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1. Introduction. The integral

Q{x,m)=\ KitfrfKJM— (1-1)
Jo r

arises in problems of scalar wave propagation in welded elastic wedges. In (1.1), Kim(Ptr) is
the modified Bessel function of the second kind and m, x are real. It is shown that Q(x, m) is a
generalized function that includes a complex shift operator. We shall investigate the pro-
perties of this operator and establish a new integral transform based on the kernel Q(x, m).

A summation formula based on Q(x, m) is derived, which facilitates the evaluation of sums
involving the Jacobi polynomials. Finally, Q(x, m) is used to obtain a new multiplication
theorem for the MacDonald functions.

2. Representation of delta functions via the Kontorovich-Lebedev (K-L) transform. The
K-L transform of a function/(r), 0 < r < oo, is given by the relation

(r)Kiz(Pr) —, (2.1)
r

where r is real and /? is a complex constant, [1, 4]. If f(r) is such that — is continuously

differentiable and both /•/(/•) and r—< — > are absolutely integrable over the positive realdrl r )
axis, the inversion formula assumes the form [5],

r / ( r ) = \ I F(x)Kiz{$r)x sh nx dx. (2.2)

"*y This pair of reciprocal formulas can be combined to yield the integral theorem

1 /(r) = \ | T sh nx K,tfr)dx I KQKJftO -f. (2.3)
71 Jo Jo %

f* to

Writing (2.3) in the form f(r) = M)5+(r - f)d£, where d+(x) = 2H(x)d(x) is the unit
Jo

t This research has been sponsored by the Cambridge Laboratories (AFCRL), United States Air Force under
grant AFOSR-73-2528A.
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Similarly, from (2.

and therefore

5(i

t54

l)and

F(t)

r + m)H

•(r-ro) =

(2-2),

n Jo

h^(T-m)

1 „•!_

2 1 T oil 71
" rojo

'•Jo

2 (
= - j T sh nx

T Kit(fr)Kix(Pr0)dx.

lm)Kim(Pr)m sh TW </m

J\.:t{pv)J\.imipr)— , p^v).
r
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impulse function (5(x) is the usual Dirac function and H(x) is the Heaviside unit step function),
we obtain the representation

| f (2.4)

(2.5)

(2.6)
t - Jo r

Furthermore, since [5],

K.Xrt-fV'^cosCTOtf (2-7)
Jo

and

TT(5(T - m) = | cos £(T - m)d{, (2.8)

Jo
it follows that

7i5(T-m) = Xi(t_m)(0). (2.9)

Consequently, (2.6) can be recast in the form

Q0(x, m) = Kix(Pr)Kim(Pr) — = - i(r+m)V^ l(t"m) . (2.10)
Jo r 2 x sh7TT

f00
The integral 2Cjt(x)dT = 7te * verifies that the normalization constant in (2.9) is correct.

J-oo
We may generalize the concept of the Dirac delta function to include complex arguments in the
following sense: consider the identity [3, p. 67],

= - r
Jo

If we interpret

then, for any entire function f(m)

f(m)dm= -nRe[f(x + i)l (2.11)
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OPERATOR ASSOCIATED WITH KONTOROVICH-LEBEDEV TRANSFORM 111

The same result holds for

Jj> = 0

For example
|*OO /*00

Kl(m -1)0») ch t;m dm = X ^ ) ch r/(t + x)dx
J — oo J — oo

= ch 7/T I KJy) ch>/x dx = n ch r\x e~y cos"
J - o o

1*\ [4, P- 8].

In the limit j -»0

— K^m _ t)(y) ch *;m dm = —n cos >; ch »;T = — rc Re[ch t]{x + i)].

Clearly (2.11) can be extended to algebraic and differential operators of higher order.

