
LATTICES OF SUBSEMIVARIETIES OF CERTAIN VARIETIES

AHMAD SHAFAAT

(Received 17 March 1969)

To Bernhard Hermann Neumann on his 60th birthday

Communicated by G. B. Preston

For all positive integers m, n, m :g n, let i^m>n denote the variety of algebras
with m n-ary operations col, • • •, com and n m-ary operations <pt, • • •, cpn satisfying
the system of identities:

, j x < P i ( ° > l ( X l , - • •» X
n ) , • • ; « m ( * l > * • •> X n ) ) = X t ( i = 1 , • • • , « )

The varieties "f~m<n are considered by Swierczkowski [1] and by Akataeb and
Smirnov [2]. Jonsson and Tarski [3] consider "fr

mtn in the case m = 1, n = 2.
In [2] it is shown that the lattice Lm „ of subvarieties of i^m „ is uncountable except
when m = 1 in which case Lmn has a very simple description. In particular, for
n > 1 the lattice L l n is the two element chain which means that ^ i > n has no
proper subvarieties.

To consider subvarieties of a variety is a simple general method of classifying
its algebras. By considering more general subclasses we can, in general, obtain
finer though possibly less simple classifications of algebras of a variety. Semivarie-
ties [4] and quasivarieties seem to provide fairly nice generalizations of the concept
of a variety and in the study of many varieties it may be a worthwhile task to
consider lattices of their subsemivarieties and subquasivarieties. To take up this
task is specially promising in the case of varieties, like ^\,n and the class ^ of
all abelian groups, that have too few (i.e., less than 2Ko) subvarieties \

In this paper we consider the lattices Z-S(^i,n) and Ls(@) of subsemivarieties
of T^ l n and ^ respectively. The lattice JL S (^*I , I ) has a rather simple description:
^ s ( ^ i . i ) is isomorphic to the lattice 5^(3*) of all complete join subsemilattices
of Q*, where 3 * is obtained from the lattice 3 of positive integers under divisibility
by adding a unit oo, say. We show that La(i

r
liB) has a meet subsemilattice iso-

morphic to the lattice S^oo (3*) of join subsemilattices of 3 * that contain oo.

1 It may be noted that in some cases there may not even be enough subquasivarieties. Thus,
for example, the variety of distributive lattices has not only no proper subvarieties but also no
proper subquasivarieties.
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16 Ahmad Shafaat [2]

The lattice Ls(&) is shown to be isomorphic to the lattice 5V_ ̂ ( 8 + x 2) of ideals
of 8 + x 2, where $ + is obtained from 8 by adding a new zero 0, say. These results
imply that Ls(i

r
1 „) and Ls(@) have cardinality 2So so that subsemivarieties pro-

vide reasonably fine classifications of the algebras of these varieties. We also ob-
serve that for n > 1 all subquasivarieties of 1̂ *1, „ and ^ are semivarieties.

We begin by recalling that a class s/ of £2-algebras is called a quasivariety if
it is the class of all O-algebras satisfying a certain set I of finite implications, i.e.,
sentences of the form

(2) V*!, • • •, xn((w1 = w\ A • • • A wm = w'm) -> w = w')

where w, vvt, • • -, wm, w', w[, • • •, w'm are fl-words in {xlt- • •, xn}. s/ is called
[4] a semivariety if it is definable by a set of implications of the simpler form

(3) Vxl,--;xm(w1=w'1->w = w').

In writing implications we shall often omit the quantifiers.
A subquasivariety (subsemivariety) of a quasivariety (semivariety) is a sub-

class that is also a quasivariety (semivariety).
A join (meet) subsemilattice of a lattice <L; v , A > is a subset of L closed

under finite joins (meets). A join (meet) subsemilattice <L; v , A > will be called
complete if it is closed under infinite joins (meets) whenever they exist in
<X; v , A ) .

We first consider L,('Vlt 1).

THEOREM 1. Ls{ir
lt t) is isomorphic to the lattice Svi(Q*) of all complete join

subsemilattices of Q*.
PROOF: In view of (1) for m = n = 1 the variety ^ i , i consists of algebras

{A; cp, a>y where q>, ca are permutations of A and co = (p ~i. It follows that within
i/~1> l every subsemivariety of T "̂1; 1 is defined by a set of implications of the form

where s, t e Q* and <p°°(;c) = x always holds. We prove the simple fact that within
T "̂l7 j the sentence (4) is equivalent to an implication of one of the forms:

(5) (p\x) = x -> x = y

(6) <ps(x) = x -• (p'(x) = x, t\s.

If in (4) the variables xt, Xj are distinct then (4) is equivalent to the identity
<p"(x,) = <pt2(xk) obtained from (p'(xt) = xk by replacing Xj by (ps(xt) throughout.
Since q> is one-to-one and (p°°(x) = x holds by convention this identity is equiv-
alent to an implication of the form ^(x) = x -> (p'(x,) = xk. Thus in (4) we
can always take i = j . If / = k then q>s(x) = x implies <p'(x) = x and hence
<p(M)(x) = x, where (s, t) is the meet of s, t in 8*; so that in this case (4) is equiv-
alent to an implication of the form (6). Ifl^k then assume (ps(x) = x. Then (4)
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[3] Lattices of subsemivarities of certain varieties 17

implies cp'(x) = y for all y. Since q> and hence <pf is a permutation Vy <p'(x) = )>
is equivalent to saying Vy x = j . Thus in the case / ¥= k the implication (4) is
equivalent to (5).

