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1. Introduction

In his paper [8], N. I to gives an elegant proof that the Sylow ^-group
of a finite solvable linear group of degree n over the field of complex numbers
is necessarily normal if p > w+1. Moreover he shows that this bound on
p is the best possible when p is a Fermat prime (i.e. a prime of the form
22*+l), but that the bound may be improved to p > n when p is not a
Fermat prime.

The object of this paper is to prove the following generalization of
It6's theorem.

THEOREM. Let p be a given prime, and let G be a finite solvable completely
reducible subgroup of the general linear group GL (n, IF) over a perfect field
&'. Let P be a Sylow p-group of G, and let K denote the p-core of G (i.e. K is
the largest normal p-subgroup of G). If \P : K\ = px, then X ^ hv(n) where

°° r n ~i
V if p is a Fermat prime,
i=o IP (p—1)J
00 r«~i2 —:

<=i LplJ

V
i=o IP (p—1)J

if p is odd and not a Fermat prime,

(Here [x] denotes the greatest integer ^ x, and so the formally infinite sums
each only have a finite number of nonzero terms.)

REMARK. Evidently Ito's theorem is an immediate consequence of
this theorem since A = 0 implies that P is normal in G. We shall later show
that the values for Xv(n) (p =£ 2) are best possible in the sense that for each
value of n there is a group G satisfying the hypotheses of the theorem with
A = Xv(n). The value for X2(n) is less precise; it is attained for infinitely
many n but not for all n.

There are two simple corollaries to the Theorem.
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COROLLARY 1. Let G be a finite solvable completely reducible subgroup
of GL(n, ^) where & is a perfect field of characteristic p. If the Sylow p-
group of G has order p?, then fi ^ Xv(n).

COROLLARY 2. Let G be a finite solvable subgroup of GL(n,^) where
^ is a perfect field of characteristic p. Let P be a Sylow p-group of G, K be
the p-core of G, and put px = \P :K\. Then A f=L Xp(n). {Thus when the field
has characteristic p we may drop the hypothesis of complete reducibility.)

REMARK. Corollary 1 is a substantial improvement on results of B.
Huppert ([6] Satz 13, Satz 14). Huppert shows that, if J5" is the finite field
with pf elements, then (i ^ f(3n/p—l) if p is odd, and /i^f(n—l) if
p = 2. Since any finite field is perfect, our Corollary 1 gives a better estimate
(independent of /) except when 3? has two elements.

2. The proof of the Theorem in the primitive case

We begin with the observation that G remains completely reducible
in any finite normal extension of 3F (see [2] Theorem (70.15)), and hence
that G is completely reducible over the algebraic closure of &'. Thus,
without loss in generality, we shall assume that 3F is algebraically closed.

We now proceed to the proof of the Theorem. The technique is similar
to that used in [3], and in fact the connexion between these results is even
more obvious when we note that px is just the order of the Sylow p-groups
of GjF{G) (where F(G) is the Fitting subgroup of G). Once again the
critical case hinges on an analysis of the primitive solvable groups, and we
begin with that.

We shall use the theorem of Suprunenko ([9] Theorem 11) quoted in
[3]:

Let G be a solvable primitive subgroup of GL (n, &) where !F is an
algebraically closed field. Let n = q[x • • • q]* be the cannonical decomposition
of n into prime factors. Then G has a normal nilpotent subgroup A such that
G/A is isomorphic to a subgroup of the direct product of the symplectic groups
Sp(2lt, qt) (i = 1, • • -, k).

