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Abstract

Let u be a solution of the heat equation which can be written as the difference of two non-negative
solutions, and let v be a non-negative solution. A study is made of the behaviour of u(x, t)/v(x, t) as
t -» 0+ . The methods are based on the Gauss-Weierstrass integral representation of solutions on
R" X ]0, a[ and results on the relative differentiation of measures, which are employed in a novel way
to obtain several domination, non-negativity, uniqueness and representation theorems.

1980 Mathematics subject classification (Amer. Math. Soc): 35 K 05, 35 B 05, 35 C 15, 28 A 15.

Let W denote the Gauss-Weierstrass kernel, defined, for all (x, () G R" X ]0, oo[,
by W(x, t) — (47rO~"/2exp(-IU||2/4O, and let ja be a locally finite, signed Borel
measure on R". Then u, given by the convolution

(1) u(x,t)

is called the Gauss-Weierstrass integral of ju, provided that the integral exists. If
the integral exists and is finite at a point (xQ, /0),thenu is a temperature, that is, a
solution of the heat equation, on R" X ]0, to[. Conversely, if u is a temperature on
a strip R" X ]0, c[, or on a half-space R" X ]0, oo[, and v can be written as the
difference of two non-negative temperatures, then v has a representation as the
Gauss-Weierstrass integral of some signed measure v. For details and references,
see [14]. We write u — Wfi if u and JU are related by (1), and always assume that
such integrals are finite on some strip or half-space R" X ]0, c[, where 0 < c =£ oo.

In [5, Theorem 5.2], Doob proved that, if u = Wfx and v = Wv, then

m44o v(x, t)
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214 N. A. Watson [2 ]

exists a.e. [| v |] on R", and is then equal to the Radon-Nikodym derivative of \i
with respect to v. Similar results have been proved for harmonic functions, and in
more general situations with different limits (see [3] for references), but further
study of the behaviour of u/v, and application of the results about u/v, have
apparently been neglected. In [3], Brelot mentioned one simple application of an
analogous result for harmonic functions. In [19], new results and applications
were given for Gauss-Weierstrass integrals, and the present paper contains further
theorems, but generally of a different nature. We use the following basic result
[19, Theorem 1].

Let u = Wn and v = Wv, where v is non-negative, and let x e R". If v{B(x, r))
> 0 for all closed balls B(x, r) in R" with positive radius r, then

u(B(x,r)) ,. . , u(x, t) ,. u(x,t)
lim inf , ) '! < hm inf ) '. < hm sup ) (

r^o v(B(x,r)) r - o v(x,t) r ^ 0 v(x,t)

v{B{x,r))

The first theorem of the present paper is concerned with the upper and lower
limits of the quotient n(B(x, r))/v(B(x, r)) as r -» 0 and, in view of the above
result, it has immediate application to the relative behaviour of temperatures. We
are thus able to prove some new domination, non-negativity, uniqueness and
representation theorems for temperatures. These results include a multi-variable
version of a theorem of Gehring [6, Theorem 10], analogues of results for
harmonic functions on a disc in the plane due to Bruckner, Lohwater and Ryan
[4, Theorems 2 and 3], Hall [8, Theorem 4], and Lohwater [12], and a much more
general version of a recent improvement for temperatures [15, Theorem 5] of a
result of Krzyzanski [11, Theorem 5].

In addition, we are able to compare the strengths of singularities of Gauss-
Weierstrass integrals of singular and absolutely continuous measures. For exam-
ple, it is well-known that, if ju({x}) = X ¥= 0 and u = Wfi, then u(x, t) ~
(4irtyn/2\ as t -» 0, whereas if (i({x)) = 0 then u(x, t) = o{C"/2) as t - 0. We
shall show that, if v is non-negative and absolutely continuous, v = Wv, fi is
non-negative and concentrated on the set where v(x, t) is unbounded as t -» 0,
and u = Wp, then v(x, t) — o(u(x, t)) as t -» 0 for /x-almost every point x in R".

We also give two theorems which show that we can sometimes deduce from the
behaviour of u/v that ju or v must be concentrated on some particular set.

