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ABSTRACT

In this paper we model the life-history of LTC-patients using a Markovian
multi-state model in order to calculate premiums for a given LTC-plan. Instead
of estimating the transition intensities in this model we use the approach sug-
gested by Andersen et al. (2003) for a direct estimation of the transition proba-
bilities. Based on the Aalen-Johansen estimator, an almost unbiased estimator
for the transition matrix of a Markovian multi-state model, we calculate so-
called pseudo-values, known from Jackknife methods. Further, we assume that
the relationship between these pseudo-values and the covariates of our data are
given by a GLM with the logit as link-function. Since the GLMs do not allow
for correlation between successive observations we use instead the “Generalized
Estimating Equations” (GEEs) to estimate the parameters of our regression
model. The approach is illustrated using a representative sample from a Ger-
man LTC portfolio.
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1. INTRODUCTION

Increasing life expectancy and the demographic development in most indus-
trialized countries challenge both social welfare and private insurance systems
(see CoE (2003)). The numbers from the Federal Statistical Office in Germany
from the “Abbreviated Mortality Table for 1999/2001” show that a 60-year old
male can still expect to live for another 19.5 years, a female of the same age
for another 23.7 years. Due to a different family structure people tend to live
more frequently alone and require at older age some kind of external assistance
to manage the tasks of daily life. To pay for this external assistance, long term
care insurance (LTCI) was established and added to the social welfare system.
Insurance companies also have developed full or additional insurance cover for
long term care (LTC).
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The goal of this paper is to introduce an approach by Andersen et al. (2003)
used in Biostatistics to calculate the transition probabilities of a Markovian
multi-state model to actuarial scientists.

In contrast to Cox’s proportional hazard model (Czado and Rudolph (2002)),
where the transition probabilities are calculated from the transition intensities
using a relationship given by the set of Kolmogorov forward differential equa-
tions (Haberman and Pitacco (1999)), Andersen et al. (2003) developed a
method that models the transition probabilities directly. This method calculates
pseudo-values based on the Aalen-Johansen estimator, an almost unbiased
estimator of the transition matrix of a Markovian multi-state model. These
pseudo-values are used in generalized estimating equations (GEEs), see for
example Hardin and Hilbe (2003), that take in contrast to Maximum Likelihood
estimation correlation between observations into account, to estimate the para-
meters of the model.

In this paper we provide a complete description of all necessary statistical
and actuarial tools and illustrate the application of above mentioned method
by Andersen et al. (2003) to a representative random sample from the German
private compulsory LTCI-system.

In Germany the LTCI-benefits depend generally on the place of care (at
home or in a nursing home) and on the level of care, the severeness of assistance
needed: People in “Level 1” are in considerable need of care, in “Level 2” in
serious need of care and in “Level 3” in extreme need of care.

This situation of different levels and places of care can be modeled by a
three-state Markovian model, with states “Care at home”, “Care in a nursing
home” and “Death” (see Section 2). To calculate the necessary actuarial values
we have to estimate the transition probabilities from our data. Thus we define
in Section 3 the Aalen-Johansen estimator. Since the Aalen-Johansen estimator
does not allow for covariates such as sex and age of claimants and only gen-
erates one outcome for a given set of data, we need pseudo-values to generate
the data required for a regression analysis and to construct a relationship
between the Aalen-Johansen estimator and covariates associated with the obser-
vations. Therefore we introduce pseudo-values in Section 4 and explain their
use in generalized linear models (GLMs), which are popular extensions of linear
models (McCullagh and Nelder (1989) and Fahrmeir and Tutz (1994)). The
pseudo-values are calculated at different points in time involving the same
observations. Therefore the assumption of independence required for GLMs
does no longer hold and we have to introduce the generalized estimating equa-
tions (GEEs) in Section 5 that take correlation between observations into
account.

