

$$
g(z)=\frac{a}{z-p}+\sum_{0}^{\infty} \alpha_{k} z_{k}
$$

is an extremal function for the problem

$$
\max _{f \in S_{p}(a)} \bar{A}(f)
$$

and that $\operatorname{ext}\{g(U)\} \neq \phi$. If we set

$$
f_{c}(z)=\frac{c g(z)}{(c+g(z))}=z+\sum_{2}^{\infty} a_{k}(c) z^{k}
$$

and

$$
f_{c}^{N}(z)=z^{N}+\sum_{N+1}^{\infty} a_{k}^{(N)}(c) z^{k}
$$

then

$$
\left\langle g, f_{c}^{N}>=\sum_{N}^{\infty} k \alpha_{k} \overline{a_{k}^{(N)}(c)}=0\right.
$$

for every $N \geq 2$ and every c such that $-c \in \operatorname{ext}\{g(U)\}$.

Proof. Choose

$$
Q(w)=c^{2}\left(\frac{c w}{c+w}\right)^{N} . \quad(N \geq 2)
$$

Introducing the change of variable $w=c t /(c-t)$, we have

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{g(|z|=r} \overline{Q(w)} d \omega & \left.=\frac{\bar{c}^{2}}{2 \pi i} \int_{g(|z|=r)} \overline{\overline{c w}}^{c+w}\right]^{N} d w \\
& =\frac{|c|^{4}}{2 \pi i} \int_{f_{c}(|z|=r)} \bar{t}^{N} \frac{d t}{(c-t)^{2}} \\
& =\frac{\bar{c}^{2}}{2 \pi i} \int_{|z|=r} \overline{f_{c}^{N(z)} g^{\prime}(z) d z} \\
& =\bar{c}^{2} \sum_{N} k_{\alpha_{k}} \overline{a_{k}^{(N)}(c) r^{2 k}}
\end{aligned}
$$

Now observe that since $f_{c}(z)$ is bounded, $f_{c}^{N}(z) \in L_{p}$. The corollary now follows from Theorem 2 by letting r tend to one.

Another Corollary to Theorem 2 concerning the coefficients of extremal functions is of interest.

COROLLARY 2.2. Suppose that

$$
g(z)=\frac{a}{z-p}+\sum_{0}^{\infty} \alpha_{k} z^{k}
$$

is an extremal function for the problem

$$
\max _{f \in S_{p}(a)} \bar{A}(f)
$$

and that $\operatorname{ext}\{g(U)\} \neq \phi$. Then either $\alpha_{k}=0$ for all $k \geq 2$ or $\alpha_{k} \neq 0$ for infinitely many $k \geq 2$.

Proof. Suppose that there exists a K such that $\alpha_{K} \neq 0$ and
$\alpha_{k}=0$ for all $k>K$. Applying the equality in Corollary 2.1, with $N=K$, we get

$$
0=\sum_{K}^{\infty} k \alpha_{k} \overline{a_{k}^{(K)}(c)}=K \alpha_{K} \overline{a_{K}^{(K)}(c)}
$$

But $a_{K}^{(K)}(c)=1$. Thus we have obtained a contradiction.

References

[1] H. Kober, Dictionary of Conformal Representations, Dover Publications, New York (1957).
[2] Y. Komatu, "Note on the theory of conformal representation by meromorphic functions I and II", Proc. Japan Acad. 21(1945), 269-277; 278-284.
[3] K. Ladegast, "Beiträge zur Theorie der schlichten Funktionen", Math. 2., 58 (1953), 115-159.
[4] z. Lewandowski and E. złotkiewicz, "Variational formulae for functions meromorphic and univalent in the unit disc", Ann. Univ. Mariae Curie - SkZodowska 17 (1963), 47-53.
[5] 2. Lewandowski and E. zyotkiewicz, "Variational formulae for functions meromorphic and univalent in the unit disc", BuZZ. Acad. Polon. Sci., Math., XII (1964), No.5, 253-254.
[6] Z. Lewandowski, R. J. Libera and E. złotkiewicz, "Mapping properites of a class of univalent functions with pre-assigned zero and pole", Ann. Polon. Math., XL (1983), 283-289.
[7] S. Zemyan, "A minimal outer area problem in conformal mapping", J. Analyse Math., 39 (1981), 11-23.
[8] S. Zemyan, "The range of the residue functional for the class S_{p} ", Michigan Math. J., 31 (1984), 73-77.

Department of Mathematics
The Pennsylvania State University
University Park
Pennsylvania 16802.

