COURSE AND DISTANCE CORRECTION

Sir,
It should be explained that the method of course correction proposed in A. J. Tyrrell's paper (Vol. V, p. 39) only applies strictly to a flat Earth. To obtain the course correction for the globe (assumed spherical), it is necessary to imagine that portion of it which is represented in Fig. I of the paper to be expanded into a Mercator chart. The expanded lengths of the lines $\mathrm{AB}, \mathrm{BE}, \mathrm{CE}$, measured in minutes of the equator, become $\mathrm{AB} \sec M, \mathrm{BE} \sec M^{\prime}$, $\mathrm{CE} \sec M^{\prime \prime}$ respectively, where M, M^{\prime} and $M^{\prime \prime}$ are the (true) middle latitudes of the lines. If L is the latitude of the estimated position, $M^{\prime}=M^{\prime \prime}=L$ nearly and, assuming the lines to be rhumb lines, the formula for the sphere becomes tan (course correction) $=\mathrm{CE} / \mathrm{AB} \sec M \cos L \pm \mathrm{BE}$.

If accurate results are required it is therefore necessary to enter the table with $\mathrm{AB} \sec M \cos L \pm \mathrm{BE}$ and CE as arguments. The value of $\mathrm{AB} \sec M \cos L$ can of course be calculated before noon. The simpler procedure proposed in the paper will usually give results which are sufficiently approximate; but if the latitude is high it will not do so unless the difference of the latitudes of A and B is small.

S.S. Ranchi
(at sea).
Yours faithfully,
C. F. Halliday.

