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G. B. Preston [10] proved that any semigroup can be embedded in a bisimple
monoid. If S is a countable semigroup, his constructive proof yields a bisimple monoid
which is also countable, but not necessarily finitely generated. The main result of this
paper is that any countable semigroup can be embedded in a 2-generated bisimple
monoid.

J. M. Howie [6] proved that any semigroup can be embedded in an idempotent-
generated semigroup. F. Pastijn [9] showed that any semigroup can be embedded in a
bisimple idempotent-generated semigroup, and that any countable semigroup can be
embedded in a semigroup which is generated by 3 idempotents. Easy proofs of these
results using Rees matrix semigroups over a semigroup were given by the author [3]. In
this paper, as a corollary to our main result, we deduce that any countable semigroup can
be embedded in a bisimple semigroup which is generated by 3 idempotents.

The proof of our main result relies on a construction of a monoid ^{S;B, A;P).
Given any monoid S, non-empty sets A and B which are disjoint from each other and
from S, and an AxB matrix P over AUBUS, a presentation is given to define

^iP). The notation ^(SiB^;?) is chosen to reflect the nature of
B, A;P) both as a generalization of the notion of a Rees matrix semigroup

M(S; B, A;P) over S, and also as a generalization of the monoid 'S(S) which was
constructed by R. H. Bruck [2] in order to show that any semigroup can be embedded in a
simple monoid. Brack's monoid ^(S) is the monoid generated by distinct symbols a and b
(not belonging to S) and the elements of S subject to the denning relations ab = 1, as = a,
sb = b, st = s-t for all s, t eS. An exposition of Bruck's results and alternative descriptions
of ^(S) may be found in [4]. Bruck's construction was generalized by N. R. Reilly [11] to
determine the structure of all bisimple w-semigroups, and was considered in still more
general form by W. D. Munn [8]. An account of these results appears in [5].

The word problem for the presentation of <#(S; B, A; P) is solved in the first section
of this paper. It is shown that ^{S;B,A;P) contains S as a submonoid, and that
congruences on S extend to ^(S; B, A; P). In Section 2 we consider special cases in which
we can elucidate the structure of ^(S; B, A;P). Necessary and sufficient conditions are
given on S,B,A, and P for ^(S^^;?) to be regular or inverse. If all entries of P
belong to S, then ^(S-^^iP) is shown to be a coextension of the bicyclic monoid by
Rees matrix semigroups over S. In Section 3 appropriate choices of S, B, A and P are
made to ensure that ^(SjB, A;P) is a 2-generated bisimple monoid, from which the
main result is obtained. Throughout the paper the symbol S is reserved to denote a
monoid with identity 1.
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1. The presentation. Let S be a monoid with identity 1, let A and B be non-empty
sets which are disjoint from each other and from S, and let P = (pab) be an A xB matrix
over AUBUS. Let ^(S^, A;P) denote the monoid with presentation (AUBUS;
ab = pab, as = a, sb = b, st = s-t, l = AVaeA, beB, s,teS). The symbol A denotes the
identity (the empty word) of the free monoid ( A U B U S ) * which is generated by
A U B U S , and A* and B* denote the free submonoids generated by A and B,
respectively. The word problem for the presentation is solved by the following lemma.

LEMMA 1.1. The elements of ^(SiB^;?) are the words in B*SA*.

Proof. The defining relations may be used to reduce any word w e (A U B U S)* in a
finite number of steps to a word weB*SA* by the following procedure. Let A = l,
a = la , b = bl, s = s. If w = wrw2 • •. wk+1 has length greater than 1, we define w by first
reducing w1w2 . . . wk to the element w^2 . . . wk of B*SA*, and then use the equations
below. Let u, tie A*, veB*, s,teS, aeA, and beB.

vtua = vtua;
(v(t-s) if u = A,

vtus = \ ., . ,
Ivtu if u f A;

— - (vbl if u = A,
Vtub = \—; ., „

Lutupab if u = ua

Note that vttipab has length less than that of vtub. This inductive definition of the function
w —* w establishes that any element of ( A U B U S)* may be reduced by the defining
relations to a word in B*SA*.

