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Abstract

Every invertible n-by- n matrix over a ring R satisfying the first Bass stable range condition
is the product of n simple automorphisms, and there are invertible matrices which cannot be
written as the products of a smaller number of simple automorphisms. This generalizes results
of Ellers on division rings and local rings.
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1. Introduction

In various situations it is instructive to represent a matrix as a product of
matrices of a special nature. For example, every orthogonal «-by- n matrix
is the product of at most n reflections [1], [2, Proposition 5, Chapter IX,
§6, section 4] (see [4], for further work on reflections). In linear algebra,
one writes an invertible matrix as a product of elementary matrices. One can
ask how many elementary matrices (or commutators) are needed to represent
any product of elementary matrices (respectively, commutators); see [3]. In
multiplicative simplex methods, one writes an invertible matrix over a field as
the product of matrices each of which differs from the identity matrix by one
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column. These matrices are simple in the sense of the following definition
of Ellers [5].

An invertible matrix /? over a (possibly non-commutative) field K is sim-
ple, if rank(/? - 1 v) = 1, that is, fi fixes every vector of some hyperplane in
V. Examples of simple matrices include reflections, involutions, transvec-
tions, axial affinities and hyperreflections.

Motivated partly by geometric applications, Ellers showed that if /? is an
element of Aut(K) and rank(/? -\Y) = t, there are simple mappings /?, in
Aut(K) such that /? = y?,/?2 •••/?,, and / is the smallest number for which
such a factorization of /? exists.

Later Ellers generalized these results to commutative local rings R [6] and
then to non-commutative local rings R [7].

In this paper, we extend these results to any ring R satisfying the first Bass
stable range condition. Along with local rings R, this includes all semilocal
rings R, all Artinian rings R, all O-dimensional commutative rings R (that
is, every prime ideal of R is maximal), and many other rings [8], [9], [12].

2. Statement of results

First, we introduce some definitions and notations.
Let R be an associative ring with I, V a right /?-module,

V* = HomR(V,R)

the dual module, End(F) = Hom/ J(F, V) the ring of all iJ-linear endomor-
phisms of V, and Aut(F) the group of all automorphisms of V (Aut(F) c
End(F)). A vector u € V is called unimodular if fv = 1 for some f € V*.

When R is a division ring, the rank of a e End(F) is defined as the
dimension of aV. In general, there are different ways to extend the notion
of rank. In this paper we use two different definitions of rank.

DEFINITION 1. The rank, rank (a), is the least integer s > 0 such that
a = vxfx + h vjs with IA e V and fte V*.

In other words, a:V —> V can be decomposed as V —* i?5 —» V, where
Rs is the i?-module of s-columns over R.

DEFINITION 2. The unimodular rank, w-rank (a) is the least integer s >0
such that a = i/,/, H 1- usfs with unimodular v{ e V and fteV*.

Both ranks could be infinite (when no such s exists). Clearly, rank(a) <
u- rank(a) always. When R is a division ring, both definitions coincide with
the usual definition of the rank as the dimension of aV.

An automorphism /? in Aut(F) is called simple (respectively, M-simple),
if rank(j?-lK) = 1 (respectively, M-rank(^-l^) = 1). That is, 0 = lv+uf
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with v e V (v is unimodular in the case of w-simple /?) and / e V*.
Invertibility of such p is equivalent [10, Section 2] to 1 + fv e GL, R.

Examples of simple automorphisms include transvections (when fv = 0)
and reflections (or involutions, when fv = -2) . More generally, a hyper-
reflection can be denned [5] as a simple P = 1 v + vf with fv having a
finite order modulo the commutator subgroup [GL1 R, GL, R].

Recall that the first Bass stable range condition on R is:
If a, b e R and Ra + Rb = R then there is c € R such that R{a + cb) =

R.
We write sr{R) = 1 if R satisfies this condition and R / 0 . See [8], [9],

[12] for various examples of such rings.

THEOREM 3. / / sr(R) = 1, P e Aut(F) and rank(y? - 1) = s < co, then
P is the product of s simple automorphisms, and it cannot be factored into
any product of a smaller number of simple automorphisms.

THEOREM 4. / / ST(R) = 1, p e Aut(F) and u-rank(P -l) = s<oo, then
p is the product of s u-simple automorphisms, and it cannot be factored into
any product of a smaller number of u-simple automorphisms.

Theorem 3 will be proved in the next section. The proof of Theorem 4 is
so similar that we leave it to the reader.

3. Proof of Theorem 3

Let GLn R denote the group of all n-by- n invertible matrices over R. It
can be identified with Aut(Rn), where R" is the i?-module of n-columns
over R.

