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Abstract

In this paper, we consider a coupled, nonlinear, singular (in the sense that the reaction terms
in the equations are not Lipschitz continuous) reaction-diffusion system, which arises from
a model of fractional order chemical autocatalysis and decay, with positive initial data. In
particular, we consider the cases when the initial data for the the dimensionless concentration
of the autocatalyst, /5, is of (a) O(x~k) or (b) Oie'"") at large* (dimensionless distance),
where a > 0 and X are constants. While initially the dimensionless concentration of the
reactant, a, is identically unity, we establish, by developing the small-f (dimensionless
time) asymptotic structure of the solution, that the support of f)(x, I) becomes finite in
infinitesimal time in both cases (a) and (b) above. The asymptotic form for the location of
the edge of the support of ft as t —• 0 is given in both cases.

2000 Mathematics subject classification: primary 35K57; secondary 41A60.
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1. Introduction

In this paper we consider the following initial-boundary value problem for a coupled,
nonlinear, singular (that is, non-Lipschitz) reaction-diffusion system, namely,

a, =axx-apm, (1.1a)
P, = pxx+aPm -k0n, x,t>0, (l.lb)

, x>0, (1.1c)
t>0, ( l i d )
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a ( x , t) x~*°°> a ,x i (O, t>0 ( 0 < aoo(t) < 1) , ( l i e )

P(x, t) ^ fat), t>0 (0<fat)<l), (1.10

where 0 < n < m < 1, k > 0 and po(x) is a continuous, analytic, positive and
monotone decreasing function in x > 0, with $>(.*) -> 0 as * —*• oo. In particular,
we consider the following cases:

(a) Initial data for fi, Po(x) that has algebraic decay rate as x -»• oo and where

i a s * ->• o o ,

where A., /$«,, /30 > 0, # are constants and EST(x) denotes exponentially small terms
in x as x -*• oo.
(b) Initial data for /?, /50(-*) that has exponential decay rate as x —>• oo and where

lX)] as * "" °° ' n ^

for some / ( J : ) > 0(x) as x -»• oo, where /3oo, pQ,o>0 and /?/ are constants.

Here a is the dimensionless concentration of the reactant, while /} is the dimensionless
concentration of the autocatalyst.

A full description of the chemical model from which (1.1) arises, its analysis and a
comprehensive review of the relevant literature may be found in [4] but is omitted here
for brevity. Preliminary results concerning the system of singular reaction-diffusion
equations can be found in [2], [5] and [6].

Our aim in this paper is to use the method of matched asymptotic expansions to
develop the small-time asymptotic structure of the solution to initial-boundary value
problem (1.1) with 0 < n < m < 1 when the initial data, Po(x), of fi has algebraic or
exponential decay rates as x —*• oo, given by (1.2) and (1.3) respectively. Throughout
we use the nomenclature of the theory of matched asymptotic expansions, as given in
Van Dyke [8] (see also Hinch [1], Lagerstrom [3] and Nayfeh [7] for an introduction
to the theory of matched asymptotic expansions). We establish that in both cases the
support of the solution for ft becomes finite in infinitesimal time. We conclude by
presenting the asymptotic form for the location of the edge of the support of /3(x, t)
as / -*• 0 in both cases.

2. Asymptotic solution as t —*• 0

In this section we develop the formal asymptotic structure to (1.1), for n < m < 1,
as t -*• 0. The behaviour of the solution depends critically on the nature of Po(x) as
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x -*• oo. We will consider the cases when y30(jc) has algebraic or exponential decay
as x -*• oo (given by (1.2) and (1.3) respectively) separately.

2.1. Initial data with algebraic decay as x -*• oo We first consider region I, where
x = 0(1) as t —> 0 and expand the solution to (1.1) as

«(*,*) = 1+*«, (*)+ 0(/2),
P(x, t) = po(x) + tfa(x) + 0(t2), x,t>0,

as / -*• 0. On substitution into Equations (1.1a) and (1.1b) and applying initial
conditions (1.1c) we readily obtain

5 , (2.1a)

P(x, t) = Po(x) + t (&'(*) + WW - kftix)) + 0(t2) (2.1b)

as / -^ 0. Now, for x 3> 1, expansion (2.1b), with (1.2), takes the form

0(x, t) ~ p ^ x - " + t (p^Hk + l)x-(X+2) - * # > - x + . . . ) + . . . (2.2)

as / -+ 0, and we conclude that expansion (2.1b) becomes nonuniform when

x = o ( r 1/i(1-n))
(that is, the dominant correction term in (2.1b) can be seen from (2.2) to become
comparable with the leading order term in (2.1b) when x = 0{t~llHX~n)) as t -*• 0),
when we observe, via (2.1), that

a = 1 - O (f <M-"+1>/<1-">), (2.3a)

p = O (tl«l-n)) (2.3b)

as t —> 0. In order to continue the asymptotic structure we must therefore introduce
a further region, which we refer to as region II. To examine region II, we introduce
the scaled coordinate r) = xt^IX(X~n) = O(l) and look, via (2.3), for asymptotic
expansions of the form

a(ij, 0 = 1 - tim-*+mi-a)a(ri) + o (,<»-»+'>/<'->), (2.4a)