3. An integral of Titchmarsh. We shall next use a result of Titchmarsh [7]. Consider
the Hankel transform pair

|*oo /"oo

/(*)= JJLxtyfxi F(t)dt, F(x) = Jv(xt)\!xtf(i)dt (v^-1/2) (3.1)
Jo Jo

and let g(x), G(x) be similarly related. .Assuming that/2 and g2 are integrable over (0, oo), we
invoke Parseval's formula

rF(x)G(x)dx = r
Jo Jo

(x)dx (3.2)
Jo Jo

for the particular case

f(x) = x"+v+*Kk(ax), g{x) = x^^K^bx). (3.3)

The inverse Hankel transforms of these functions are

F(x) = 2 J +"( iV+ ir( /+v+lKfl2+x2)" '"""1

G{x) = 2"+vfc"xv+*r(/i + v+l)(fc2 + x2)-'1-v"1' (3.4)

Thus the application of (3.2) yields directly

x2v+1dx
+v+1(fc2 + x ^ + v + 1 - (3.5)
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The integral on the right is evaluated by putting x = b tan 9 and expanding in powers of
e = 1 —a2lb2 ^ 0, for b ̂  a. Hence the Titchmarsh integral

X, m p) = r K
Jo

QLX, m p) = rKx(ax)Kll(bx)x"-1dx
J

(3.6)

where p = 2v+X+n + 2 and 2Fi is the hypergeometric function. It can easily be demon-
strated that (3.6) reduces to (2.10) if a = b = /? > 0, A = IT, fi = im and p -* 0. Indeed

/ p + i { T m } \ / p i { T m } \ p + i{ t + fn} p i { T + m }

= lim I 2 M 2 J I 2 _J_L_g_J
(3.7)

If T = m or x = ~m, the expression on the right of (3.7) varies like F(p) and therefore tends to

infinity. If | x | i= \ m |, this expression varies like —— which tends to zero. Using the Mellin-

Barnes integral [9],

T(rt A- y>XC(R A- v\T(n 4-ftr(R4-ft

(3.8)
l - i o o

with

and the relations

(3.9)
zsin7rz • ' " - '

we obtain, from (3.7), (3.8) and (3.9),

in accordance with (2.6).

i" Qo(?,m)dT =-?£- (3.10)
J-oo TShTTT

4. Properties of Q(x, m). The integral (1.1) is an even function of both x and m. It is a
special case of the Titchmarsh integral for the parameters

pi=a<b = p 2 , X = ix, n = im, e = l-( j81 / i?2)2^0 (4.1)
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OPERATOR ASSOCIATED WITH KONTOROVICH-LEBEDEV TRANSFORM 113

at the limit p -> 0. From the explicit expression (3.6), we deduce that Q(x, m) diverges at
T = ± m. It can be shown that in the neighbourhood of p = 0 it behaves like

71

4 t Sh 7TT

Certain results from the theory of the hypergeometric function 2Ft can be applied in order
to recast (3.6) in other convenient forms. Invoking the relation [4, p. 38]

lim=^2f i(4-l , B- l ; P\ 6) = (A-l)(B-l)e2F\(A, B; 2; a), (4.2)

where

A = l+l-(r + m), B = l+l-(z-m), (4.3)

A SO TTJC
and using r(/x)r(— fx) = — - — , (3.6) yields, for | x | ^ | m |,

A SO TTJC

(4-4 )

The fact that Q(T, /M) is real and even in T is not obvious from (4.4). Using however the trans-
formation of [3, p. 47],

2FM,

where A denotes the complex conjugate of A, etc. Thus

7C2 L+L

(4.5)

4 chirm —

^ - e ) (4-6)

and clearly

Q(T, m) = Q ( - T , - m ) = Q(T,-m) = Q ( - T , m).

In order to examine the behaviour of Q{y, m)atm= +x and m = —x on the real m axis for all
values of e, we shall make use of the multiplication theorem of 'the modified Bessel functions
[3, p. 130]

Kiiaz) = a" £ ^{z"Xi t + n (z)[ i ( l -a2 ) ]"} . (4.7)
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Choosing a = Pi\$2, z = Pzr w e have

Ms) = e""Ku(P2r) + ̂  £ ^(e/?2r/2)niCit+n(/?2r). (4.8)
n = l " •

But since the left-hand side of (4.8) is real and even in T,

?2r) + Re je1*11 1 r^lV,I + n(jS2r)| . (4.9)

Multiplying both sides of (4.9) by r~xKim(fi2r), integrating with respect to r over (0, 00) and
using (3.6) with p = n, a = b = fl2, k = im, y. = ix+n, yields

Q{t, m ) = ^ W T + w ) + ^ _ m ) ] + 8 « V i ^ ^ 2 i i ) > (4
2TshjrT 4 chnm chnT

where e'k\Fi{A, B;2;e) is real and even in T and w according to (4.5). Thus Q(r, m) is a
generalized function and the representation (4.10) is valid for all real values of 1 and m.