LEMMA 5. Assume that ST(R) = 1. Let n > 1 be an integer, and
p = (bjj) e GLni?. Then there is a simple matrix y e GLn/J such that

PROOF. Consider the last row (bn , , . . . , bn n) of the matrix p = (bi ) e
GLn R. Since P is invertible £ b'n tR = R'. The first Bass stable range
condition implies all higher Bass conditions for R as well as for the opposite
ring [11]. So there are c{ € R such that

( V „ + *«,. Cl + -- + K,n-lCn-l)R = R-
Since ST(R) — 1, every one-sided unit in R is a unit (a result of Kaplansky,

see [12]). So bn n + bn {c{ H ^bn,n-icn-\ e G L , i ? . Let y be the simple
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matrix which differs from the identity matrix \n only in the last column,
the entries of the last column of y being - c , , —c2, ... , —cn_{, 1. Then

, . , t

Let us prove now the first conclusion of Theorem 3. So let /? — 1 v +
v\ f\ + ''' + vsfs

 € Aut(F) w i t n vi e V and ft^V*. We want to prove

that ft is a product of 5 simple matrices. We proceed by induction on

s. Set b{ j - ftVj e R and consider the matrix fi' = ls + (bt j). By [10,

Section 2], fi' e GL^ R. By Lemma 5 above, there is y e GLS /? such

that (y/J'y"1),,, e GL , / i . Replacing (i/,, . . . , i/,) by ( i / , , . . . , i/,)?"1 and

(/i , • • • , / 5 ) T by y( / , , . . . , / J T , we do not change /?, but replace /?' =

l+5+( / , , . . . , fs)
T(vx, ... , vs) by y^ 'y" ' . So we can assume that 1+/^^ =

(P')StS G GL,/? . By [10, Section 2], <J = 1F + vjs € Aut(F). So 6 is a

simple matrix. We have p = d{\v + {8~lv{)fx + • • • + (S~lvs_i)fs_l). Bythe
induction hypothesis, the second factor, ( l F + (<5~1i/1)/14 t-(<5~1'ys_1)/j_1)
is the product of 5 - 1 simple automorphisms. So JS is the product of 5
simple automorphisms.

l x l us prove now the second conclusion of Theorem 3. That is, we want
to prove that if /? = Sl • • St is the product of t simple automorphisms St,
then rank(yff -\v)<t. We write Si = 1 v + vtft with vt e V and ft G V*.
By induction on m, we see easily that S{ • • • Sm - 1 v + i/lgl H ^v

mSm^
where g( G F* depend on m . So rank(/? - 1K) < / .

Theorem 3 is proved. We complement it with the following result.

PROPOSITION 6. For any associative ring R with sr(R) = 1, any integer
n > 2, and any integer s in the interval 0 < s < n, there is a matrix
P G GLn R with u- rank()? - l n ) = rank(/? -\n) = s. So this ft is the product
of s simple matrices and it is not a product of a smaller number of simple
matrices.

To prove this proposition we will need the following two lemmas.

LEMMA 7. Let R be an associative ring with sr(i?) = 1 and a e End(F)
be such that the R-module aV is a direct summand of V and has a free basis
of cardinality s. Then w-rank(a) = rank(a) = 5.

PROOF. Let {e } be a free basis for aV of cardinality s.
We prove first that rank(a) < w-rank(a) < s. If 5 = oo, there is nothing

to prove, so let s < oo. For every v in V, we have av = ^ej^v)
with ft{v) G R. Since {*>,} is a basis, fl e V*. So a = E ^ - » h e n c e
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rank(a) < u- rank(a) < 5. (Note that rank(a) < s holds even without the
assumption that aV is a direct summand.)

Let us prove now that rank(a) > s. Suppose on the contrary that t —
rank(a) < s. That is,

a = vJi + • • • + vtft e Aut(V)

with 1/. e V and fl• e V*. Pick n € End(F) such that n2 = n and
nV = aV. Set M, = nvt . We can write ui = £ , £ , 0 , , with ai , G R.
Note that t < 00, so only finitely many ej are involved in all these linear
combinations. Say, M( = Y!JCJQJ , f o r i=l, ... ,t with t < m < 00. Now
we write e} = X) " A , ; for y = 1, . . . , w with bt }eR. We have ay? = lm ,
where a = (a^ ;) and y? = (bj ) . Complementing a by zero columns and
P by zero rows, we obtain two matrices a , /?' in the ring A/m/? of square
matrices over /? such that a'/?' = a/3 = \m. Since sr(i?) = 1, we have
sr(MnR) = 1 by [11]. So, by Kaplansky's result [12], /5 e GLm R. But since
/? has a zero row, this is impossible.

REMARK. Lemma 7 holds if the condition sr(/?) = 1 is replaced by the
condition R ^ 0 together with the condition sr(/?) < 00 or the condition
that R is commutative.

LEMMA 8. For any n > 2 there exists an invertible matrix 0n in GLW R
such that the matrix fin - 1 is also invertible.

PROOF. When n — 2, we can take

* • ( ! "I)-
When n = 3, we can take

/ I 0 l
h = 1 1 0

Vo 1 0
For n > 4 , we can write fin as the direct sum of the above matrices

/?2 and /?3. For example, /?4 = /?2 © /32 is the required matrix in GL4 R,
/?5 = y?3 © /32 is the required matrix in GL5 i?, and so on.

PROOF OF PROPOSITION 6. When s = 0, we take /? = \n . When 1 < 5 <
n - 1, we can take fi = y+ ln_5_,, where y e GLi+1 i? is the Jordan matrix
with ones along the diagonal. Then (/? - ln)R" is a direct summand of Rn

with 5 free generators, so M-rank(/? - 1J = rank(/3 - ln) = 5 by Lemma 7.
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Finally, when s = n, we find /} as in Lemma 8, so (/? - ln)R
n - R",

hence rank(/? - ln) = n by Lemma 7.
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