Given x - (* , , . . . ,x n ) £ R" and r > 0, we put \\x\\ = (x2 + • • • +x2)]/2 and
B(x, r) — {y E R": IU — y\\ < r). Every measure in this paper is a locally finite,
signed Borel measure on R". The letter m is used to denote Lebesgue measure on
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[ 31 Behaviour of temperatures on strip 215

R". We shall call a measure v strictly positive if v(B(x, r)) > 0 for all x e R" and
r > 0. The positive, negative and total variations of a measure fi are denoted by
/i+ , p.' and | n | .

The following temperature occurs in several of our theorems. Given a number
K > 0, we let VK denote the Gauss-Weierstrass integral of the function x H>
exp(ic|UII2), that is,

VK(x, 0 = 0 - 4Kr)""/2exp{K||jc||2/ (1 - 4*0}

for all (x, t) in R" X ]0,(4K)- ' [ if K > 0, in R" X ]0, oo[ if K = 0. Of course,

K O ( J C , O = 1 .

Finally, if u is a temperature and v is a non-negative temperature such that
u < v on R" X ]0, c[, then t; is called a positive thermic majorant of u on
R" X ]0, c[. For details and references, see [18].

2. Relative differentiation of measures

In this section we present several results on the behaviour of
H(B(x, r))/v(B(x, r)) as r -» 0, which we require later. The lemmas are all due to
Besicovitch [1,2], but one new theorem is also given.

LEMMA l-Ifn and v are non-negative measures on R", then

lim . . r r
r^0 v(B(X, /•))

exists and is finite for v-almost all x in R".

This result is proved, in the case n — 2, in [1, Theorem 2]. As with all the results
in [1,2], the proof carries over to the general case.

LEMMA 2. Let /t and v be non-negative measures on R", and let Y be a Borel set
such that n(Y) - 0. Then

r-o p(B(x,r)

for v-almost all x in Y.

See [1, Theorem 3].
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LEMMA 3. If n is a non-negative measure, and if a family F of balls covers a Borel
set E in such a way that, for each x E. E, there is a ball B(x,r) in F with arbitrarily
small r, then F contains a subfamily of disjoint balls whose union H has the property
that n(E\H) = 0.

This is a special case of [2, Theorem 3].

We now come to a new theorem, which generalizes and strengthens a result
which was stated, without proof and for the case v — m only, by Rosenbloom in
[13].

THEOREM 1. Let n and v be measures onR",v being strictly positive. If

(3) m s u P 4 § ^
for all x ERn,and

(4)

for v-almost all x G R", then /i is non-negative.

PROOF. For each non-negative integer k, let Pk denote the set of all x for which

Then (3) implies that
00

(5) U Pk = R"

and (4) shows that

Let e > 0. To each x in Po there corresponds a positive null sequence {r,} such
that

(7) n(B(x, /•,)) > - ev(B{x, /-,.))

for all /. For each k > 0 we have ^(/^ \ Pk_,) = 0, by (6), so that there is an open
set Vk D Pk \ Pt_ | such that

Krj<2-*£.

To each x G Pk\ Pk_, there corresponds a positive null sequence {/-,} such that

(8) B(x, rt) C Kfc a n d M ( ^ ( X , r , ) ) >-(k + e)r(B(x, r,))

for all /.
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15 ] Behaviour of temperatures on strip 217

Let E be any bounded open set in R". Consider the family F of all balls
B(x, r,) c E such that either x 6 E D Po and (7) holds, or x e E n (Pk\Pk^i)
and (8) holds. In view of (5) the family F covers E, and for each x G E there is a
ball B(x, r) in F with arbitrarily small r. Therefore, by Lemma 3, there is a
sequence [Cj) of disjoint members of F such that

For each k > 0, let {Tkj} denote the (possibly finite or empty) subsequence
consisting of those C, whose centres lie in Pk \ Pk^, if k > 0, in Po if k = 0. Then

(
k=0 V 7

- 2 (* + (
k=0 V 7

~ 2

k=\

Since e is arbitrary, it follows that /*(£) > 0.
Therefore p+ {E) > \>r{E) for all bounded open sets E. Using the regularity

properties of /t+ and n~, we deduce that /i+ (5 ) > ju~(S) for every ju-measurable
set S. This proves the theorem.

COROLLARY. Let n and v be measures on R" such that v is strictly positive. If

(9) lir

is finite whenever it exists, and is zero v-almost everywhere, then ju = 0.