Now let G be a solvable primitive group satisfying the hypotheses of
our Theorem. Since the Sylow ^>-group of the group A (defined above) is
a normal ^-subgroup of G, it is clear that px divides \G\A\. If pVi is the
highest power of p dividing 15^(2^, qt)\ (i = 1, • • •, k), then X ^ r1+- • -+vk

by Suprunenko's theorem. This means that, if we can prove vt sS Xv{q\')
for each i, then X ^ 2*=i p̂(<?*') = ^An) a s required. Thus, in order to
show that our Theorem holds in the case G is primitive, it is sufficient to
prove the following lemma.
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LEMMA. / / q is a prime, I is an integer ^ 1, and p" is the highest power
of p dividing \Sp(2l, q)\, then v ^ As(»).

PROOF. We recall that

\Sp(2l, q)\ = ( ?«_1)(?«-i_i) • • • fe'-W

(see [1] page 147). If p = q, then v = P ^p^+p1'2^ 1-1 ^ K(Pl) i f

p ^ 3, and v = I2 ^ [4.2l/3] —1 = A2(2
l) if p = 2. This proves the result

in this case.
Now suppose that p ^ q. Then p" divides

Since ^ — 1 ^ qi~1 + l unless q = 2 and ^ — 1 = 3, />" divides 3- (? '+l)! .
It is well known that the exponent of the highest power of p dividing m! is
2S=i [W^'L a n ( i so> by direct calculation;

if )̂ is odd and not a Fermat prime;

(ii) „ ^ j r^±ii ^ f r ^ i = XM1)
<=i L p* J t=i L/>* 1(i> — 1)J

if >̂ is a Fermat prime and p ^ 3;

if ^ = 3 and I ^ 2 (and v ^ A,(j) if / = 1);

if /> = 2 (since q ^ 3).

This completes the proof of the lemma, and hence completes the proof
of the Theorem for the case G primitive.

3. The proof of the Theorem in the general case

We shall proceed by induction on the degree n. The reduction to the
primitive case (considered in § 2) is very similar to the corresponding
reduction in the proof of Theorem 1 of [3]. Therefore we shall outline the
steps and refer to [3] for details.
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We begin with a few observations. Let us write XP(G) = X when px is
the index of the p-core of G in a Sylow />-group of G. Then it is easily seen
that for a direct product of finite groups we have

k,{G1x---xGd)=X,(G1)+--'+X,(Gi).

Similarly, if H is a subgroup of G, then XV(H) ^ XV{G).
We now proceed to the proof of the Theorem. Since we have already

dealt with the primitive case in § 2, we have two cases to consider.
(a) Suppose that G is reducible. Then G is isomorphic to a subgroup of

a direct product G1X G2 where Gt is a finite solvable completely reducible
subgroup of GL(ni,^') and %+«2 = n- (Compare [3].) Hence, by the
observations above and the induction hypothesis,

X = XV{G) £ h(Gi)+h{G*) < KM+KM ^ *,(»!+»•) = KW.

(b) Suppose that G is irreducible but imprimitive. Then there is a divisor
d > 1 of n such that G has a normal subgroup N with the following proper-
ties. (See [2] Theorem (50.2).) First G/N is isomorphic to a subgroup of
the symmetric group Sa. Secondly N is isomorphic to a subgroup of the
direct product A^x • • • xNd where the N( are each isomorphic to a finite
solvable completely reducible subgroup of GL(m,^) (with m = nfd).
(Compare [3].) Therefore, from the observations above and the induction
hypothesis,

X = XV{G) ^P+i *,(#,) ^ P+dXP(m)
»=i

where pf is the highest power of p dividing d!. Thus, it remains to prove
that

(1) P+dXp(m) ^ Xv(md).

The proof of (1) is trivial if p = 2. In the other cases it is convenient
to put p' = p— 1 or p depending on whether p is or is not a Fermat prime.
(1) is obvious if m < p', so suppose that m^ip' and choose the integer
j' ^ 0 so that ftp' ^.m < pi+1p'. Then

and

p

Hence, by addition, (1) follows.
This completes the proof of the Theorem.
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4. Limiting cases of the Theorem

We shall give examples in terms of matrix groups over the field %> of
complex numbers, but of course there are corresponding examples in terms
of linear transformations.