To expose further the nature of Q(z, m), we shall consider integrals of the form

f0

J —
, m)g{m)dm, (4.11)

where g(ni) is an entire even function in the complex zw-plane. Substituting from (4.10), this
integral is evaluated by the method of residues: half a residue at m = x and m = -x and a
full residue at m = ±x+2in(n=l,2,3, ...). It turns out that the half-residues at m = ±x
cancel each other, thus indicating that the singularities of Q(x, m) on the real w-axis are fully
accounted for by the delta-function terms in (4.10). The contribution of the poles above the
real axis amounts to

t. "trf00 IFM,B;2;B)
£ 4 g

ien2

= ——ei

zsnnx B=o

(s = 2(« + l)), (4.12)

where g(m) is such that the integral over the infinite arc vanishes (see Appendix B).
However, [3, p. 212]

^ ( 1 - " ' ( l - 2 e ) (4.13)

Pix--h\\-2z) (4.14)
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where PlnlP\x) is the Jacobi polynomial by Szeg6 definition [6]. Hence

X ( 4 , 5 )4 f ^^tol+i
4 J-x cli7im-ch7n- shnt [ B=x n

The special case g = 1 is important. A straightforward integration yields

f00 f°° drC™
Q{x,m)dm = 2\ K ^ r ) - Kim(p2r)dm

J-oo JO r J 0

where

Letting £ -> 0 in (4.10), we find that

T, „ ) = Q0(r, » ) = " a

2

in accordance with (3.10).
Moreover, in the light of (4.10) and (4.15), we may represent Q{x, m) for e # 0 by the

operator
71 COS icT

Q ( ) W

+ J^lm)e*< £ n~lK }5(m-x+2m)[ (4.18)
shTTT (. n = i n '

in the sense that

„ n2 cos kx , ^

provided that g(w) is such that the sum converges. In particular, if #(T) is periodic with a
period of 2in, then

P Qfr. m)g{m)dm =
J-oo

Further properties are:
lim {T sh nx Q(x, m)} = n2d(m) (4.20)
t->0

Qo(i,m) = Qdm,T). (4.21)
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But
Q(T, m;P1;P2) = Q(m, T; p2;Pl), (4.22)

since the interchange oft and m has the same effect as the interchange of ^ with /?2-
Therefore, if s = e/(e— 1), then

TZ COS icZ

(Km, x) = ——— [<5(m - T) + <5(m +1)]
2 t Sh 7TT

in)l = 0(T,m). (4.23)
j

In Appendix A we have presented a second proof which throws light on this formula from a
different angle.

5. The Q-transform and Jacobi sums. We define the Q-transform of/(x) by means of the
integral

= ^Tshnr f "Q(T,71 Jo
/(T) = T{g(x)} = ^Tshnr f Q(T, x)^(x)dx. (5.1)

71 J
The derivation of the inversion formula is obtained by writing (2.6) with the aid of (2.4) as
follows:

= A T sh ,tT [^(/VK^r) ^

= |TshK*pKfttor)y [ " K ^ ^ ^ ^ r - « ) d « (5.2)

4 f" dr f* du f00
= ^Tsh7TT XftCSjr)- X J ^ H ) - KutfiriKuAPiUfrshnodo

" Jo r Jo " J o

4 f"1 f00 dr f00 rfu
= ^ T s h ^ t <r s h a r d * A',.t(i?1r)iC1.(I(iS2r)- Kix(PlU)Kia(p2u)-

n Jo Jo »' Jo "
that is

Similarly,

4 f00

5(T + X) + d(T - X) = - j T Sh 7TT Q(T, <T)G(X, ff)(T Sh 7T(T dff. (5.3)
t Jo

4 f00

5(T + X) + <5(t - X) = - j T Sh 7TT Q(ff, T)Q(ff, x)(T sh Tiff dff, (5.4)
t Jo
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since in (5.2) we can start with the argument 0?2r) and express d+(r—u) in terms of functions of
the argument (jSjr).