, t) = tl/(l-n)P(r,) + o (/'/"-"') (2.4b)

as t -*• 0, with JJ = (9(1). On substitution of expansions (2.4) into Equations (1.1)
(when written in terms of r) and 0 w^ obtain the leading order problems for a(r)) and
Pin) as

-n + \)a = X(1 -n)pm, 0 < r) < oo, (2.5a)

PZn""" as , ^ 0 (2.5b)
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and

riPn + kP + kk(l -n)fin=O, 0<r?<oo, (2.6a)

P(ri) ~ #»»?"* as r]-+0. (2.6b)

Conditions (2.5b) and (2.6b) arise from matching with region I as r) -* 0. The solution
to (2.6a),(2.6b) is readily obtained as

k n ) = [ C - n ) n - k a - n ) - k ( i - n ) ] m i - n ) , n > o . (2.7)

An examination of (2.7) reveals that a weak singularity develops in fi(r\) as r\ —• rj~
(as r) approaches r)c from below), where

Now, via (2.7), the solution to (2.5) is given in terms of /) by

afo) = k(l- „),,-«—"+'> f sk(m-n+l)-lpm(s) ds, 0 < r, < Ve.
Jo

Further, we note that

air)) = A.(l - n)£/r,-Mm-"+u + O [(r,c - ^)<"-"+"/<'-'1)], (2.8a)

/§(„) = ^ ( 1 ~ W ) 2 X ] 1 / ( ' "' (,c - n)'^'-> + O [(„, - ^)'2-")/"-'')] (2.8b)

as T) -+ r)~, where J ^ = /0"
r jX("I-"+l)- |/3m(5) ds. Thus the support of 0(JJ , /) ends

at ?7 = ?7C in this region. However, in (2.4b) and (2.8b) the degree of (/?c - rj) as
r) —> r)~ (which is 1/(1 — n)), is too weak (we require a classical solution), and
consideration of further terms in (2.4b) reveals a weak nonuniformity as rj -> JJ~.
Therefore a further region is required to complete the asymptotic structure, in which
7] = t}c + o( l ) as f —• 0, and diffusion effects are retained at leading order to enable
the appropriate behaviour to be achieved at the edge of the support. We label this
region as region III and introduce the scaled coordinate r\ by

with y > 0 to be determined, and ?j = 0 ( l ) a s f - > O i n region III. An examination of
(2.4) and (2.8) then determines that a = 1 - 0(/<"-"+l>/(|-">) and£ = 0(t(y+l)/(l-n))
in region III. Thus we expand as

, t) = 1 - / «—»+'>/<i->f(jj) + o (,<"-'1+1>/<1-<'>), (2.9a)

o (t(y+m[-n)) (2.9b)
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as t —> 0 with fj = 0(1). On substituting (2.9b) into Equation (1.1b) (when written
in terms of fj and /), to retain diffusion terms at leading order requires

after which the leading-order problem is

fla-.,,11' Hfj-kH"=0, -oo<f,<fj0, (2.10)
/.(I - n)
= Hudjo) = 0, (2.11)

e J
as fj-^~oo. (2.12)

Problem (2.10)-(2.12) is autonomous and can be studied in the (H, H^) phase plane. It
can readily be established (after minor modifications to [5, Appendix D]) that (2.10)-
(2.12) has a unique solution for each fj0. Thus (2.10)-(2.12) does not fix a unique
value of fj0. In fact, fj0 will be fixed by matching expansion (2.9b) (as fj - • -co)
to expansion (2.4b) (as t) -> r)~), when expansion (2.4b) is taken to next order. We
observe that the solution to (2.10)-(2.12) is monotone decreasing in —oo < rj < r)0,
and has

a s

which has the required decay rate in (fj0 — fj) as the edge of the support is approached.
Consideration of further terms in this region shows that expansion (2.9b) remains
uniform as fj —• fjo •

We now return to the expansion for a. On substituting (2.9) into Equation (1.1a)
(when written in terms of fj and t) we obtain at leading order the uncoupled boundary
value problem for F(fj), given by

F ^ - — ^ - — F ^ = 0, -oo<fj<oo, (2.13a)

F(fj) > 0, - o o < f? < co, (2.13b)

F(ij) ~ A(l - n)£fr);k(n-n+l), as fj -> -co , (2.13c)

F(fj) bounded, as ij -> oo. (2.13d)

Condition (2.13c) arises from matching with region II as fj —> - co . The solution
to (2.13) is readily obtained as F(fj) = A.(l — n)s/r)~X(m~"+n.

