FACTORIZATION OF INVERTIBLE MATRICES **OVER RINGS OF STABLE RANK ONE**

LEONID N. VASERSTEIN AND ETHEL WHELAND

(Received 17 May 1989)

Communicated by R. Lidl

Abstract

Every invertible *n*-by-*n* matrix over a ring R satisfying the first Bass stable range condition is the product of n simple automorphisms, and there are invertible matrices which cannot be written as the products of a smaller number of simple automorphisms. This generalizes results of Ellers on division rings and local rings.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): primary 15 A 23; secondary 20 H 25. Keywords and phrases: stable rank, modules, simple matrices.

1. Introduction

In various situations it is instructive to represent a matrix as a product of matrices of a special nature. For example, every orthogonal n-by-n matrix is the product of at most n reflections [1], [2, Proposition 5, Chapter IX, §6, section 4] (see [4], for further work on reflections). In linear algebra, one writes an invertible matrix as a product of elementary matrices. One can ask how many elementary matrices (or commutators) are needed to represent any product of elementary matrices (respectively, commutators); see [3]. In multiplicative simplex methods, one writes an invertible matrix over a field as the product of matrices each of which differs from the identity matrix by one

The research was supported in part by NSF grant DMS 86-20428.

^{© 1990} Australian Mathematical Society 0263-6115/90 \$A2.00 + 0.00

column. These matrices are simple in the sense of the following definition of Ellers [5].

An invertible matrix β over a (possibly non-commutative) field K is simple, if rank $(\beta - 1_V) = 1$, that is, β fixes every vector of some hyperplane in V. Examples of simple matrices include reflections, involutions, transvections, axial affinities and hyperreflections.

Motivated partly by geometric applications, Ellers showed that if β is an element of Aut(V) and rank $(\beta - 1_V) = t$, there are simple mappings β_i in Aut(V) such that $\beta = \beta_1 \beta_2 \cdots \beta_t$, and t is the smallest number for which such a factorization of β exists.

Later Ellers generalized these results to commutative local rings R [6] and then to non-commutative local rings R [7].

In this paper, we extend these results to any ring R satisfying the first Bass stable range condition. Along with local rings R, this includes all semilocal rings R, all Artinian rings R, all 0-dimensional commutative rings R (that is, every prime ideal of R is maximal), and many other rings [8], [9], [12].

2. Statement of results

First, we introduce some definitions and notations.

Let R be an associative ring with 1, V a right R-module,

$$V^* = \operatorname{Hom}_{R}(V, R)$$

the dual module, $\operatorname{End}(V) = \operatorname{Hom}_R(V, V)$ the ring of all *R*-linear endomorphisms of V, and $\operatorname{Aut}(V)$ the group of all automorphisms of V ($\operatorname{Aut}(V) \subset \operatorname{End}(V)$). A vector $\nu \in V$ is called *unimodular* if $f\nu = 1$ for some $f \in V^*$.

When R is a division ring, the rank of $\alpha \in \text{End}(V)$ is defined as the dimension of αV . In general, there are different ways to extend the notion of rank. In this paper we use two different definitions of rank.

DEFINITION 1. The rank, rank (α), is the least integer $s \ge 0$ such that $\alpha = \nu_1 f_1 + \dots + \nu_s f_s$ with $\nu_i \in V$ and $f_i \in V^*$.

In other words, $\alpha: V \to V$ can be decomposed as $V \to R^S \to V$, where R^S is the *R*-module of *s*-columns over *R*.

DEFINITION 2. The unimodular rank, *u*-rank (α) is the least integer $s \ge 0$ such that $\alpha = \nu_1 f_1 + \dots + \nu_s f_s$ with unimodular $\nu_i \in V$ and $f_i \in V^*$.

Both ranks could be infinite (when no such s exists). Clearly, $rank(\alpha) \le u - rank(\alpha)$ always. When R is a division ring, both definitions coincide with the usual definition of the rank as the dimension of αV .