We now set up a complete lattice isomorphism a between Ls(yiil) and
•S'v 08*)- Firs t w e define a simple concept. Let A be a set and (p a function from
,4 into A. By the (p-order of an element a of A we shall understand the smallest
s eQ* such that <ps(a) = a. Clearly the <p-order of every ae A exists and q>s(a) = a
if and only if s is divisible by the <p-order of a. Now for every subsemivariety y
of f u t we define a(o^) to be the set of s e 3* such that there exists in y a
non-trivial algebra with elements of (p-order J. It is easy to see that <x(y) is closed
in 3* under joins. For let {sr\ r = 1, 2, • • •} be a family of integers in a.(y) and
let s be the join of this family. Let 2lr, r = 1, 2, • • •, be an algebra in i^ having
an element ar of <p-order sr. Let 21 be the cartesian product of the 2fr. Then the
element a of 21 whose rth component is ar has <p-order s. Since semivarieties are
closed under the formation of cartesian products, we see that sex(i/~); so that
a provides a function from Ls{ir

ll) into Sv(3*)- We first prove that a is onto.
Let Y be a subset of 3* closed under joins. For every s e 3* let crs be the implica-
tion (ps(x) = x -* x = y if F contains no divisors of 5; otherwise let as be <ps(x) =
x -» <p'(x) = x, where t is the join of all the divisors of s in Y. Let T̂ " be the sub-
semivariety of yui defined within rTltl by I = {<rs;se3*}. Then a ( y ) = F.
For if 5 £ 7 then crs clearly implies that 'f" cannot contain a non-trivial algebra
with elements of <p-order s and hence s £ a ^ ) . On the other hand if s e Y, then
<TS is of the form <ps(x) = x ->• <ps(x) = x and the cyclic permutation (p = (1,2,
• • •, s) of order s defines an algebra on {1, • • •, s} in i^ly t satisfying I which has
elements of 9-order s; so that s e a ( ^ ) . Next we show that a is one-to-one.
Let V, V be two subsemivarieties Of "Tltl such that a("T) = a(T^'). Let a be
an implication of the form (4) that holds in Y~ but not in Y~'. In case a is equiv-
alent to a sentence of the form (ps(x) = x -» * = j , it implies that there are no
divisors of J in a(T^) and hence also in a('^/"'). However since <r does not hold in
"V, there must be a non-trivial algebra in y in which there exists an element a
satisfying <ps{a) = a. But then the <p-order of a is a divisor of s that lies in a.(_y),
a contradiction. In the other case, when a is equivalent to the form q>s(x) = x -+
(p'(x) = x, a divisor of J which is not a divisor of t cannot lie in a(y) or ac(y)
and we arrive at a contradiction as before. This proves that a(V) = u(y) implies
y = y . We conclude the proof by showing that y £ y if and only if a(-f) £
a(^')- The inclusion iT c y clearly implies a(-T) s a(y). Let 7, 7' e Sv (3*)
and F s T'. We described above the set IY = K ^ e B * } defining a~1(F).
From this description it is clear that if ZY. = {a's; s e Q*} then as implies o's for
all s e 3* and hence a"1 (7) £ a " 1 ^ ' ) . This completes the proof of the theorem.

The argument used in the next theorem seems to be of fairly general applica-
bility in obtaining uncountable subsemilattices of lattices of subsemivarieties of
semivarieties.
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18 Ahmad Shafaat [4]

THEOREM 2. For every positive integer n the lattice £v «,($*) of join subsemi-
lattices of $* that contain oo is embeddable into Lj^f"^ as a meet subsemilattice.

PROOF: The variety T^",tllis denned in terms of n unary operations q>l3- • ; <pn

and one «-ary operation a> by the system of identities:

(7) 9i((o(xi > * ' ' . *»)) = Xi, afa^x), • • ; (pn(x)) = x (i = 1, • • •, n).