In Section 6 we apply these methods to our data: We calculate the Aalen-
Johansen estimator of a three-state model, derive the pseudo-values and thus
generate the data for a regression analysis using GEEs, where we specify the
logit as link-function in a linear model. With the estimates obtained from this
regression analysis we calculate finally the one-year transition probabilities and
use them to compute the actuarial values for a given LTC-plan and derive the
required premiums. A summary with a comparison of our premiums with pre-
miums offered by a German health insurer completes our analysis.
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2. MARKOVIAN MULTI-STATE INSURANCE MODELS

We use a Markovian three-state model with states “Care at home”, “Care in
a nursing home” and “Death”. For the calculation of the actuarial values the
state “Active” has to be added to this model (Figure 1). We are able to calcu-
late the transition probabilities for the area within the dotted line using our
data, whereas for transition from outside this area additional information is
necessary, such as incidence rates for LTC and mortality rates for active lives.
We use incidence rates from “Custodial Insurance, Japan”, that certainly dif-
fer from the rates in Germany due to different LTC-definitions, and mortality
rates from the “Bavarian life tables 1986-1988” (Rudolph (2000) Appendix C.1
and C.2).
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FIGURE 1: Markovian four-state Model for LTCI

(0): Active

(1): Care at home

(3): Death

(2): Care in a
nursing home
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The quantity pgh(t) denotes the one-year transition probability for a transition
from state g to state h. We exclude transitions from state 2 to 1 since such tran-
sitions are observed very rarely, and we consider state 3 as an absorbing state
for natural reasons, consequently p21(t) = p31(t) = p32(t) = 0 for all t.

The life-history of an individual in above introduced Markovian four-state
model can be described by a time-continuous Markov process S (t) with state
space S = 0,1,2,3. The derivation of actuarial values both in time-continuous and
time-discrete contexts, is explained in detail in Haberman and Pitacco (1999).

For our purposes we assume the time-discrete version: An insured pays a
premium p in state 0, i.e. “Active”. A lump sum c0h is paid at the end of the
year of a transition to state h and an annuity bh in state h until death, where
h might be 1 or 2, i.e. “Care at home” or “Care in a nursing home”. Let P0h(0,t)
be the probability of an insured to be in state “h” in year t and P00(0, t) p0h(t)
the probability for an insured in state “Active” to transfer to state h in year t.
The actuarial value of above payments is the sum over the discounted outcome
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multiplied by the corresponding probability of this outcome happening. Thus
we obtain the following actuarial values for a z-year old insured, discounted
by the factor v :
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where w is the limiting age, i.e. the probability to survive beyond w is assumed
to be zero, and P0h(0, t) can be expressed in terms of the one-year transition
probabilities p0h(t), h ∈ S (see Haberman and Pitacco (1999)). Outflows occur
for transitions to state 1 and 2. Therefore we have to add up the actuarial values
of these outflows and obtain, using the principle of equivalence, the following
equation:
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Solving for p, the premium to be charged for any values of bh and c0h is obtained.

3. AALEN-JOHANSEN ESTIMATOR

For the estimation of the transition probabilities of a Markovian multi-state
model we define the following quantities:

• t1 < t2 < … are times, where transitions are observed.

• d ( j)
gh is the number of lives, that transfer from state g to h at time tj.

• r( j)
g is the number of lives in state g, alive and uncensored just prior to time tj.

The Aalen-Johansen estimator, a non-parametric estimator for the transition
matrix of a Markovian multi-state model, P(t,u) = (Pgh(t,u))g, h ∈ S, is according
to Aalen and Johensen (1978) defined as
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assuming that only one transition is observed at all times tj and the transition
at time tj occurs from state g to state h. This estimator is a product of matrices
at each time a transition is observed. Element (g,g) is equal to 1 – d ( j)

gh /r( j)
g and

element (g, h) is equal to d ( j)
gh /r( j)

g , which is the number of lives that transferred
from state g to h at time tj divided by the number of lives in state g just prior
to time tj ; all other diagonal elements are equal to one, whereas other off-diago-
nal elements equal to zero.

If we take a two-state model with states “Alive” and “Death” the Aalen-
Johansen estimator reduces to the well-known Kaplan-Meier estimator (Kaplan
and Meier (1958)).

From definition (1) it follows that P(t,u) is a stochastic matrix ∀t,u and one
can see that the Chapman-Kolmogorov equations hold. So all requirements on
the transition probabilities of a Markovian multi-state model are fulfilled. If more
than one transition or transitions to different states at the same time occur, the
entries of this matrix have to be modified accordingly (Helms (2003)).

Further one can show, using the theory of counting processes, more precisely
Duhamel’s equation, that the Aalen-Johansen estimator is almost unbiased.
It is even an unbiased estimator if the probability that r( j)

g = 0 is equal to zero
for all times tj and states g. Given a large sample of observations this is usually
the case and we refer in the following to the Aalen-Johansen estimator as an
unbiased estimator. The necessary theory and a proof of this result can be found
in Andersen et al. (1993).