Now, from (5.1) and (5.4),

*} /*°o A. /*°° f*00

- j x sh 7tx Q(x, x)f{x)dx = -5 x sh nx\ Q(x, x)x sh nx dx Q(x, a)g{a)da
71 Jo n Jo Jo

f °° F 4 f °° "1
= ^(ff)d(T -jXShTTX Q(T,<T)g(T,x)TSh7:TJT

Jo Ln Jo J-r
Jo

Hence we have the transform-pair
f(x) = T{g(x)} = -^ T sh 7TT I Q(x, x)g(x)dx (5.5)71 Jo

Kx,x)f(x)dx, (5.6)
n Jo

where
T-^^Cx)} = TT-'igix)} = ^(x). (5.7)

Equation (5.6) can be written as

= -2 x sh TIT f"(g(T,
71 Jo

g(x) = -2 x sh TIT f(g(T, x)/(x)rfx, (5.8)
71 J

where $(T, X) is given by (4.23). A collection of simple 2 - t r a n s I ° r m s is given in Table 1.
These were derived by using the Kontorovich-Lebedev transform pairs given in the literature
[e.g. 1,4].

Next we consider (5.5) as an integral equation in the unknown function g(x), that is

2 r
- j T sh TTT g(rri)Q(z, m)dm = / ( T ) . (5.9)
i lo

•J.
By (4.18), it is equivalent to the difference equation

Jg(x-2in)\=f(x) (5.10)
n = l

which, due to (4.23) and (5.8), has the solution

<» p(1.")n_ 2£)
^(T) =/(T)cos/cT + gTlm^e~'*r £ - ^ /(T—2in)^. (5.11)

Thus, both (5.8) and (5.11) are solutions of (5.9). One form requires the evaluation of an
integral and the other the evaluation of an infinite sum, which we shall call a Jacobi sum. The
connection between the two solutions is furnished by (4.18)

H

https://doi.org/10.1017/S0017089500002603 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500002603


118 ARI BEN-MENAHEM

et Im \ eikx £ - = ^ - i ; g{% - 2in) I = -^x sh TTT Q(T, *M*)rf* - # ( T ) cos fct, (5.12)
(. n=l " ) n Jo

where g(t) is entire even function in T and also is such that the sum converges (see Appendix B).
00 _7I

With the aid of (5.12), one may evaluate Jacobi sums of the type £ — PfJ?(\ -2£)g{x-2in),
n=l n

provided one can reproduce a function from its imaginary (or real) part. The techniques for
doing this are however well-known.

In this sense (5.12) plays an analogous role to Poisson's summation formula in the Fourier
integral theory.

Let us demonstrate its usefulness by -means of an example. We choose g(m) =
m sh nm Kim(P2

ro)- Then, because of (2.4),

| Q(r, m)g{m)dm = 2 \ K^.r) — \ m sh nm Kim(p2r)Kim(P2r0)dm
J-oo Jo r JO

= 2 p * , . / / ? ! / - ) - 7i2r0<T(r-r0) = n'K^^).
Jo ''

Therefore by (4.18), with a - Pi/P2, Piri — z, k = In a, we obtain

Kh(az) = cosfcTX,,(z) + (l-a2)Im \e"" f ^L^!z i ) ( T _ 2 i w )X i t + 2 n (z )} (5.13)
( » J

This is a multiplication theorem for the modified Bessel function of the second kind. To the
best of the author's knowledge, this formula appears here for the first time.

In particular, for T = 0,

K0(az) = K0(z) + 2(a2-l) £ P^^{la2-\)K2^z).

If we choose g{m) = chmOKim(Pir0), we obtain the new relation

:os 0)} — =
r

Im ? ^ ;
j * ^ - n - x v̂  -^ c hg(T_2iH)Xh + 2 , ( /?1r 0 )} . (5.14)

n = 1 "

(PO = (/»l/j82>o)-
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APPENDIX A

A multiplication theorem of the Bessel functions has the form [8, p. 140]

Jv(az) = flVv(z) + a* f ( - ^ ! L > ^ ± | 2 f l(_n> n + v;l + v;PllPl)Jv+2n(z) (A.I)

Substituting e = 1 — a2, v = h, a = PXJP2, z = J?2r
 a n ( i invoking the definition [3, p. 212]