Let cp(x) = a>(x, • • •, x) and let Wl be the lattice of non-trivial subsemivarieties
of yi>n denned within yi<n by a set of implications of the form (5) or (6). For
every "T in 2Jt we define a ( f ) as in Theorem 1. We show that a ( ^ ) e Sv>00(3*).
That a ( ^ ) is a join subsemilattice of Q* can be proved as in Theorem 1. If
oo £ a ( ^ ) then the join of a ( f ) is an integer s, say, and the identity <ps(x) = x
holds in i r . But this contradicts the fact proved in [2] that ^1<n is equationally
complete. Hence oo e a(T^) for all y e 9Ji. Now by one modification of the argu-
ment used in the proof of Theorem 1 we can show that a provides an isomorphism
between 2R and Sv,ool8*)- The required modification is the following: In the
proof of Theorem 1 we used the algebra <{1, • • •, s}, q>, cp'1} e ir

1> t in proving
that a was onto, where cp is the cyclic permutation (1 • • • s). This time we can use
an algebra (A; <px , • • •, <pn, to} e yiiK which has elements of co(x, • • •, x)-order
s and oo only for some given positive integer s. The existence of such an algebra
can be proved as follows. Let A be any infinite set. Partition A into sets As, Ax, B
such that As has exactly s elements al, • • •, as, say, and Am, B, A all have the same
cardinality. For every b e B choose a countably infinite subset Ab

x = {abl, • • •,
ab2, • • •} of Ax such that {Ab

ai}beB is a partition of Ax. Now define

i = 1 , • • - , s - l

co(« j , - - - , a,) = fli> i = s

co(b,- • -, b) = a61, beB

beB,r = 1, 2, •

and for other choices of xt, • • •, xn from A define c o ^ , • • •, xn) such that a> gives
a one-to-one function from A" onto A. For every x e A and i = 1, • • •, » we define
<P;(x) to be the ith component of the unique «-tuple (,x1 ,•••, *„> such that (O^Y ,
• • •, xn) = x. In this way we get an algebra <^4; (pt, • • •, (pn, co> which can be easily
seen to have the desired property. The proof of the theorem can now be completed
by observing that 2ft is a meet subsemilattice of Ls(T^ljn).

COROLLARY. For every positive integer n the lattice LsC^i,n) has cardinality

PROOF: In view of Theorem 2 it is sufficient to prove that Sv>00(8*) has
cardinality 2*°. This follows by noting that every set P of primes determines unique-
ly the member X(P) of -Sv>00(8*) consisting of oo and all the products of primes
in P.
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[5] Lattices of subsemivarieties of certain varieties 19

REMARK: The variety i^mtn, m > 1, m ^ n, was shown in [2] to have un-
countably many subvarieties. Combining with Theorem 2 this shows that Ls{Vm „)
has cardinality 2N° for all m, n, m ^ n.

Our next easy result gives an interesting property of ^ i , n .

REMARK 3. Every subquasivariety of ^ l j n , n > 1, is a semivariety.

PROOF: The identities (7) defining ^ 1 > n imply that

<a{xx, • • -, xn) = a>(x\ ,--;x'n)*-*x1 = x[ A • • • A xn = * ; .

From this it is easy to see that if w(x1 ,•••, xm) is any co-word such that every one

of the variables xr, • • -, xm actually appears in w then the equivalence

w(xi >--;xm) = w(x[, • • ; x'm) <-> xt = x[ A • • • Axm = x'm

also holds. If n > 1 we can build an a»-word involving any given number of varia-
ables. In view of this every implication

(Wl = w[ A • • • A wm = w'm) -> w = w'

relevant to ^ l j B , n > 1, is equivalent within ^ 1 > n to

w(wi, • • % wm) = w(w\, • • ; w'm) -^ w = w'

where w is an co-word involving exactly m variables. This proves the theorem.
We now turn to groups.

THEOREM 4. All quasivarieties of abelian groups are semivarieties and their lattice
is isomorphic to the lattice 5 ' v S ( 3 + x2) of ideals ofQ+x2.

PROOF. Let 'S' be a class of groups and let co(^') denote the set of orders of
finite cyclic groups in <S'. Define s(^') — {0, oo} or {0} according as *&' contains
the infinite cyclic group or not. Write O(^ ' ) for the ordered pair <co(^'), s(^')}.
It is easily seen that O(^ ' ) is an ideal of Q + x 2 if <&' is closed under the formation
of subgroups and cartesian products. We shall refer to O(^ ' ) as the order of (S'.

We need to recall two well-known facts. Firstly, every abelian group is the
union of a countable ascending chain of direct products of cyclic groups. Secondly,
(and this is easy to verify) quasivarieties are closed under taking unions of count-
able ascending chains. These two facts together immediately show that (*) Every
quasivariety of abelian groups consists of all the unions of countable ascending
chains of direct products of its cyclic groups and is therefore determined com-
pletely by its order.

Now let Z(@') be the set of implications an : x" = 1 -»• xe<-n) = 1, where
n e co(^') u s(@') and 0(n) is the largest member of co(^') u s{*&') not exceeding
n. It is easy to see (Cf. proof of Theorem 1) that the semivariety <§" defined by
Z(@') is such that O(^ ' ) = O(^")- If ^ ' is a quasivariety this implies, in view of
(*), that IS' = IS" and the theorem is proved.
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Theorem 4 has the following simple generalization.

THEOREM 5. For every quasivariety <S' of groups the lattice Ls(@') has a sub-
lattice isomorphic to the lattice of ideals of the order O(^') of'S'.

Theorem 5 follows by noting that the quasivariety IS" of abelian groups in <S'
is such that 0(0") = O(V) and that Ls(0") is a sublattice of Ls{%% and then
proceeding as in the proof of Theorem 4.
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