We note that the asymptotic structure of a (;c, r)asf —> 0 does not end in this region.
As fj -* co we move out of the localised region III and re-emerge into region II
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(r)c + o(l) <r}< oo) whe rea t , t) = 1 - o (;<"-"+')/('-'•)) and/?(??, t) = 0. We note
immediately, by consideration of (2.5a), that in this region (where r)c+o(l) < rj < oo)

a(r], t) = 1 - A.(l -

7, 0 = 0.

This completes the main asymptotic structure. In particular, we have that the edge
of the support of fi(x, 0 , x — s(t), behaves as

s(t) ~ r)cr
IA(|-nl + jjofI+1/W|-B) + • • • (2.14)

as t —> 0. We observe from (2.14) that the edge of the support is contracting initially
with speed

HO — r l - [ / w - n ) < 0 as r - » 0 .
X(\ -n)

Finally, we note that expansions (2.1) with (1.2) (as x ->• 0) in region I do not, in
general, satisfy the boundary conditions (1. Id) at x = 0 and a further passive region
is required in the neighbourhood of x = 0 as / -> 0. The details of this region follow,
after minor modifications, those given for region Io in [6, Section 3].

A schematic representation of the location and thickness of the asymptotic regions
as t —> 0 is given in Figure 1.

2.2. Initial data with exponential decay as x -*• oo In this case expansion (2.1b)
in region I becomes nonuniform when x = c(t) + 0(1) where

c(t) = — -lnr
CT(1 -n)

ast -»• O.witha = 1 - O(r""-n+1)/(1-n>) and/3 = O(tl/([-n)) in region II. Toexamine
region II, we introduce the coordinate rj = x — c(t) and look for expansions of the
form

a(r), t) = \ - /<"'-»+1>/<|-">a(?7) + o (,<»-«+•>/<'-»>) , (2.15a)

P(n, t) = t[/([-n>P(n) + o (f 1/( |-n)) (2.15b)

as t -*• 0, with rj = 0(1). On substitution of expansions (2.15) into Equations
(1.1 a)—(1.1b) (when written in terms of r) and t) we obtain at leading order

an + a{m - n + 1)<5 = CT(1 - n)fim, (2.16a)

n)P"=Q, (2.16b)
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O (,-'
P

O(t['2)

no n

FIGURE 1. Schematic representation of the location and thicknessof the asymptotic regions asf —> Ointhe
case when the initial data has algebraic decay rate as x ->• oo. Note that in this case y = 1 + 2/k(l - n)
and a = 1 - 0 ( 0 in region I with a = 1 - o(,C"-»+')/('-»)) in regions II and III.

where r) > —oo. Equations (2.16) are to be solved subject to matching with region I
(as T) -*• —oo), that is,

&&-"""> as n -+ - o o ,

Pece—" as i j-> - o o .

The solution to (2.16b), (2.17b) is readily obtained as

Pit,) = [^o-)^(i-), _ k{l _ „)]'/«-) f

(2.17a)

(2.17b)

(2.18)

An examination of (2.18) reveals that a weak singularity develops in fi(t)) as rj —> t]~,
where

i r u(l-n) ~\
<T(l-n) [fc(l-«)J ( 2 1 9 )

Now, via (2.19), the solution to (2.16a), (2.17a), is given in terms of ji by

«(»,) = <r(l - /I)e-""»-"+1"' /"" c<r(«-«+i>,^«(j) d j > _oo < ^ <
J — oo

Further, we note that

= [ka(l - n) -n) + o [(r,c - ^ "

(2.20a)

(2.20b)
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as r) -+ T)~, where £8 = /_^ ea(m-"+l>s/}m(s) ds. Thus the support of £(>?, 0 ends at
T) = t]c in this region but as in Section 2.1 the degree of (r)c — rj) (in (2.15b)) as r\ —>• rj ~
is too weak, and consideration of further terms in (2.15b) reveals a weak nonuniformity
as T) —• r)~ [in particular, when rj = r)c + 0(t)]. We therefore introduce a final region,
region III, to complete the asymptotic structure. The details of this region follow after
minor modifications those given in Section 2.1 with now t] = rjc + fjt as t —• 0 with
fj = 0(1). Consideration of (2.20b) determines that fi = O(tV(X-n)) in region III
(we will return to consideration of the a expansion later). Thus we expand as

P(rj, t) = tV(l-H)H(fj) + o (r2/(1-n)) (2.21)

as t -*• 0 with rj = 0(1). The leading-order problem is then given by

1
a(l-n)

= H-^fJo)

~ \kcr(\ -

J"

= 0,

n)2]

kH" --

| i/(i-«)

= 0,

(-n)l / ( 1-">,

— OO <

as fj —i

»? < no,

• — o o .

