COEFFICIENTS OF SYMMETRIC FUNCTIONS OF BOUNDED BOUNDARY ROTATION

RONALD J. LEACH

Let $V_{m}(k)$ denote the family of all functions of the form

$$
f(z)=z+\sum_{p=1}^{\infty} a_{m p+1} z^{m p+1}
$$

that are analytic in the unit disc $U, f^{\prime}(z) \neq 0$ in U and f maps U onto a domain of boundary rotation at most $k \pi$. Recently Brannan, Clunie and Kirwan [2] and Aharonov and Friedland [1] have solved the problem of estimating $\left|a_{m p+1}\right|$ for all k, provided $m=1$. The extremal function for $V_{1}(k)$ is defined by

$$
f_{1}^{\prime}(z)=\frac{(1+z)^{(k-2) / 2}}{(1-z)^{(k+2) / 2}}
$$

The following proposition is an immediate consequence of [3, Theorem 3.1]:
Proposition. $f(z) \in V_{m}(k)$ if and only if there is a function $g(z) \in V_{1}(k)$ such that $f^{\prime}(z)=g^{\prime}\left(z^{m}\right)^{1 / m}$.

Let $f_{m}(z)$ be the function in $V_{m}(k)$ defined by

$$
f^{\prime}(z)=\left(1+z^{m}\right)^{(k-2) / 2 m} /\left(1-z^{m}\right)^{(k+2) / 2 m}
$$

It is natural to conjecture that $\left|a_{m p+1}\right| \leqq A_{m p+1}$, where

$$
f_{m}(z)=z+\sum_{p=1}^{\infty} A_{m p+1} z^{m p+1}
$$

In this note we obtain a partial solution to the problem of estimating $\left|a_{n}\right|$ and show that the conjecture is false in general if $m \geqq 2$. In addition, we determine the valency of functions in $V_{m}(k)$.

The following lemma is due implicitly to Umezawa [9].
Lemma. Let f be analytic in $|z| \leqq r$, with $f^{\prime} \neq 0$ in $|z| \leqq r$. Let z_{1}, \ldots, z_{m} be the roots of $\operatorname{Re}\left\{1+\left(z f^{\prime \prime}(z)\right) / f^{\prime}(z)\right\}=0$ on $|z|=r$. If

$$
\min _{1 \leqq i, j \leqq m} \int_{\theta_{i}}^{\theta_{j}} \operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\} d \theta>-p \pi \quad\left(z=r e^{i \theta}\right)
$$

then f is at most p-valent in $|z| \leqq r$.
Theorem 1. Let $f(z) \in V_{m}(k)$. Then $f(z)$ is at most p-valent in U, where
$p=(k-2) / 2 m$ if $(k-2) / 2 m$ is an integer and $p=[(k-2) / 2 m]+1$ if $(k-2) / 2 m$ is not an integer.

Proof. Let $r<1$ be fixed and define

$$
h(\theta)=\operatorname{Re}\left\{1+\frac{r e^{i \theta} f^{\prime \prime}\left(r e^{i \theta}\right)}{f^{\prime}\left(r e^{i \theta}\right)}\right\} .
$$

Let N be the largest non-negative integer for which $\theta_{j}-\theta_{i} \geqq 2 \pi N / m$. Then since f is m-fold symmetric,

$$
\begin{aligned}
\int_{\theta_{i}}^{\theta_{j}} h(\theta) d \theta & =\int_{\theta_{i}}^{\theta_{i}+(2 \pi N / m)} h(\theta) d \theta+\int_{\theta_{i}+(2 \pi N / m)}^{\theta_{j}} h(\theta) d \theta \\
& =2 \pi N / m+\int_{\theta_{i}+(2 \pi N / m)}^{\theta_{j}} h(\theta) d \theta \\
& >\frac{2 \pi N}{m}+\left(1-\frac{k}{2}\right) \frac{\pi}{m} \\
& \geqq\left(1-\frac{k}{2}\right) \frac{\pi}{m}
\end{aligned}
$$

The result now follows since $p<(k-2) / 2 m$ and p must be an integer.
Note. This result was proved in [3] for the case $m=1$.
ThEOREM 2. Let $f(z)=z+\sum_{p=1}^{\infty} a_{m p+1} z^{m p+1} \in V_{m}(k)$ with $k \geqq 2 m+2$. Then $\left|a_{m p+1}\right| \leqq A_{m p+1}$.

Proof. Let $g(z) \in V_{1}(k)$ be defined by $g^{\prime}\left(z^{m}\right)^{1 / m}=f^{\prime}(z)$. By a result due to Noonan [7],

$$
z g^{\prime}(z)=a Q(z)^{\beta} S(z)
$$

where $\operatorname{Re} Q(z)>0, S(z)$ is starlike, $|a|=1$, and $\beta=k / 2-1$. Therefore
(1) $z f^{\prime}(z)=a^{1 / m} Q\left(z^{m}\right)^{\beta / m} S\left(z^{m}\right)^{1 / m}$.