An automorphism β in Aut(V) is called *simple* (respectively, *u*-simple), if rank($\beta - 1_V$) = 1 (respectively, *u*-rank($\beta - 1_V$) = 1). That is, $\beta = 1_V + \nu f$

with $\nu \in V$ (ν is unimodular in the case of *u*-simple β) and $f \in V^*$. Invertibility of such β is equivalent [10, Section 2] to $1 + f\nu \in GL_1 R$.

Examples of simple automorphisms include transvections (when $f\nu = 0$) and reflections (or involutions, when $f\nu = -2$). More generally, a hyperreflection can be defined [5] as a simple $\beta = 1_V + \nu f$ with $f\nu$ having a finite order modulo the commutator subgroup [GL₁ R, GL₁ R].

Recall that the first Bass stable range condition on R is:

If $a, b \in R$ and Ra + Rb = R then there is $c \in R$ such that R(a+cb) = R.

We write sr(R) = 1 if R satisfies this condition and $R \neq 0$. See [8], [9], [12] for various examples of such rings.

THEOREM 3. If sr(R) = 1, $\beta \in Aut(V)$ and $rank(\beta - 1) = s < \infty$, then β is the product of s simple automorphisms, and it cannot be factored into any product of a smaller number of simple automorphisms.

THEOREM 4. If sr(R) = 1, $\beta \in Aut(V)$ and $u \operatorname{rank}(\beta - 1) = s < \infty$, then β is the product of s u-simple automorphisms, and it cannot be factored into any product of a smaller number of u-simple automorphisms.

Theorem 3 will be proved in the next section. The proof of Theorem 4 is so similar that we leave it to the reader.

3. Proof of Theorem 3

Let $\operatorname{GL}_n R$ denote the group of all *n*-by-*n* invertible matrices over *R*. It can be identified with $\operatorname{Aut}(R^n)$, where R^n is the *R*-module of *n*-columns over *R*.

LEMMA 5. Assume that $\operatorname{sr}(R) = 1$. Let $n \ge 1$ be an integer, and $\beta = (b_{i,j}) \in \operatorname{GL}_n R$. Then there is a simple matrix $\gamma \in \operatorname{GL}_n R$ such that $(\gamma \beta \gamma^{-1})_{n,n} \in \operatorname{GL}_1 R$.

PROOF. Consider the last row $(b_{n,1}, \ldots, b_{n,n})$ of the matrix $\beta = (b_{i,j}) \in$ GL_n R. Since β is invertible $\sum b_{n,i}R = R$. The first Bass stable range condition implies all higher Bass conditions for R as well as for the opposite ring [11]. So there are $c_i \in R$ such that

$$(b_{n,n} + b_{n,1}c_1 + \dots + b_{n,n-1}c_{n-1})R = R.$$

Since sr(R) = 1, every one-sided unit in R is a unit (a result of Kaplansky, see [12]). So $b_{n,n} + b_{n,1}c_1 + \cdots + b_{n,n-1}c_{n-1} \in GL_1 R$. Let γ be the simple

matrix which differs from the identity matrix 1_n only in the last column, the entries of the last column of γ being $-c_1, -c_2, \ldots, -c_{n-1}, 1$. Then $(\gamma\beta\gamma^{-1})_{n,n} = b_{n,n} + b_{n,1}c_1 + \cdots + b_{n,n-1}c_{n-1} \in \operatorname{GL}_1 R$. Let us prove now the first conclusion of Theorem 3. So let $\beta = 1_V + C_1 + C_2 + C$