(2.22)

(2.23)

(2.24)

It can be readily established (after minor modifications to [5, Appendix D]) that (2.22)-
(2.24) has a unique solution for each fj0 (fj0 will be fixed by matching expansion (2.21)
(as fj -> —oo) to expansion (2.15b) (as rj -*• r)~), when expansion (2.15b) is taken to
next order). The solution to (2.22)-(2.24) is monotone decreasing in -oo < fj < fjQ

and has

as

which has the required decay rate in (fj0 — ij) as the edge of the support is approached.
Consideration of further terms in this region shows that expansion (2.21) remains
uniform as fj —*• fj^, and the asymptotic structure is complete.

We now return to the expansion for a in region III. Consideration of (2.20a)
indicates that we should look for an expansion of the form

, f) = 1 — <x(1 — n)S6e '€ t -\- o \t J (2.25)

as t -*• 0. On substituting (2.25) into Equation (1.1a) (when written in terms of rj and
t) we obtain at leading order the uncoupled boundary value for F(fj), given by

f. = _ m - n + - oo < rj < oo, (2.26a)
cr(l — n) 1 - n

F(fj) > 0, - oo < fj < oo, (2.26b)

F(fj) ~ o(m — n + l)fj, as fj -*• - co , (2.26c)

FC^) bounded, as fj ^- oo. (2.26d)
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Condition (2.26c) arises from matching with region II as fj -*• —oo. The solution to
(2.26) is readily obtained as F(rj) — o{m — n + l)fj.

We note that the asymptotic structure of a(x, t) as t —> 0 does not end in this region.
As f) -+ oo we move out of region III and re-emerge into region II (r)c + o(l) < rj <
oo), where a(j), t) = 1 - O(t(m-"+'>/<'-">) and £(r?, t) = 0. We note immediately, by
consideration of (2.16a), that in this region

a(ij, t)=\-o{\- „)#«-»<"-»+»'/<—»+»/<'-»> + o (,<*-«+'>/"->),

where (rjc + o(l) < r) < oo). This completes the main asymptotic structure. In
particular, we have that the edge of the support of fi(x, t), x = s(t), behaves as

c r ( l - n )
(2.27)

as t —*• 0 and we observe from (2.27) that the edge of the support is contracting
initially with speed

s(t) r- as t -> 0.
a ( l — n)t

Finally, we note that expansions (2.1) with (1.2) (as x -> 0) in region I do not, in
general, satisfy the boundary conditions (l.ld) at x = 0 and a further passive region
is required in the neighbourhood of x = 0 as / —> 0. The details of this region follow,
after minor modifications, those given for region Io in [6, Section 3].

A schematic representation of the location and thickness of the asymptotic regions
as t -> 0 is given in Figure 2.

3. Summary

In this paper we have demonstrated directly, via the method of matched asymptotic
expansions, that the solution to the initial-boundary value problem (1.1) with n < m <
1 together with initial data for p that has infinite support with algebraic or exponential
decay as x -+ oo (given by conditions (1.2) and (1.3) respectively) develops finite
support in j3 in infinitesimal time. In particular, the edge of the support of P, x = 5(0,
is given as follows:

(i) When the initial data of P has algebraic decay rate as x -*• oo by

j ( 0 ~ r ] c r > / w - n ) + i } o t 1 + u w - m ) + ••• a s t - > 0 ,

where the constants r)c and fj0 are as described in Section 2.1.
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Io

p

I

= 0(1) 0

0(1)

II

= 0 (, '/"->)

III

0

0(t"2)

= 0

FIGURE 2. Schematic representation of the location and thickness of the asymptotic regions as t —* 0 in
the case when the initial data has exponential decay rate as x —*• oo. We note that a = 1 — O{t) in region
I and a = 1 - 0(/<»—+'>/«-'">) in regions II and III.

(ii) When the initial data of ft has exponential decay rate as x -*• oo by

s(t)
1

Int O(t) as t -*• 0,
ff(l-n)

where now rjc is given in (2.19).

We note that in both cases the edge of the support is initially contracting.
Finally, we note that the asymptotic structure of the solution to (1.1) as / —• 0 when

m = n (with k > 1) follows, after minor modifications, that given in Sections 2.1
and 2.2 when the initial data for /3 has algebraic or exponential data as x -*• oo
respectively.
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