To complete the proof of the lemma we show that no two reduced words represent
the same element of ^ ( S ; B, A ; P). Let i/>: A UB U S —» 3~B*SA* be the mapping from the
set A U B U S into the full transformation semigroup on B*SA* defined by xi// =
(vtu—*vtux). The mapping extends to a monoid homomorphism from ( A U B U S ) * into
3~B*SA*. We use the equations above to verify that each of the five types of defining
relations for ^{SiBi A; P) is satisfied in 5"B»SA. by the elements of (AUBUS)i/».

(1) {vru)[(ail/)(bilt)] = (vrua)bt}/ = {vrua)b\\i = vruab = vrupab = {vru)pab^i; so

(2) (i;ru)[(at|0(st/<)] = (urua)st|> = (vrua)sip = vruas = vrua = vrua = (vru)at}>; so
)(s«£) = ail/.
(3) If u = A then (uru)[(si//)(bifr)] = (vrus)bip = [v(r-s)]bi{/ = vbl = vrub = (uru)fc^. If

k then (uru)[(s«/»)(b</0] = {vrus)bili = (uru)b</r. Thus (si/»)(b^) = bi/».
(4)_ If u = A then (um)[(si/»)(h/»)] = (urus)ti/» = [u(rs)]h/» = u((r-s)-0 = v(r-(s-t)) =

_
vru(s-t) = (vru)[(s't)4i']. If uf A then (ura)[(st/>)(t(|')] = (vrus)til/ = (vru)ttp = umf = uru =
uru(s-r) = (uru)[(s•()•/']. Thus (stfr)(ttfr) = (s-t)ip.

(5) If u = A then {vru)lifj = vrul = u(r-l) = vr = vru. If u ^ A then (uru)lt/» =
urul = vru. Thus li|/ is the identity of 3"B*SA*-

Therefore the homomorphism \\> factors through ^(S;B, A;P), giving a representa-
tion of ^(SiB^^P) in JB*SA*- Let w = vsueB*SA*. If v = A then l(wt/>) =
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(l-s)u= su= w. If u^A then l(wtf/) = lvsu = usu=w. Thus the representation is faithful
(it is the right regular representation), which proves that no two reduced words represent
the same element of ^(S-yB^; P).

The lemma proves that each word vsueB*SA* represents an element of
>;B, A; P) and that two words vsu and v's'u' in B*SA* represent the same element of

',A;P) if and only if v = v', s = s', and u = u'. Henceforth we will denote the
product in ^(SiB, A; P) of two words vsu and v's'u' in B*SA* simply by vsuv's'u'
(instead of by vsuv's'u'). We do not give an explicit formula for this product as an element
of B*SA*; however, we do note that our reduction procedure implies that vsuv's'u'e
uB*SA*u'. We will find it convenient to replace 1 by A in an element of ^(S; B,A;P)
when doing so would simplify notation; thus, for example, we will simply write a or b in
place of la or fcl, respectively.

THEOREM 1.2. The monoid ^{S;B,A;P) contains S as a submonoid.

Proof. The obvious mapping 0 : S —» ^ ( S ; B, A ; P) defined by s —» s is the required
embedding since (s-t)d = (s-t) = st = (sd)(tO).

THEOREM 1.3. Any congruence on S extends to a congruence on ^ ( S ; B, A;P).

Proof. Let </> be any homomorphism from the monoid S onto a monoid T. Let
Q = (qab) denote the A~xB matrix obtained from P by replacing each entry which belongs
to S by its image under 4> (and leaving unchanged each entry of P which belongs to
AUB). Let a:A\JB\JS^%{T;B,A;Q) be the mapping defined by a-+a, b^b,
s —» s<f> for all aeA, beB, seS. The mapping a extends to a monoid homomorphism
from (AUB US)* into ^(T;B, A;Q), also denoted by a. We verify that the defining
relations for ^(S^^;?) are satisfied by the elements of (A UB US)a.