Let us prove now the first conclusion of Theorem 3. So let $\beta = 1_V + \nu_1 f_1 + \dots + \nu_s f_s \in \operatorname{Aut}(V)$ with $\nu_i \in V$ and $f_i \in V^*$. We want to prove that β is a product of s simple matrices. We proceed by induction on s. Set $b_{i,j} = f_i \nu_j \in R$ and consider the matrix $\beta' = 1_s + (b_{i,j})$. By [10, Section 2], $\beta' \in \operatorname{GL}_s R$. By Lemma 5 above, there is $\gamma \in \operatorname{GL}_s R$ such that $(\gamma \beta' \gamma^{-1})_{s,s} \in \operatorname{GL}_1 R$. Replacing (ν_1, \dots, ν_s) by $(\nu_1, \dots, \nu_s)\gamma^{-1}$ and $(f_1, \dots, f_s)^{\mathsf{T}}$ by $\gamma(f_1, \dots, f_s)^{\mathsf{T}}$, we do not change β , but replace $\beta' = 1+s+(f_1, \dots, f_s)^{\mathsf{T}}(\nu_1, \dots, \nu_s)$ by $\gamma \beta' \gamma^{-1}$. So we can assume that $1+f_s\nu_s = (\beta')_{s,s} \in \operatorname{GL}_1 R$. By [10, Section 2], $\delta = 1_V + \nu_s f_s \in \operatorname{Aut}(V)$. So δ is a simple matrix. We have $\beta = \delta(1_V + (\delta^{-1}\nu_1)f_1 + \dots + (\delta^{-1}\nu_{s-1})f_{s-1})$. By the induction hypothesis, the second factor, $(1_V + (\delta^{-1}\nu_1)f_1 + \dots + (\delta^{-1}\nu_{s-1})f_{s-1})$ is the product of s - 1 simple automorphisms. So β is the product of s simple automorphisms.

Let us prove now the second conclusion of Theorem 3. That is, we want to prove that if $\beta = \delta_1 \cdots \delta_t$ is the product of t simple automorphisms δ_i , then rank $(\beta - 1_V) \le t$. We write $\delta_i = 1_V + \nu_i f_i$ with $\nu_i \in V$ and $f_i \in V^*$. By induction on m, we see easily that $\delta_1 \cdots \delta_m = 1_V + \nu_1 g_1 + \cdots + \nu_m g_m$, where $g_i \in V^*$ depend on m. So rank $(\beta - 1_V) \le t$.

Theorem 3 is proved. We complement it with the following result.

PROPOSITION 6. For any associative ring R with sr(R) = 1, any integer $n \ge 2$, and any integer s in the interval $0 \le s \le n$, there is a matrix $\beta \in GL_n R$ with u-rank $(\beta - 1_n) = rank(\beta - 1_n) = s$. So this β is the product of s simple matrices and it is not a product of a smaller number of simple matrices.

To prove this proposition we will need the following two lemmas.

LEMMA 7. Let R be an associative ring with sr(R) = 1 and $\alpha \in End(V)$ be such that the R-module αV is a direct summand of V and has a free basis of cardinality s. Then u-rank $(\alpha) = rank(\alpha) = s$.

PROOF. Let $\{e_i\}$ be a free basis for αV of cardinality s.

We prove first that $\operatorname{rank}(\alpha) \leq u \operatorname{-rank}(\alpha) \leq s$. If $s = \infty$, there is nothing to prove, so let $s < \infty$. For every ν in V, we have $\alpha \nu = \sum e_i f_i(\nu)$ with $f_i(\nu) \in R$. Since $\{e_i\}$ is a basis, $f_i \in V^*$. So $\alpha = \sum e_i f_i$, hence

 $rank(\alpha) \le u - rank(\alpha) \le s$. (Note that $rank(\alpha) \le s$ holds even without the assumption that αV is a direct summand.)

Let us prove now that $rank(a) \ge s$. Suppose on the contrary that $t = rank(\alpha) < s$. That is,