The Aalen-Johansen estimator is calculated using the life-history of all
lives, but does not take their associated covariates into account. Since one
receives only a single estimate for the transition matrix, Andersen et al. (2003)
suggested to calculate pseudo-values in order to generate the data required for
a regression analysis and construct a relationship between the Aalen-Johansen
estimator and the covariates of each live under observation.

4. PSEUDO-VALUES

Let x = (x1, …, xn) be a sample of n observations, e.g. the claim-history of
LTC-patients, and P(t,u) = s (x) the Aalen-Johansen estimator. Then the ith-
jackknife replication of P(t,u), the so-called “leave-one-out” estimator, is
defined using the ith-jackknife sample of x, introduced by Efron and Tibshi-
rani (1993) as x– i := (x1,…, xi – 1, xi + 1, …, xn), as

P– i (t,u) := s (x– i ).

This is the estimator P(t,u) without the i th-observation. The i th-pseudo-value
of P(t,u) is defined as

P– i(t,u) := P(t,u) + (n – 1) · (P(t,u) – P– i(t,u))
= n · P(t,u) – (n – 1) · P– i(t,u) 

Jackknife is usually used to detect outliers and to check the bias and precision
of an estimator: For a good estimator P(t,u) one would assume the i th-jackknife
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replication of P(t,u) to be close to P(t,u) and consequently equal to the i th-
pseudo-value. Andersen et al. (2003) suggested to go a step further and per-
form a regression analysis using these pseudo-values Pi (t,u):

For n observations n pseudo-values can be calculated and thus the data
required for a regression analysis can be generated. The missing link between
the i th-pseudo-value and the covariates was provided by Andersen et al. (2003).
While Andersen et al. (2003) referred in their proofs to both the state and the
transition matrices, they made only use of the former. Since we require the tran-
sition matrix we focus on the Aalen-Johansen estimator right from the beginning.

Let xi be the realization of an independent and identically distributed ran-
dom variable Xi , e.g. the claim-history of the LTC-patients, with expectation
P(t,u). Thus, an unbiased estimator, i.e. the Aalen-Johansen estimator P(t,u)
is available for P(t,u).

Given i.i.d. covariates Zi = (Zi1, …, Zip)T, with distribution function C we
can write:

P(t,u) = E [Xi] = E [E [Xi |Zi ]] = E
0

3

# [Xi | Zi = z] dC(z)

Andersen et al. (2003) then interpreted the transition matrix P(t,u) as the
simple average of the Pi (t,u)’s, defining Pi (t,u) := E [Xi |Zi = zi ], where zi , i = 1,
…, n are the observed covariate values, and estimating C, the distribution of the
i.i.d. covariates Zi, by its empirical distribution C, since

P(t,u) ≈ E
0

3

# [Xi |Zi = z] dC(z) = n P1
i

i
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Using the fact that the Aalen-Johansen estimator is unbiased it follows that
E [P(t,u)] ≈ Pii

n
n 1

1
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! (t,u). The same holds true if we remove one observation
since the data are assumed i.i.d. and we can go through the above steps with
the i th-jackknife sample and obtain
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This provides a link between the estimator P(t,u) and the quantity Pi (t,u) =
E [Xi |Zi = zi ], since using pseudo-values, Andersen et al. (2003) concluded with
the above results that the i-th pseudo-value Pi (t,u) is approximately equal to
the quantity, Pi (t,u), that takes in contrast to P(t,u) the covariates Zi = zi into
account:
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In other words the covariates of the i th-observation are matched with the
i th-pseudo-value. This establishes a relationship between the covariates and the
pseudo-values.
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For our purpose we calculate the Aalen-Johansen estimator as defined in (1)
based on the entire sample and the “leave-one-out estimator” for all observations
i = 1, …, n and time-points t = 1, …, T giving us nT pseudo-value matrices, that is

Pi (t – 1, t) := Pi (t) := (Pi,gh(t), g,h ∈ S ) (2)

We assume that the relationship between the pseudo-values Pi (t) and the covari-
ates is element-wise given by a GLM (McCullagh and Nelder (1989)), where
we choose the logit as link-function, the variance-function as constant and use
normal errors, i.e.