(1) (aa)(ba) = ab = qab = \
lpab<f) if qa b e T

(2) (aa)(sa) = a{s<j>) = a = aa.
(3) (sa)(ba) = (s<t>)b = b = ba.
(4) (saXra) = (s</>)(r<£) = (s-O<£ = (s-t)a.
(5) l a = l<t>, the identity of <g(T;B,A;Q).
Thus the homomorphism a : (AU_BUS)*^«(T;B,A;O) factors through

^(SjB, A;P), yielding a homomorphism <i>:^(S;B, A; P)-» <g(T; B, A;Q) which ex-
tends 4>. We conclude that any congruence on S extends to a congruence on
«(S;B,A;P) .

2. Special cases. In this section we consider several special cases of the construction
of ^(SiB^;?) in which the structure of ^{SiB^;?) becomes more transparent. In
this regard we note first that if the sets A and B are both singletons, and if the single
entry of the matrix P is the identity 1 of S then ^(SiB^-^) is precisely the monoid

constructed by R. H. Bruck [2].
We proceed to obtain necessary and sufficient conditions for <<o{S;B, A;P) to be
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regular or inverse. As a preliminary step we obtain a condition on the matrix P which
allows an easy description of Green's relations on ^(S^B, A;P) , and implies that'
<g(S;B, A;P) is simple.

DEFINITION 2.1. Let P be an A x B matrix over A U B U S and let a, a' € A. We say
that row a of P is linked to row a' of P if there exists a finite sequence a = ax, a2,..., a^ =
a' ( n > l ) such that ai+1 appears as an entry in row af of P for i = 1, 2 , . . . , n - 1 .
Similarly, for b, b' eB, we say that column b of P is linked to column b' of P if there exists
a finite sequence b = bx,b2,... ,bn = b' ( n > l ) such that bi+l appears as an entry in
column bt of P for i = 1 ,2, . . . , n - 1 .

We note that according to the definition, each row (column) of P is linked to itself.

LEMMA 2.2. An element aeA is right invertible in ^(S^, A;P) if and only if row a
of P is linked to a row which contains a right invertible element of S. Similarly, an element
beB is left invertible in ^{S;B,A;P) if and only if column b of P is linked to a column
which contains a left invertible element of S.

Proof. Suppose aeA is right invertible in ^{S^^iP). Then there exists an
element vsueB*SA* such that a(vsu) = l. Since a(vsu)eB*SA*u, we have u = A. The
assertion of the lemma is proved by induction on the length k of v = bx b2 .. • bk. We note
that fc^O since as = a^l. If k = \ then abxs = 1; so, since pab)e A UBUS, we must have
pabi G S. Thus row a itself contains an element of S which is right invertible. Let k > 1 and
suppose the assertion is true whenever v has length less than k. Since a(bib2 ... bk)s = 1,
pabieA. Thus, by the induction hypothesis, row pabi of P is linked to a row, say row a',
which contains a right invertible element of S. Since pabi is an entry of row a, row a is
linked to row a'.

Conversely, suppose the sequence a = alt a2,..., ak = a' links row a to the row a'
which contains a right invertible element of S. If k = 1 then row a itself contains a right
invertible element, say pab of S. In which case ab = pab is right invertible; so a is right
invertible. Let fc > 1. By the induction hypothesis, a2 is right invertible. But a2 appears in
row a, say a2 = pab. Thus ab = a2 is right invertible; so a is right invertible.

The second sentence of the lemma is true by symmetry.

DEFINITION 2.3. An AxB matrix P over A U B U S is said to be united if each row of
P is linked to a row which contains a right invertible element of S and each column is
linked to a column which contains a left invertible element of S.