PROOF. By Lemma 1, the limit in (9) exists and is finite ^-almost everywhere.
Therefore the hypotheses of Theorem 1 are satisfied with (i itself, and also with JU
replaced by -ft throughout. Hence both fi and -p are non-negative, and the
corollary is proved.
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3. Some applications of Besicovitch's results

The results presented here are all consequences of the above lemmas and the
fundamental inequalities in (2).

THEOREM 2. Let n and v be non-negative measures on R", and let Y be a Borel set
such that n(Y) = O.Ifu=Wfiandv= Wv on R" X ]0, c[, then

(10) u(x,t)=o(v(x,t)) ast^O

for v-almost all x G Y. In particular, if ju and v are mutually singular, then (10)
holds for v-almost every x G R".

PROOF. By (2) and Lemma 2, we have

hm44 = lim 4 ^ 4 0t^o v(x, t) r->o v{B{x,r))

for *>-almost all x G Y. This proves the first part, and the second now follows by
taking Y to be any Borel set such that ju(7) = 0 and v(Rn \Y) = 0.

We now use Theorem 2 to show that the initial singularities of Wp, where n is
absolutely continuous with respect to m, are milder than those of a corresponding
Wv with v singular with respect to m, at least p-a.e.

THEOREM 3. Let u — W\i, where [i is non-negative and absolutely continuous with
respect to m, and put

Z = lx: limsup«(x, /) = oo I.

If v is a non-negative measure concentrated on Z, and v = Wv, then

u(x,t) = o(v(x,t)) ast^Q

for v-almost every x G R".

PROOF. Since u{x, t) tends to a finite limit as t -» 0 for /w-almost every x in R",
we see that m{Z) — 0 and hence that jtt(Z) = 0. Since v is concentrated on Z, we
deduce that ju and v are mutually singular, and the result now follows from
Theorem 2.

The next theorem is analogous to certain results of Brelot [3] on various limits
of quotients of positive harmonic or superharmonic functions.
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THEOREM 4. Let u — W\i and v = Wv, where v is non-negative on R". The limit

(11) lim ' '
1^0 U(X, t)

exists and is non-zero v-a.e. In particular

limt>(x, t)

exists and is strictly positive v-a.e.

PROOF. Let N - {x: v(B(x, r)) = 0 for some r > 0}. Then N is an open set
and v(N) = 0. Since the inequalities in (2) are applicable to any x in R"\N, it
follows from (2) and Lemma 1 that

I i m 4 = lim 4 4 ^f-o v(x, t) r^o v(B(x,r))

exists and is finite for ^-almost all x in R". Hence the limit in (11) exists and is
non-zero p-a.e. in R". The second part of the theorem follows from the first by
taking u = 1.

COROLLARY. Let u — W\i and v — Wv, where v is non-negative on R". The set of

x for which

i n f 4 = 0
o u(x, t)

has v-measure zero. In particular,

vUx: liminft;(x, 0 =o | ) =0.

Our final result in this section is a generalization of [15, Corollary, page 278],
which corresponds to the case where v — m and S = 0 . In view of Theorem 2, it
is essentially a sharpened form of the above Corollary for the case where ju and v
are mutually singular.

THEOREM 5. Let u = W[i and v — Wv, where [i is non-negative and v is strictly
positive, and put

E = {x: u(x, t)/v(x, t) tends to a finite limit as t -» 0}

and

S — {x: u(x, t)/v(x, t) tends to oo as t -> 0} .

Ifu(x,t) = o(v(x, t)) as t -* 0, for v-almost all x in E, then ju is concentrated on S.
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PROOF. If x $ S, then either
(i) u{x, t)/v(x, t) tends to zero as t -> 0, or
(ii) u(x, t)/v(x, t) tends to a finite, non-zero limit as t -» 0, or
(iii) u(x, t)/v(x, t) tends neither to a limit nor to infinity.

Let A, B and C denote the sets where (i), (ii) and (iii) hold respectively. By the
Corollary to Theorem 4, n(A) - 0. By hypothesis, v{B) - 0. By [5, Theorem 5.2],
v(R" \E) = 0 and hence v(C) - 0. Therefore v(B U C) = 0, and hence Lemma 2
implies that

l i m ' < * < * ' ' » = 0
( B ( ) )

for ju-almost all x G B U C. The inequalities in (2) now show that

lim —7 r — lim . — — 00
r ^ o v(x, t) r^o(B

ju-a.e. on B U C. The definitions of B and C now imply that n(B U C) = 0, and
hence /i(R" \ S) = 0, as required.