Pi,gh(t) =
b

b

exp

exp

a

a
t

Z
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e

1 t
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T gh
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where i =1,…,n, t = 1,…,T and ei,gh + N(0, s2
(gh)). As covariates Zi = (Zi1, ...,Zi5)T

we include an intercept term (Zi1 = 1), the “Age” (Zi2) at transition time t, “Sex”
(Zi3) and the severeness of assistance needed according to the German LTC-
definition denoted by “Level of care 2” (Zi4) and “Level of care 3” (Zi5). The
unknown parameters are denoted by b (gh) = (b1

(gh), ..., b5
(gh))T. The parameter

at
(gh) denotes the effect of the “Duration of Care”, when the duration is in the

interval (t – 1,t] for the transition from state g to state h. Also other link-functions,
for example the probit or the complementary loglog might be used. In this case
we focus on the widely used logit which is easier to interpret, since our aim is to
fit probabilities and the probit produces usually similar results (see Collett (2002)).

The problem at hand now is a problem of longitudinal data analysis: Since
the same lives are observed at different time-points, correlation occurs in our
model. The pseudo-values of different individuals can be assumed to be
independent since the pseudo-value Pi (t) approximates the quantity Pi (t) :=
Pi (t – 1, t) = E [Xi | Zi = zi ], which are independent random variables for all i .
So for large n it seems reasonable to assume that Pi (t) are independent of Pj (t�),
∀t, t�,∀i ! j . Realizations from the same observation at different times are obvi-
ously dependent. Therefore we use generalized estimating equations (GEEs) instead
of standard Maximum Likelihood estimation in GLMs to account for this depen-
dency. We will give a short introduction to the GEE approach in the next section.

Finally, we would like to remark, that even tough Pgh(t) and P– i,gh(t) are
estimated transition probabilities, i.e. restricted to the interval (0,1), the cor-
responding pseudo-value Pi,gh(t) = n · Pgh(t) – (n – 1) · P– i,gh(t) does not need to
satisfy this restriction for finite n. Technical difficulties might arise here, if the
software package used does not set up the corresponding generalized estimation
equations which will be given in Section 5 and uses for example the iterative
weighted least-squares algorithm for GLMs.

5. PARAMETER ESTIMATION USING A GEE APPROACH

In the previous section we showed how to generate the data for a regression
analysis using pseudo-values and justified matching the i th-pseudo-value with
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the covariates of the i th-observation. In particular we propose to use the GLM
specification (3). Since the pseudo-values of an individual at different time-points
are correlated we have to allow for this correlation when parameters are esti-
mated.

The GEE approach, introduced by Liang and Zeger (1986) and Zeger and
Liang (1986) takes this into account and can be seen as the extension of Quasi-
Likelihood (see Wedderburn (1974)) to longitudinal data.

For each subject i we observe the response yit at times t =1,…,T with the
corresponding covariate vector xit = (xit1,…,xitp). Further we define mit = E [yit]
and vit = Var [yit] assuming that they exist. In vector notation we have the sub-
ject specific response vector yi = (yi1,…,yiT)T, mi = (mi1,…,miT)T and the subject
specific design matrix

... ...
...
...
...
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For T = 1 we have the usual situation of Quasi-Likelihood. Additionally, if we
specify the distribution of yit as a distribution from the exponential family we
recover the situation of the classical likelihood.

The relationship between the linear predictor jit := xit b = xit1b1 + … + xitpbp
and mit is given by the link-function g (·):

g (mit) = jit = xit b or mit = g –1 (jit)

The variance vit is defined as the variance-function k (·) evaluated at mit and
divided by ƒ, the so-called scale parameter, that is vit := k(mit) / ƒ. This gives
us for each observation the following derivative of the Quasi-Likelihood func-
tion K (yit, mit) with respect to the mean function mit:

,K y
v

y
m

m mit it

it

it

2
2

=
-

it

it^ h

For each yi we define the same T ≈ T correlation matrix R (a), which is fully
parametrized by the s ≈ 1 correlation parameter vector a. We only require
R(a) to be a correlation matrix and call it the “working” correlation matrix,
since we do not expect it to be correctly specified, though we want consistent
estimates and consistent variances of these estimates. We define Vi using the
T ≈ T diagonal matrix Ai := diag(vi ƒ) with vi = (vi1,…,vit)T as

Vi := A 2

1

i R (a) A 2

1

i /ƒ. (4)

If R (a) is the true correlation matrix for yi, the matrix Vi is equal to the true
covariance matrix for yi, that is Vi = Cov [yi ], since