THEOREM 2.4. If P is united then Green's relations on ^(SiB^iP) are as follows:
(a) vsu0lv's'u' O v = v' and sSks' in S;
(b) vsugv's'u' <=> u = u' and s£s' in S;
(c) vsuffv's'u' O v = v',u = u' and sWs' in S;
(d) vsuQlv's'u' <=> s2)s' in S;
(e) $ = a) and so ^(S; B,A:P) is simple.

Proof, (a) Suppose vsuSftv's'u'. Then there exist x, y e<g(S;.B, A;P) such that
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(vsu)x = v's'u' and vsu = (u's'u')y. By the remarks following the proof of Lemma 1.1,
these equations imply that v is a prefix of v', and v' is a prefix of v\ so v = v'. Let
ux = v"s"u"e B*SA*. If v" + A then vsux = vs(v"s"u") = vv"s"u" ± v's'u' since v = v'. Thus
u" = A; so vsux = vs(v"s"u") = v(ss")u", and hence ss" = s'; so s'esS. Similarly ses'S; so
s9is' in S. (We note that the assumption that P is united has not been used for this half of
the result.) Conversely, suppose v = v' and.sSfo' in S. Then there exist t,t'eS such that
st = s', s = s't'. Since P is united it follows from Lemma 2.2 that u and u' are right
invertible in <<g(S; B, A; P), say ux = 1, u'x' = 1. Thus usu(xtu') = ustu' = vs'u' = v's'u' and
v's'u'(x't'u) = v's't'u = v'su = vsu; so vsuS&v's'u'.

(b) The proof is entirely similar to that of (a).
(c) and (d) follow from (a) and (b).
(e) Let vsu e ^(S; B, A; P). Since P is united it follows from Lemma 2.2 that v is left

invertible and u is right invertible in ^(S; B, A; P), say xu = 1, uy = 1. Let aeA. Since a
is right invertible, there exists ze^(S;B, A;P) such that az = l. Therefore
(ax)(vsu)(yz) = asz = az = 1; so 1 belongs to the ideal generated by vsu. Hence
<<?(S;B, A; P) is simple.

COROLLARY 2.5. Let P be united. Then ^(S; B,A;P) is bisimple if and only if S is
bisimple.

THEOREM 2.6. The monoid ^(S; B, A; P) is regular if and only if S is regular and P is
united.

Proof. Suppose ^(S^^;?) is regular. Let seS. Then there exists vtueB*SA*
such that s(vtu)s = s. Hence v = A = u; so S is regular. Let aeA. Then there exists
vtueB*SA* such that a(vtu)a = a. By the remarks following the proof of Lemma 1.1,
a(vtu)a eB*SA*a; so a(vtu) = 1. Thus a is right invertible; so, by Lemma 2.2, row a of
P is linked to a row which contains a right invertible element of S. The argument is
symmetrical for columns of P. Hence P is united.

Conversely, assume the conditions of the theorem hold, and let vsueB*SA*. Since S
is regular, there exists t e S such that sts = s. By the use of Lemma 2.2, there exist
x, y e ^(S; B, A; P) such that ux = 1 = yv. Thus vsu(xty)vsu = vsu; so vsu is regular.
Hence <g(S; B, A; P) is regular.

THEOREM 2.7. The monoid ^(S^B^iP) is inverse if and only if S is inverse, A
and B are singletons, and the single entry of P is an invertible element of S.

Proof. Suppose ^(SiB^;?) is inverse. Then S, being a regular submonoid of
3, A;P) by Theorem 2.6, is inverse. Let aua2eA. Since at and a2 are right

invertible there exist xx, x2£
c€(S;B, A;P) such that aix1 = l, a2x2 = l. Thus xxax and

x2a2 are idempotents. Since ^(S;B, A;P) is inverse, x1a1x2a2 = x2a2x1a1. But XjOjX^e
(B*SA*)a2 and x2a2xlale(B*SA*)al; so ax = a2- Hence A, and similarly B, is a
singleton. By Theorem 2.6, the matrix P is united, and thus the single entry of P must be
an invertible element of S.