4. Domination, non-negativity and uniqueness theorems
for temperatures

We now present some immediate consequences of Theorem 1.

THEOREM 6. Let u = Wfx and v = Wv on R" X ]0, c[, where v is strictly positive
c^ 00.//

(12) lim sup " j * ' ^ >-oo

for all x G R", and

(13) lim sup 4 ^ 4 ^

for v-almost every x G R", then u^Av on R" X ]0, c[.

PROOF. We may suppose that A = 0, since we could replace u by u — Av
throughout. By (2),

uix^t) n(B(x,r))
lim sup —) r < lim sup ; ; ff

,_o v(x,t) r^
yv(B(x,r))

for all x G R", so that (12) and (13) imply that the hypotheses of Theorem 1 are
satisfied. Hence ( i > 0 , and therefore u > 0.
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191 Behaviour of temperatures on strip 221

As a consequence of Theorem 6, we can extend a result of Gehring [6, Theorem
10] to the case of an arbitrary n, and thus sharpen [18, Theorem 3] and extend
[17, Theorem 5] to R" for all n.

THEOREM 7.Letu = W\i on R" X ]0, c[. If

limu(jc, /) > -oo

for all x at which the limit exists, and

\imu(x, t) > A

for m-almost every x G R", then u> A onR" X ]0, c[.

PROOF. Take v — m in Theorem 6.

Theorem 6 also gives rise to the following uniqueness result.

THEOREM 8. Let u = Wn and v = Wv on R" X ]0, c[, where v is strictly positive.

If

hm inf -1—T r1 <
r^O v(x,t)

for all x e R", and

(14) l i m i n f 4 ± 4 = 0
i -o v(x,t)

for v-almost every x G R", then u = 0 throughout R" X ]0, c[.

PROOF. By applying Theorem 6 to -u and v, we deduce that u < 0. Hence (14)
implies that

lim —7—-—{- = 0
r-0 V(X,t)

for p-almost every x G R". Another application of Theorem 6 now shows that
u > 0, and the result is proved.

If we put v = m in Theorem 8, we obtain a strengthened form of a result which
was announced, without proof, in [13], and incorrectly demonstrated in [7]. See
[15, page 278] for further details. The result is also analogous to one due to
Lohwater [12, Corollary] for harmonic functions on a disc in the plane.
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THEOREM 9.Letu= Wp on R" X ]0, c[. If

(15) liminf \u(x, t)\< oo

for all x £ R", and

liminf u(x, t) = 0

for m-almost every x £ R", then u = 0 throughout R" X ]0, c[.

Another interesting consequence of Theorem 6 is motivated by analogy with
recent work of Kuran [10]. It implies that condition (15) in Theorem 9 can be
weakened in a particular way, without affecting the conclusion of the theorem (cf.
the proof of Theorem 8).

We first recall [16, Theorem 11]. If Z C R" and w(Z) = 0, then there exists a
positive temperature c on R" X ]0, oo[ such that v(x, t) -> oo as (x, t) -> (.y, 0) for
all y £ Z. We can obviously suppose that v > 1, since v + 1 has similar proper-
ties.

THEOREM 10. Let u= Wp on R" X ]0, c[, and suppose that

(16) liminf M ( X , 0 ^A

for all x £ R" \ Z , where m(Z) — 0. Le/ v be a temperature such that v> 1 on
R" X ]0, c[ andv(x, t) -« oo as t -> 0 for all x £ Z. / /

(17) liminf ^ ^ 0

/or a// x £ Z, tfien w < ,4 on R" X ]0, c[.

PROOF. There is a non-negative measure v on R" such that v — Wv on
R" X ]0, c[. Since v > 1, we have »» > w and hence y is strictly positive. We can
suppose that A = 0, since we could replace u by u - A throughout. It follows
from (16) and (17) that

liminf "|*'fj <0

for all x £ R", so that Theorem 6 gives the desired result.
In the next section we shall use Theorem 10 to prove some new representation

theorems for temperatures.
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5. Representation theorems

The theorems of this section feature a countable set C. We allow this set to be
finite or empty, but retain the notation for a countably infinite set.

The first result is analogous to one due to Bruckner, Lohwater and Ryan [4,
Theorem 3] for harmonic functions on the unit disc in R2, at least when A — 0.
Another special case, in which C = 0 , parallels [4, Theorem 2].