Cov [yi ] = Var [yi ] 2
1

Corr [yi ] Var [yi ]2
1

= diag (vi ƒ)2
1

R(a) diag (vi ƒ)2
1

/ ƒ = Vi .
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In addition to b and ƒ we now also have to estimate a. To obtain the GEE esti-
mates of b we solve the score equations

UG(b ) := i

;l l V
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With Dit := ∂mit /∂b and Di := (Di1,…,DiT)T = ∂mi /∂b ∈ �T ≈ p the score equations
can be rewritten as
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where Ui (b, a) := Di
TVi

–1Si and Si = yi – mi. If only one observation is available
for each subject, that is T = 1, this equation becomes identical to the score-like
equation from Quasi-Likelihood.

In contrast to the Quasi-Likelihood approach from Wedderburn (1974),
the matrix Vi in the function Ui (b, a) depends for each i not only on the para-
meter b but also on the parameter a. A next step is now to replace a and ƒ by
any n 2

1

-consistent estimators. Recall that an estimator q̂n for q is n 2

1

-consistent
if ∀j > 0 ∃ a constant k(j) and an integer n(j) such that P( |n 2

1
- (q̂ – q) | ≤ k(j)) ≥

1 –j ∀n > n (j). Assuming that b and ƒ are known we denote the estimator for
a by â (b,ƒ) := â (Y, b,ƒ). Given b we take ƒ̂(b ) := ƒ̂(Y, b ) as estimator for ƒ.
We insert these n 2

1

-consistent estimators in (6) and obtain

UG(b ) ≈ Ui
i

n

1=

! (b, â (b, ƒ̂(b ))) = 0.

We define the GEE estimator of b, denoted by b̂G, as the solution of this equa-
tion. Under mild regularity conditions, it holds that

n 2

1

( b̂G – b ) →L Z as n → ∞

where Z has a Np (0,VG) distribution. Further
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Here Np (m,S) denotes the multivariate normal distribution with mean vector
m and covariance matrix S. A sketch of the proof of this result can be found
in Liang and Zeger (1986) while Helms (2003) provides further details. The
GEE estimates of b, a and ƒ are determined by iterating between a iterative
weighted least-squares algorithm based on Fisher-Scoring for b and moment
estimation for a and ƒ.

To estimate the values of a and ƒ, Liang and Zeger (1986) use Pearson
residuals, that can be calculated in each step of the iteration given the current
value b̂C for b̂G as
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where we calculate m̂it := g –1(xit b̂C). Let N be again the number of all obser-
vations, that is N = nT. We can get a new estimate of ƒ by
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which is the longitudinal analogue of the familiar Pearson statistic (Zeger and
Liang (1986)).

The estimation of the parameter a depends on the correlation structure
selected for the working correlation matrix. Liang and Zeger (1986) present five
different types: An “independent”, “exchangeable”, “unstructured”, “autore-
gressive (AR-I)” and “one-dependent” working correlation.

Since b̂G and VG are robust to the choice of the correlation structure (Liang
and Zeger (1986)) we obtain, using the asymptotic normality, unbiased esti-
mates even if the correlation structure is misspecified. Clearly, if we choose the
working correlation matrix close to the true one, the estimates will be more
efficient. For details on simulation studies using different correlation struc-
tures and misspecified correlation structures see Liang and Zeger (1986).

GEE estimation can be facilitated in the program by Mark X. Norleans
designed for the statistical software program Splus that can be obtained from
http://lib.stat.cmu.edu/ and the program called “Oswald” developed by the
Statistics Group at the University of Lancaster that can be obtained from
http://www.maths.lancs.ac.uk/Software/Oswald/ as a Splus library.

6. APPLICATION TO LTC-DATA

Now all necessary tools are given to estimate transition probabilities from a set
of data containing the claim-history of LTC-patients, directly. The sample includes
5593 individuals, 3505 females and 2088 males, with ages ranging from 0 to 100
years. The median is about 83 years. Their claim-history is given with corre-
sponding levels and places of care at the times a transition occurred. Out of the
5593 individuals, 3264 were censored during the survey due to various reasons. In
total 7348 transitions could be observed. In summary we proceed as follows:

First we calculate the non-parametric Aalen-Johansen estimates P(t – 1, t)
defined in (1) for t = 1,…,T of the transition matrices, ignoring the covariate
information. In the next step we generate the i th pseudo-value matrices Pi (t)
defined in (2) for i = 1,…,n. Assume that the GLM given in (3) holds for Pi (t)
element by element. To adjust for the correlation present among observations
Pi, gh (t), t = 1, …, T, i = 1, …, n, g, h ∈ S we apply now the GEE estimation
approach described in Section 5.