Conversely, if S is inverse, A and B are singletons, and the single entry g of P is an
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invertible element of S then the elements of %{S;B,A;P) are bnsam, s e S , n,m =
0 , 1 , 2 , . . . . Since ab = geS we have a2b2 = agb = ab. Thus the idempotents of
^ ( S ; B, A; P) are the idempotents of S together with all elements bnsa" (n > 1) for which
sgs = s. We claim that any two idempotents of <S(S; B,A;P) commute. Let s,teS with
sgs = s, tgt = t. Since idempotents commute in S, we have sgt = sgtgt = tgsgt = tgtgs - tgs.
Thus bnsan-bnta" = bnsgtan = bntgsan = bnta"-b"sa" for n > l . If l < n < m then
bmsam-bntan = bmsam = b"tan-bmsam. Ue2 = eeS then e-bnsan = b"san = bnsan-e. There-
fore idempotents commute in the regular monoid ^ ( S ; B, A;P) and so ^(S;B,A;P) is
inverse.

We have not given an explicit formula for the product of two elements of
^ ( S ; B, A; P) in general. However, in the special case in which all entries of the matrix P
belong to S, we can give such a formula. Let vsu, wtxeB*SA* and let u = utu2 • • •"„ ,
w = wmwm_1... Wj (if u = A or w = A, let n = 0 or m = 0, respectively). Then

if
if

if

if

n
n

n

n

>m
= m

= m

<m

= 0,

>o,
v(st)x

VSU • WtX = <
"(sPu.w.Ox

(vwm_n...

In this case BSA is clearly a subsemigroup of ^(S; B,A;P) which is isomorphic to the
Rees matrix semigroup M{S;B,A\P). Furthermore, we show that there exists a
homomorphism from ^(S-^, A;P) onto the bicyclic monoid such that pre-images of
idempotents are isomorphic to Rees matrix semigroups over S.

THEOREM 2.8. // each entry of P belongs to S then the monoid ^(SiB^iP) is a
coextension of the bicyclic monoid by Rees matrix semigroups over S.

Proof. Let </>: A U B U S —> ^(p, q) be the mapping into the bicyclic monoid such that
a—*p, b —* q, s —> 1 for all as A, beB, seS. Then each of the five types of defining
relations for ^(SiB, A;P) is clearly satisfied by the elements of (AUBUS)<£; so <p
factors through ^(SiB^iP), yielding a homomorphism from ^ S ; ! ? , A;P) onto
^(p, q), also denoted by </>. Thus (vsu)<j) = qmp" for vsueB*SA*, where m is the length
of v and n is the length of u. Therefore the idempotent qnp" of ^(p, q) has pre-image
B"SAn. In particular, <f)-1(l) = S. From the multiplication in <€(S; B, A; P) it follows that
for n > 1, B"SA" is isomorphic to the Rees matrix semigroup M(S; Bn, An;P(n)) over S,
where P(n) = (p(n)uu) is the A " x B n matrix over S defined by p(n)uv = pUiUi for u =
u,u2 . . . !<„, u = «„«„_!... vv If n = 1 then P(n) equals P, and BSA =M(S; B,A;P). If
n > 1 then P(n) may be viewed as an A x B matrix of blocks P(n)ab, where each block
P(n)ab is a constant An~1xBn"1 matrix having value pab. We have shown that the
pre-image of each idempotent is isomorphic to a Rees matrix semigroup over S, i.e.

-^, A;P) is a coextension of ^(p, q) by Rees matrix semigroups over S.

THEOREM 2.9. IfS is regular and all entries of P belong to S then the regular elements of
^ ^ - ^ ) form a regular submonoid of
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Proof. Let vsu and wtx be regular elements of ^(SiB, A;P), where u = u1u2... u,,
and w = wmwm_!... w^ (if u = A or w = A, let n = 0 or m = 0 as above). Then there exist
elements y, zec€(S; B, A;P) such that (vsu)y(vsu) = vsu and (wtx)z(wtx)=wtx. By the
remarks following the proof of Lemma 1.1, we have suyvs = s and txzwt = t.