THEOREM 11. Let u — W\x. on R" X ]0, c[, and let C = {Xj}J>x be a sequence of
points in R". / / there is a real constant A, and a non-negative constant K, such that

(18) liminf«(.x, t) < A exp(K||jc||2)

for m-almost all x G R", and

(19) liminfM(x,/) < oo

for all x G R" \ C, then u can be written in the form

u(x, t) =AVK(x, t) - h(x, t)+ 2f*+ {{xj})w(x - Xj, t)
7 = 1

on R" X ]0,min{c, (4K)" ' } [ if K > 0, on R" X ]0, c%if K = 0, where h is a non-nega-
tive temperature and VK is as defined in Section 1.

PROOF. If we put u* — u — A VK, then (18) becomes

liminf u*(x, t) *£ 0

for m-almost all x G R", and (19) holds with u* in place of u. If we prove the
result for u*, then the result for u will follow immediately. We may therefore
suppose that A = 0 and K = 0.

Let e > 0. For eachy, put \ y = n+ ({*,}) + e2~J, and let
00

w(x, t) = u(x, 0 — 2 ^jW(x — Xj, t)
7 = 1

for all (x, t) G R" X ]0, c[. Since
00 OO 00

V X W( Y — Y t\ *£ \ ll+ ( ( Y \ \ W( Y — V / ^ + F(A<IT1 Y"/2 V 7~>^ A • V V I A A-, M ^ ^J JH M A:MFr I A A , t ^ 1 c \ > " * / £j ^

(20) -

f W{x - y, t)dn+ (y) + e(4nty"/2 < oo

for all (x, I) £ R" X ]0, oo[, it follows from [14, Lemma 1] that w is a tempera-
ture.
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Let Z denote the set of points where (18) fails to hold, so that m{Z) = 0. Let v
be a temperature such that v > 1 on R" X ]0, c[ and v(x, t) -> oo as t -* 0 for all
x E Z. Since w < w, for all x G R" \ Z we have

(21) liminfw(x, f) < 0.

Next, for each j let Sj denote the Dirac 6-measure concentrated at Xj. Then
w — Wt\, where TJ = p. — 2°°=i A,-8,-, and for eachy we have rj({xy}) = /i({jcy-}) —
X7 < 0. Therefore w(xy, ?) ~ Tj({xy})(4w0"l/2 as / ^ 0, in view of [19, Examples 1
and 2]. Thus we see that

(22) lim»v(x, t) = -oo
1-0

for all x £ C. Finally, if x G Z \ C we have

liminfH>(x, t) < liminfw(x, t) < cc

by (19), so that

(23) liminf^jj^O.

It follows from (21), (22), (23) Mid Theorem 10 that w < 0 on R" X ]0, c[.
Therefore, in view of (20), *

00

( \ . XI -4- / ( -\ \ j jr/ \ | ft J\~"/2

for all (x, 0 G R" X ]0, c[ and all e > 0. Making e - 0, we obtain

W(x -y, t)diL+ (y) < 2 f*+ {{xj
" 7 = 1

7 = I

The sum on the right is therefore a positive thermic majorant of u on R" X ]0, c[
and hence majorizes the least such majorant. Hence, by [18, Theorem 2],

so that

7 = 1

and the result is proved.

Theorem 11 gives rise to another representation theorem, as follows.
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THEOREM 12. Let u = Wfi on R" X ]0, c[, and let C = {*,},>, be a sequence in

R". If there exist non-negative constants A and K such that

m-a.e. on R", and

liminf | «(x, r) |^^4 exp(«IUII2)

liminf | u(x, t) | < oo
/—o

for all x G R" \C, then u can be written in the form

(24) u(x, t) = h(x, r ) + 2 p({xj})W(x ~ xj, t)
7 = 1

on R" X ]0, min{c, (4K)" '} [ if K>0, on R" X ]0, c[ // K = 0, where h is a tempera-
ture which satisfies

(25) \h\<AVK.