For a specified working correlation matrix R (a) and ƒ = s2 we estimate b,
a and s2 by GEE. For choosing R (a) we first fitted an “unstructured” working
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correlation. Based on the correlation matrix estimated in this approach we
decided then which correlation structure would represent this estimated corre-
lation matrix best and performed another regression using this new correlation
structure as working correlation matrix.

Since for a transition from state 1 to 2, that is from “Care at home” to
“Care in a nursing home”, the values in the “unstructured” correlation matrix
were quite small we chose the “independence” working correlation matrix,
which is fixed to the identity matrix and does not need to be estimated. In
contrast, for a transition from state 1 to 3 we obtained larger estimated corre-
lations using the “unstructured” working correlation matrix. Since the corre-
lations tend to decrease when the distance in time increases we considered an
“autoregressive (AR-I)” correlation structure to be sufficient for this transi-
tion probability. In the case of a transition from state 2 to 3 we also decided
to use the “autoregressive (AR-I)” working correlation matrix, since a similar
behavior in the correlation estimate of the “unstructured” working correlation
matrix can be observed.

In Table 6 we summarized the GEE estimates of all possible transitions of
the model shown in Figure 1, using above mentioned working correlations.
The corresponding p-values are based on the asymptotic normality result pre-
sented in Section 5. In particular standard error estimates of the regression para-
meter estimates are based on an estimate of VG given in (7). The validity of (7)
as variance estimator relies on the independence of Pi (t) across subjects. A jus-
tification for this assumption has been given in Section 4.

Although some p-values for the Duration of care are highly insignificant,
we include all durations in the model since they are required for a consistent
calculation of the actuarial values in our model.

Generally the probability for a transition from state 1 to 2 or 3 increases
with age, whereas it decreases for a transition from state 2 to 3, but very slightly.
The values of all three estimated transition probabilities are higher for males
than the values for females as indicated by a significant positive value of the
estimated regression coefficient corresponding to the covariate “Sex”.

Transitions out of state “Care at home” are more likely to happen to indivi-
duals in “Level 1”, whereas the values for individuals in “Level 2” and “Level 3”
are nearly the same. This can be understood by looking at the regression
coefficient estimates for “Level of care 2” and “Level of care 3” which are
nearly the same for these transition probabilities. The probability of dying in
state “Care at home” decreases from “Level 1” to “Level 2” before it increases
to “Level 3” but does not reach the value from “Level 1” again. In contrast,
for a transition from state 2 to 3 one observes decreasing transition probabili-
ties for an increase in the severeness of care needed.

The “Duration of Care” causes rising transition probabilities for transitions
out of state 1 until a duration of four years, then a decrease can be observed
for three years until they increase again. For the transition from state “Care
in a nursing home” to “Death” the values are very close together for all durations
and only small changes occur.

With these estimates we are finally able to calculate the premiums for the
LTC-plan “PET” sold by a German insurer. According to this LTC-plan the

CALCULATION OF LTC PREMIUMS 465

https://doi.org/10.2143/AST.35.2.2003462 Published online by Cambridge University Press

https://doi.org/10.2143/AST.35.2.2003462


466 F. HELMS, C. CZADO AND S. GSCHLOßL

TABLE 1

PARAMETER ESTIMATES AND THEIR P-VALUES FOR ALL TRANSITIONS OF THE MARKOVIAN

THREE-STATE MODEL FOR LTC IN FIGURE 1 USING THE GEE APPROACH

working correlation Independence AR-I AR-I

transition from state g to h g = 1, h = 2 g = 1, h = 3 g = 2, h = 3

b̂ j
(gh) Values Pr(| t |>) Values Pr(| t |>) Values Pr(| t |>)

Intercept –5.31 0.00 –2.16 0.00 7.40 0.00
Age 0.02 0.05 0.02 0.02 –0.06 0.00
Sex = male 0.66 0.00 0.36 0.07 1.51 0.00
Level of care = 2 –1.37 0.00 –0.69 0.00 –1.96 0.00
Level of care = 3 –1.38 0.00 –0.53 0.02 –2.27 0.00

âj
(gh)