Case 1. Suppose n>m. Let fc = zwtun-m+l... i^y. Then

(vsuwtx)k(vsuwtx) = (usujU2 . . . un-mx)k(vsuwtx)

= (usUiU2 . . . un_mtx)zwtur,_m+1... i^yivsuwtx)

= vsuyvsuwtx

= vsuwtx;

so usuwtx is regular.

Case 2. Suppose n = m = 0. Since S is regular, there exists re S such that (st)r(st) =
st. Let k = zwtrsuy. Then

= (vstx)k(vstx)

= (vstx) zwtrsuy (vstx)

= vstrstx

= vstx

= vsuwtx;

so vsuwtx is regular.

Case 3 . Suppose n = m > 0 . Since S is regular and p u , W i eS , there exists reS such
that (spu,Wlt)r(spUiWir) = spUiWir. Let k = zwtrsuy. Then

(usuwtx)fc(uswwfx) = (uspU[Witx) zwtrsuy (uspU]Wifx)

= uspUlWltrspUlWltx

= uspUlWltx

= vsuwtx;

so usuwfx is regular.

Case 4. Suppose n < m. Let k = zwm . . . wm_n+1suy. Then

(vsuwtx)k(vsuwtx) = (vsuwtx)k(vwm-.n . . . w2wltx)

= (vsuwtx)zwm ... wm_n+1suyuswm_n . . . w2wxtx

= (vsuwtx) z (wtx)

= vsuwtx;

so usuwfx is regular.
We conclude that the regular elements of ^(S; B, A; P) form a regular submonoid.
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We note that the observation of D. B. McAlister [7], that the regular elements of any
Rees matrix semigroup over a regular semigroup form a subsemigroup, follows easily
from Theorems 2.8 and 2.9.

3. The embedding theorem. The main result is an application of the construction of
the monoid <<g(S;B, A;P).

THEOREM 3.1. Any countable semigroup can be embedded in a 2-generated bisimple
monoid.

Proof. By the result of Preston [10] referred to in the introduction, any countable
semigroup can be embedded in a countable bisimple monoid. So it suffices to prove the
theorem for any countable bisimple monoid S. Let A={al,a2,a3,...} and B =
{bu b2, b3,...} be countably infinite sets, disjoint from each other and from S. Let P be an
AxB matrix over A U B U S such that (1) pnn = an+l and pn+in = bn+x for n =
1, 2, 3 , . . . , (2) those entries of P which belong to S generate S, and (3) P is united. These
conditions can be satisfied, for example, by placing the identity 1 of S in each row and
column of P, and by placing each element of S somewhere in P. By Corollary 2.5,
^(S^B^^P) is bisimple. Since anbn = p,m = an+l and an+1bn = p n + l n = fcn+1 for n =
1, 2, 3 , . . . , each element of AUB is generated by a! and b^. Furthermore, since each
element of S is generated by elements of the form anbm = pnm, A U B U S and thus
'SCSiB, A;P) is generated by the elements ax and bx.

COROLLARY 3.2. Any countable semigroup can be embedded in a bisimple semigroup
which is generated by 3 idempotents.

Proof. By Theorem 3.1, any countable semigroup can be embedded in a bisimple
monoid ^(SiB^iP) which is generated by elements ax and fej. The Rees matrix
semigroup M(<€(S; B,A;P); 3, 3; Q) over <<?(S; B,A;P), where

Q = 1 1 a l
Ll b, l J

is bisimple and generated by the 3 idempotents (1,1,1), (2,1, 2), (3,1, 3).

We note that the numbers of generators in Theorem 3.1 and Corollary 3.2 are the
best possible since any bisimple monoid generated by a single element is a finite cyclic
group, and since any bisimple semigroup generated by 2 idempotents is completely
simple. Semigroups which are generated by 2 idempotents have been completely classified
by Benzaken and Mayr [1]. Our results indicate that semigroups generated by 3 idempo-
tents, even those which are bisimple, can be very complicated.
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