_ 6 ) = (_ ) -+ i ip (Mt) ( i_2 8 ) , (A.2)

where P(
n"'fi\x) are the Jacobi polynomials by Szego definition [6], we obtain the new multi-

plication theorem for the Bessel functions

uiPs) = eikUit(P2r) + ee^ £ (-)"'T+^+2^•")(l-2e)Jir+2n+2(j?2r) (A.3)
n=o

Invoking the definitions of the modified Bessel function [3]

iv(z) = e-inivJv(zen"2); Kv(x) = ^TTi:.{'-»(*)-•*»(*)}> (A-4)

(5.5) yields

However, from (2.6) and (A.4) we deduce the result

f" . dr ni

Jo " "" r 2m

Then, multiplying both sides of (A.5) by Kim(fi2r) — and integrating over (0, oo), using (1.6),

we arrive finally at the desired representation

71 COS let

F7T2 f °° fi"11 "1

i (A.7)
valid in the sense of (4.18).
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APPENDIX B

From [3, p. 214] and [2, pp. 1040-1041] we deduce, after a few algebraic steps, that

" z" .... \-e~Ux . .
Si(z) = Z -Pi-'iKi--2s) = —: | z | ^ 1, (B.I)

n=i n ne
where

tf = V{(l-z)2+4ze}.

Also
00 3 2ze~'At

S2(z) = I z-e-Pd -2.) = z - S l ( 2 ) = i ^ — ^ . (B.2)

The particular case

z = e 2 "

A = i

leads to the new sums

n=i n

« D(i,«)n

(B.3)

(B.4)

(B.5)

„ P j 1 ( l 2 e ) , , , sh^r
I - 5 - L ^ sh ij(t - 2i/i) = -r^- (B.6)

, chf i = C^/yffi).

Then the use of (4.18), (B.3) and (B.4) enables us to evaluate the g-transform

f™ 7i2 f00

g(r, m) ch f/m dm =—-— cos x$, Q(T, m) sh t]m dm = 0 (B.I)
Jo 2TSh7IT J-x

which is valid for r]^nj2. Note that the evaluation of the transform by means of integration
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(rather then summation), depends on the permissibility of interchanging the orders of integra-
tion over r and m. For example

Q(T,in)chijmdm = | X ^ r ) — KJfijf) ch r\m dm
Jo Jo r Jo

TABLE 1.

nz Jo

1

g(x) = g{x-2in)

g(x) = p(x)f(x) =p(x-2in)f(-x)

xshnx Klx(p2r0)

cos r/x

ch i/x, t] S nj2

x sin IJX

xsht/x

ch (i/x) ch (fix), >1+M = K\2

sh(;/A-)sh(//Ar)

Arsh(^Ar)chto^)

x sh 7u: T(A + /;c)r(A - ix)Bfx~_x
i (y), Rcy

B = Legendre function

C,xK»(P2ro)

2-TRANSFORMS (A, p, tj, fi, real)

> - 1

/ W = ^ T s n rtT Jo 2(T> x)g{x)dx

cos fir chf2 = y?2/^1

/ (T ) cos fir

/>(T)G(T) (provided G(r) exists)

TSh^T/fi^ro)

cos <bx ch ^ = -3- ch 7
Pi

ch ^ T cos <t>= IT c o s V
Pi

CoTsin,T C o = | | _ J

ch ax ch /fr

2a = cos"1 {~7r(?i—M) r +cos~1 \~o~0l +/*) r

sharshpV

ra sh ar ch pY ^ + ?/? ch ar sh fix -%-
on on

AoXshnxTQ. + ix)VQ. — ix)B^x—^(y P2IP1)

Re(r-;.)S4

•*fft*rifj|-')}*-«*
I f " , dr
- x sh nx 1 Klt(pir)K0{pl'J(r +r%+ 2rr0 cos 7)} —
1 Jo r
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is again valid only for >/ 5= nj2, or otherwise the integral over m will not converge. In general,
the validity of (4.18) and (5.12) will depend on the behaviour of g(m) in the upper complex
m-plane. In addition to its being even and entire it must have the properties: (1) g(m) =
0 [exp(?rm/2)] since 2Ft(A, B;2;s) behaves like exp(7tm/2) for large m; (2) it is such that the

function \ -^—-—'—^— g(m) } vanishes on the infinite upper semi-circle. Thus g(m) = cos r\m
y ch nm —chnr J

violates (2) and the g-transform for this case can only be evaluated by integration (Table 1).
Finally, for g{m) with period 2/w,

IT£
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