If p is a Fermat prime, then I to gives an example in [7] of a finite
solvable matrix group of degree p — 1 over # with a Sylow />-group which
is not normal. On the other hand, if p is not a Fermat prime, then the matrix
group of degree p generated by the permutation matrix

together with all diagonal matrices with diagonal entries ± 1 is a finite
solvable group with a Sylow ^>-group which is not normal. These examples
show that the bound A.p(n) is exact when n = p — l or p depending on
whether p is a Fermat prime or not.

We now show that if p ^ 2 then there is a finite solvable matrix group
G of degree n over "̂  for which kv{G) = Xv{n). For convenience we write
p' = p — 1 or p depending on whether p is or is not a Fermat prime, and we
put m = [n/p']. Since kv{n) = Xv(mp'), it is sufficient to construct G of
degree mp'. Let Go be a finite solvable matrix group of degree p' over <& which
has a nonnormal Sylow ^>-group (see above). We define N as the matrix
group of degree mp' consisting of all block diagonal matrices diag
(xlt • • -,xm) with each xt e Go. Let H be a group of block permutation
matrices of degree mp' (with blocks of degree p' of the form 0 or 1) such
that H is isomorphic to a Sylow p-group of the symmetric group Sm. It is
clear that N is normalized by H, and that G = HN is a finite solvable group.
It is easily verified that G has no nontrivial normal ^-subgroup (compare
with [3] § 4), and that the Sylow p-group of G has order px where

(The latter sum is the largest exponent to which p divides m\.) Since
XV(N) = m and [m/p1] = \n\p'p1} for each i ^ 0,

00 r n 1

as required.
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5. The proof of the Corollaries

PROOF OF COROLLARY 1. The p-core K of G is completely reducible
by Clifford's theorem ([2] Theorem (49.2)). Since the only completely
reducible linear ^>-group over a field of characteristic p is the trivial
group ([2] Theorem (27.28)), therefore K = 1 and \P\=px. Hence
fi = X :£ XP(n) by the Theorem.

PROOF OF COROLLARY 2. We may choose a basis for the underlying
vector space so that (for some integers n( ^ 1 with % + • • • + « , = n)
each element x in G has a corresponding matrix of the form

(2)

where the M.-XM^ blocks zt on the diagonal correspond to the irreducible
components of G, and all entries above these blocks are zero. In particular,
the group

Gt = {xt in (2) \x e G}

is an irreducible matrix group of degree ni over SF (i = 1, • • •, s). It follows
from Corollary 1 that, if the order of the Sylow p-group of G{ is p*', then
,", ^s ^D(WI)- On the other hand, the subgroup

H = {x e G | xt = 1 for i = 1, • • •, s in (2)}

is a normal subgroup of G, and if is a />-subgroup because ^ is of charac-
teristic p. Hence H is the p-core of G, and

X^K+'-p,^ X])(n1)+ • • • +XP(n,) ^ Xp(n).

6. Comments

(a) The theorem of Suprunenko used in § 2 also allows us to make a
more detailed analysis of the structure of the factor group PjK in the
Theorem. For example, if p is odd and n < p(p—1), then it is not hard to
show that PjK is an elementary abelian />-group.

(b) It6 points out in [8] that his theorem is equally true for p-
solvable groups. In the same way it may be shown that the Theorem of the
present paper remains true under the hypothesis that G is ^-solvable
(rather than solvable) — provided we add the condition that the factor
group P/K is cyclic. I do not known what the situation is without this ad-
ditional condition. On general grounds (e.g. using Jordan's theorem [2]
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Theorem (36.13)) it can be seen that a theorem analogous to the Theorem
proved here must hold even when there is no solvability condition imposed
on G. From the results of Feit and Thompson [5] and Feit [4] it might be
conjectured that the corresponding bounds will be about twice Xv{n), but
the proof would certainly be much more difficult.
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