PROOF. Applying Theorem 11 to u we obtain

u(x, t) ^AVK(x, 0 + 2 M+ ({xj))w(x - Xj, t),
7=1

so that u has a positive thermic majorant given by the expression on the right.
This expression therefore majonzes the least positive thermic majorant of M, SO
that by [18, Theorem 2],

H// Y — v / \dlL+ ( v\ ^ AV ( Y t \ ~\~ 7 *l~*~ ( / Y 1 1 \Wl Y — Y / I
V j ) / r^ \ s ) ^^ "^ K V * / ^^ y" \ \ i i t \ i' / *

7 = 1

Therefore

'" 7 = 1

and a similar argument applied to -u gives
no

0< f W{x-y,

It follows that
, /) < u(x, t)- 2 ii{{xj))W(x - Xj, t)<AVK(x, t),

7 = 1

which shows that | h \ < /4 FK, as required.
There is a known representation theorem for a temperature h which satisfies

(25). For n— 1, it is proved in [9, page 206]. Combining this with Theorem 12, we
obtain a more explicit representation of u.
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COROLLARY \. If U satisfies the hypotheses of Theorem 12, then there exists a
function f on R" such that

for all x, and
00

u(x,t)=f W(x-y,t)f{y)dy+ 2 p({xj})w{x - xjtt)

on R" X ]0,min{c,(4K)-'}[ if K > 0, on R" X ]0, c[ if K = 0.

PROOF. By Theorem 12, u has the representation (24). Define / o n R" by

f(x) — limsup/i(x, t).
/-o

Since | /i | < A VK, it is obvious that h has a positive thermic majorant t; such that

limsupi>(jc, t) < oo

for all x, and that/(jc) > -oo for all x. The result now follows from [18, Theorem

!]•

The special case of Theorem 12 in which A = 0 and K = 0 gives us the
following analogue of a theorem on harmonic functions on a disc in R2 due to
Lohwater [12]. This corollary also contains, as the special case where /x is
non-negative and C is a singleton, a recent improvement [15, Theorem 5] of a
theorem of Krzyzanski [11, Theorem 5].

COROLLARY 2. Let u = Wp. on R" X ]0, c[, let

E — [x £ R": Mmuix, t) exists),

and let C = {xj}j>x be a sequence of points in E. //lim,jOw(x, t) — 0 m-a.e. on E,
and lim,_ow(jc, t) is finite on E\C, then

"(x,t)= 2li({xj})w(x-Xj,t)
7 = 1

forall(x,t) 6R"X ]0, c[.

PROOF. By [5, Theorem 5.2], m(R" \ E) = 0. It now follows that the hypotheses
of Theorem 12 are satisfied, with A = K = 0, so that u can be written in the form
(24). Since | h \ *s A VK = 0, the corollary is proved.
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Another consequence of Theorem 12 is roughly analogous to a result of Hall [8,
Theorem 4] on holomorphic functions on a disc. His hypotheses allow approach
to the boundary along arbitrary Jordan arcs, not just along radii, but require a
uniform rate of growth where the values of the modulus are unbounded.

THEOREM 13. Let u = Wfi on R" X ]0, c[, and suppose that there are non-nega-
tive constants A and K such that

(i) lim,_o | "(*> t)\<A exp(K || x | |2) m-a.e. on R",

(ii) lim,^o | u(x, t)\= <x> on a countable set C, and

(iii) lim,^o tn/2u(x, t) - 0 for all x G C.

Then \ u | < A VK on R" X ]0, min{c, (4K)"1 }[ // K > 0, on R" X ]0, c[ifn = 0, so that
u has a representation in the form

(26) u(x,t)=fw(x-y,t)f(y)dy

for some function f such that \ / (y ) | < A exp( K 11 y \ \2) for all y.

PROOF. Hypotheses (i) and (ii), together with Theorem 12, imply that u has the
representation (24), where {xJ}jS,] — C and (25) holds. Using (iii) and (25), we
obtain

(27) lim ( r " / 2 2 /* ({*y}M*-*> . ' ) ] = \imt"/2{u(x, t) - h{x, t)) = 0

for all x G C. For each non-negative integer /', we can write

V{x-y,t)dv,(y),

where the summation is taken over all j J= i and where, if Sj denotes the Dirac
S-measure concentrated at xJt

Since Vj({xj}) - 0, [19, Example 1] shows that

W{x-y,t)dvi{y) ^0

as / -» 0. It therefore follows from (27) that

/ 2 , - x,, t) - 0.

Hence fi({x,}) = 0 for each ;. It follows that u = h, and hence that | u | < AVK.
The representation (26) now follows by an argument similar to the one used to
prove Corollary 1 of Theorem 12.
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