$$\alpha = \nu_1 f_1 + \dots + \nu_t f_t \in \operatorname{Aut}(V)$$

with $\nu_i \in V$ and $f_i \in V^*$. Pick $\pi \in \text{End}(V)$ such that $\pi^2 = \pi$ and $\pi V = \alpha V$. Set $u_i = \pi \nu_i$. We can write $u_i = \sum_j e_j a_{j,i}$ with $a_{j,i} \in R$. Note that $t < \infty$, so only finitely many e_j are involved in all these linear combinations. Say, $u_i = \sum_{j=1}^{m} e_j a_{j,i}$ for i = 1, ..., t with $t < m < \infty$. Now we write $e_j = \sum u_i b_{i,j}$ for j = 1, ..., m with $b_{i,j} \in R$. We have $\alpha \beta = 1_m$, where $\alpha = (a_{j,i})$ and $\beta = (b_{i,j})$. Complementing α by zero columns and β by zero rows, we obtain two matrices α', β' in the ring $M_m R$ of square matrices over R such that $\alpha' \beta' = \alpha \beta = 1_m$. Since $\operatorname{sr}(R) = 1$, we have $\operatorname{sr}(M_n R) = 1$ by [11]. So, by Kaplansky's result [12], $\beta \in \operatorname{GL}_m R$. But since β has a zero row, this is impossible.

REMARK. Lemma 7 holds if the condition sr(R) = 1 is replaced by the condition $R \neq 0$ together with the condition $sr(R) < \infty$ or the condition that R is commutative.

LEMMA 8. For any $n \ge 2$ there exists an invertible matrix β_n in $GL_n R$ such that the matrix $\beta_n - 1$ is also invertible.

PROOF. When n = 2, we can take

$$\beta_2 = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}.$$

When n = 3, we can take

$$\boldsymbol{\beta}_3 = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

For $n \ge 4$, we can write β_n as the direct sum of the above matrices β_2 and β_3 . For example, $\beta_4 = \beta_2 \oplus \beta_2$ is the required matrix in GL_4R , $\beta_5 = \beta_3 \oplus \beta_2$ is the required matrix in GL_5R , and so on.

PROOF OF PROPOSITION 6. When s = 0, we take $\beta = 1_n$. When $1 \le s \le n-1$, we can take $\beta = \gamma + 1_{n-s-1}$, where $\gamma \in GL_{s+1}R$ is the Jordan matrix with ones along the diagonal. Then $(\beta - 1_n)R^n$ is a direct summand of R^n with s free generators, so u-rank $(\beta - 1_n) = \operatorname{rank}(\beta - 1_n) = s$ by Lemma 7.

[6]

Finally, when s = n, we find β as in Lemma 8, so $(\beta - 1_n)R^n = R^n$, hence $\operatorname{rank}(\beta - 1_n) = n$ by Lemma 7.

References

- [1] E. Artin, Geometric algebra, (Wiley-Interscience, New York, 1957).
- [2] N. Bourbaki, Éléments de mathématique, Livre 2 (Algèbre, Hermann, Paris, 1947).
- [3] R. K. Dennis and L. N. Vaserstein, 'On a question of M. Newman on the number of commutators', J. Algebra 118 (1988), 150–161.
- [4] D. Ž. Djoković and J. Malzan, 'Products of reflections in the general linear group over a division ring', Linear Algebra Appl. 28 (1979), 53-62.
- [5] E. W. Ellers, 'Product of axial affinities and products of central collineations', in *The Geometric Vein*, pp. 465-470, (Springer, New York, 1982).
- [6] E. W. Ellers and H. Ishibashi, 'Factorization of transformations over a local ring', *Linear Algebra* 85 (1987), 17–27.
- [7] E. W. Ellers and H. Lausch, 'Length theorems for the general linear group of a module over a local ring', J. Austral. Math. Soc. Ser. A 46 (1989), 122-131.
- [8] K. R. Goodearl and P. Menal, 'Stable range one for rings with many units', J. Pure Appl. Algebra 54 (1988), 261-287.
- [9] I. F. Putnam, 'The invertible elements are dense in the irrational rotation C^{*}-algebras', preprint.
- [10] L. N. Vaserstein, 'K₁-theory and the congruence subgroup problem', Mat. Zametki 5 (1969), 233-244 (Translation, Math. Notes 5, 141-148).
- [11] L. N. Vaserstein, 'The stable range of rings and the dimension of topological spaces', Funkcional. Anal. i Priložen. 5 (1971), 17-27 (Translation, Functional Anal. Appl. 5, 102-110).
- [12] L. N. Vaserstein, 'Bass's first stable range condition', J. Pure Appl. Algebra 34 (1984), 319-330.

The Pennsylvania State University University Park, Pennsylvania 16802 U.S.A.