Since $\left|a^{1 / m}\right|=1, \operatorname{Re} Q\left(z^{m}\right)>0$ and since $S\left(z^{m}\right)^{1 / m}$ is an m-fold symmetric starlike function, it follows from [1] and [2] that if $\beta / m \geqq 1$, the coefficients of $Q\left(z^{m}\right)^{\beta / m}$ and $S\left(z^{m}\right)^{1 / m}$ are simultaneously maximal when

$$
f^{\prime}(z)=\left(1+z^{m}\right)^{(k-2) / 4} /\left(1-z^{m}\right)^{(k+2) / 4}
$$

Thus the result follows if $(k / 2-1) / m \geqq 1$ or $k \geqq 2 m+2$.
We note that the proof actually holds for the larger class of m-fold symmetric functions that are close-to-convex of order $(k-2) / 2 m \geqq 1$.

The following theorem is of interest only when $k<2 m+2$. It was proved by Lehto [6] if $m=1$ and the author [5] if $m=2$. The technique is essentially due to Lehto.

Theorem 3. Let $f(z)=z+\sum_{p=1}^{\infty} a_{m p+1} z^{m p+1} \in V_{m}(k)$. Then:
(i) $\left|a_{m+1}\right| \leqq \frac{k}{m(m+1)}$
$k \geqq 2$
(ii) $\left|a_{2 m+1}\right| \leqq \frac{k^{2}+2 m}{2 m^{2}(2 m+1)}$
$k \geqq 2 m$
(iii) $\quad\left|a_{2 m+1}\right| \leqq \frac{4 m k+6 k+4}{(4 m+2-k)(2 m)(2 m+1)} \quad 2 \leqq k<2 m$.

All of the results are sharp for the indicated range of k.
Proof. By a result due to Lehto [6]

$$
\begin{equation*}
a_{m p+1}=\frac{1}{(m p+1)(m p)} \sum_{j=0}^{p-1}(m j+1) a_{m j+1} \int_{0}^{2 \pi} e^{-(p-j) i m \theta} d \mu(\theta) \tag{2}
\end{equation*}
$$

where $\mu(\theta)$ is of bounded variation on $[0,2 \pi]$ with

$$
\int_{0}^{2 \pi} d \mu(\theta)=2 \quad \text { and } \quad \int_{0}^{2 \pi}|d \mu(\theta)| \leqq k
$$

From (2),

$$
\left|a_{m+1}\right| \leqq \frac{1}{(m+1) m} \int_{0}^{2 \pi}\left|e^{-i m \theta} d \mu(\theta)\right| \leqq \frac{k}{m(m+1)},
$$

which proves (i). From (2),

$$
\begin{aligned}
(2 m)(2 m+1) a_{2 m+1} & =(m+1) a_{m+1} \int_{0}^{2 \pi} e^{-i m \theta} d \mu(\theta)+\int_{0}^{2 \pi} e^{-2 i m \theta} d \mu(\theta) \\
& =\frac{1}{m}\left[\int_{0}^{2 \pi} e^{-i m \theta} d \mu(\theta)\right]^{2}+\int_{0}^{2 \pi} e^{-2 i m \theta} d \mu(\theta) .
\end{aligned}
$$

We may suppose without loss of generality that $a_{2_{m+1}} \geqq 0$ since if not we consider $e^{-i \alpha} f\left(e^{i \alpha} z\right)$ for suitably chosen α. Then

$$
\left.\left.\begin{array}{rl}
(2 m)(2 m+1) a_{2 m+1}= & \frac{1}{m}\left(\int_{0}^{2 \pi} \cos m \theta d \mu(\theta)\right)^{2}-\frac{1}{m}(
\end{array} \int_{0}^{2 \pi} \sin m \theta d \mu(\theta)\right)^{2}\right)
$$

Suppose first that $\mu(\theta)$ is a step function with at most N jumps d_{j} at θ_{j}. Then

$$
\begin{align*}
(2 m)(2 m+1) a_{2 m+1} & \leqq \frac{1}{m}\left(\sum_{j=1}^{N} \cos m \theta_{j} d_{j}\right)^{2}+\sum_{j=1}^{N} \cos 2 m \theta_{j} d_{j} \tag{3}\\
& =\frac{1}{m}\left(\sum_{j=1}^{N} \cos m \theta_{j} d_{j}\right)^{2}+2 \sum_{j=1}^{N} \cos ^{2} m \theta_{j} d_{j}-2
\end{align*}
$$

First assume that the maximum of (3) occurs at a point where r of the $\left|\cos m \theta_{j}\right| \neq 1$. We may assume $\left|\cos m \theta_{j}\right| \neq 1$ for $1 \leqq j \leqq r$. Then a differentiation of (3) with respect to $\cos m \theta_{h}, 1 \leqq h \leqq r$ yields
(4) $\frac{2}{m} \sum_{j=1}^{N} \cos m \theta_{j} d_{j}=-4 \cos m \theta_{h} \quad 1 \leqq h \leqq r$

$$
\equiv-4 \cos m \alpha
$$

Substituting in (3), we obtain

$$
\frac{1}{m}\left(4 m^{2} \cos ^{2} m \alpha\right)+2 \sum_{1}^{r} \cos ^{2} m \alpha \cdot d_{j}+2 \sum_{r+1}^{N} d_{j}-2 .
$$

Since $\sum_{1}^{N} d_{j}=2$ and $\sum_{1}^{N}\left|d_{j}\right| \leqq k, \sum_{1}^{r} d_{j} \geqq 1-k / 2$ and $\sum_{r+1}^{N} d_{j} \leqq 1+k / 2$, it follows from (3) that

$$
\begin{aligned}
2 m \cos m \alpha & =-\cos m \alpha \sum_{1}^{\tau} d_{j}-\sum_{r+1}^{N} \cos m \theta_{j} d_{j} \\
|\cos m \alpha| & =\left|\sum_{r+1}^{N} \cos m \theta_{j} d_{j}\right|\left(\left|2 m+\sum_{1}^{\tau} d_{j}\right|\right)^{-1} \\
& \leqq \frac{1+k / 2}{2 m+1-k / 2}
\end{aligned}
$$

If $k \geqq 2 m,(k+2) /(4 m+2-k) \geqq 1$ and hence there is no restriction on $|\cos m \alpha|$. Thus for $k \geqq 2 m$, (3) is less than or equal to

$$
\max \{2(1+k / 2)-2,2 m+2\}=k
$$

If $2 \leqq k<2 m,|\cos m \alpha| \leqq(k+2) /(4 m+2-k)<1$ and thus the maximum of (3) is

$$
\frac{(k+2)^{2}}{(4 m+2-k)^{2}}\left[4 m+2\left(1+\frac{k}{2}\right)\right]+2\left(1+\frac{k}{2}\right)-2=\frac{4 m k+6 k+4}{4 m+2-k}
$$

It remains to consider the case where all $\left|\cos m \theta_{j}\right|=1$. Then

$$
\begin{aligned}
(2 m)(2 m+1) a_{2 m+1} & \leqq \frac{1}{m}\left[\sum_{1}^{N} \cos m \theta_{j} d_{j}\right]^{2}+2 \sum_{1}^{N} d_{j}-2 \\
& \leqq \frac{k^{2}}{m}+2
\end{aligned}
$$

An elementary calculation shows that

$$
\frac{k^{2}}{m}+2<\frac{4 m k+6 k+4}{4 m+2-k}
$$

if $2<k<2 \mathrm{~m}$.
Since step functions are dense in the class of functions of bounded variation, the result follows. The function f_{m} shows that (i) and (ii) are sharp. To show that (iii) is sharp we construct a step function with jumps at $\cos m \alpha$ in a manner similar to [5].

Since $(2 m)(2 m+1) A_{2 m+1}=k+2$, the conjecture is false if $k<2 m$ and $p=2$. The coefficient problem remains to be solved in the case $k<2 m+2$ for large values of $m p+1$. To this end we have the following

Theorem 4. Let $f(z)=z+\sum_{p=1}^{\infty} a_{m p+1} z^{m p+1} \in V_{m}(k)$, where $k>2 m-2$. Then if $f(z) \neq e^{-i \theta} f_{m}\left(e^{i \theta} z\right)$, there is an integer p_{0} depending on f such that if $p>p_{0}$,

$$
\left|a_{m p+1}\right|<A_{m p+1} .
$$

Proof. Since $(k+2) / 2 m>1$, the methods of [5, Theorem 4.3] show that there is a θ_{0} such that

$$
\begin{aligned}
\lim _{r \rightarrow 1}(1-r)^{(k+2) / 2 m}\left|f^{\prime}\left(r e^{i \theta_{0}}\right)\right| & =\lim _{r \rightarrow 1}(1-r)^{(k+2) / 2 m} M\left(r, f^{\prime}\right) \\
& =\alpha,
\end{aligned}
$$

where α is maximal only for $f(z)=e^{-i \theta} f_{m}\left(e^{i \theta} z\right)$.
The result now follows using the major-minor arc technique of Hayman [4, Theorem 5.7] as modified by Noonan [8]. (See also [5].)

References

1. D. Aharonov and S. Friedland (to appear).
2. D. Brannan, J. Clunie, and W. Kirwan, On the coefficient problem for functions of bounded boundary rotation (to appear).
3. D. Brannan, On functions of bounded boundary rotation, Proc. Edinburgh Math. Soc. 16 (1968-9), 339-347.
4. W. Hayman, Multivalent functions (Cambridge Univ. Press, Cambridge, 1958).
5. R. Leach, On odd functions of bounded boundary rotation, Can. J. Math. (to appear).
6. O. Lehto, On the distortion of conformal mappings with bounded boundary rotation, Ann. Acad. Sci. Fenn. Ser. A 1 Math. Phys. 124 (1952), 14 pp.
7. J. Noonan, On close-to-convex functions of order β, Pacific J. Math. (to appear).
8. -_ Asymptotic behavior of functions with bounded boundary rotation, Trans. Amer. Math. Soc. 164 (1972), 397-416.
9. T. Umezawa, On the theory of univalent functions, Tôhoku Math. J. 7 (1955), 212-223.

Howard University,
Washington, D.C.