0 < Duration of care <= 1 0.35 0.30 0.02 0.71 0.34 0.19
1 < Duration of care <= 2 0.40 0.25 0.18 0.01 –1.08 0.00
2 < Duration of care <= 3 0.90 0.01 0.88 0.00 –0.37 0.19
3 < Duration of care <= 4 1.24 0.00 0.99 0.00 –1.68 0.00
4 < Duration of care <= 5 0.10 0.85 0.74 0.00 –1.96 0.00
5 < Duration of care <= 6 1.53 0.00 0.41 0.01 –1.06 0.01
6 < Duration of care <= 7 –0.11 0.88 0.24 0.18 –0.65 0.16
7 < Duration of care <= 8 0.25 0.60 0.82 0.00 –0.09 0.88
8 < Duration of care <= 9 0.80 0.11 1.19 0.00 –2.28 0.00
9 < Duration of care <= 10 1.26 0.00 –0.48 0.12 –0.03 0.97

TABLE 2

COMPARISON OF PREMIUMS FOR A 10 EUR DAILY ALLOWANCE

Premium based Premium offered by
Age on GEEs German health insurer

Female Male Female Male

20 4.94 3.85 2.12 1.70
25 6.14 4.80 2.92 2.33
30 7.70 6.05 3.90 3.10
35 9.76 7.72 5.05 4.01
40 12.51 9.97 6.44 5.13
45 16.14 12.95 8.16 6.52
50 21.01 16.95 10.39 8.36
55 27.58 22.40 13.32 10.86
60 36.48 29.88 17.31 14.40
65 48.53 40.06 22.01 18.84
70 64.55 53.62 29.04 25.71
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FIGURE 2: Comparison of Premiums.

insured receives a certain allowance depending on the level of care needed.
This is for “Care at home” 25% in “Level 1”, 50% in “Level 2” and 75% in
“Level 3” and for “Care in a nursing home” 100% of the allowance. Thus, the
c0h’s are zero, in the case of “Care at home” bh = 1 – 0.25 * (4 – h) and in the case
of “Care in a nursing home” bh = 1, h ∈{1,2,3}, for an unit allowance.

For the calculation of the premiums we use a modified version of a C-pro-
gram, which needs the benefits, interest rate and transition probabilities as
input. For details see Rudolph (2000). The results for the LTC-plan “PET”
obtained for a 10 EUR daily allowance and an interest rate of 3.5% can be
found in the left columns of Table 2. The right columns show premiums offered
by a German health insurer.

We observe higher premiums when the GEE estimation approach is used
compared to the commercial premiums, but we can see that the behavior with
respect to age is similar as well as the proportion between males and females,
see Figure 2. It also should be noted that the incidence rates and mortality rates
for “Active” individuals include administrative costs, whereas the transition
probabilities do not. Therefore a direct comparison between the calculated pre-
miums using GEEs and the commercial premiums might not be sensible.
Including administrative costs in the transition probabilities would result in
an even bigger gap between the rates. Further, the LTC-definition in different
countries, such as Japan and Germany, varies and therefore country-specific
incidence rates might be necessary.
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7. SUMMARY AND DISCUSSION

This paper gives a detailed introduction to a method proposed by Andersen
et al. (2003) for estimating transition probabilities directly and its application
to a large German LTC portfolio. In particular the necessary actuarial setup
for calculating premiums based on a Markovian multi-state model is provided.
For the required transition probabilities pseudo-values of the Aalen-Johansen
estimator which is specific to the claim-history of a LTC patient are generated.
These are linked to patient specific covariates in a longitudinal GLM with normal
errors and a logistic link-function. The parameters of this longitudinal GLM
are estimated using a GEE approach accounting for correlation within the
claim-history of a patient. These finally provide the required transition proba-
bility estimates. Diverse statistical tools ranging from survival analysis, jack-
knifing methods, GLMs to GEE estimation for longitudinal regression models are
introduced to give a basis for understanding how this method for estimating
transition probabilities directly is working.

Even though Andersen et al. (2003) have investigated the validity of their
method through simulation some further points are worth while to be addressed
in further research. More precisely, in our case there are no methods available
at the moment to examine the goodness-of-fit or confirm the choice of link-func-
tion in the longitudinal GLM used. The choice of time-points might also influence
the results, but in our case the time-points are given, since we need one-year
transition probabilities for the calculation of actuarial values. Further, more
precise estimates might be obtained if the correlation matrix is chosen close to
the true one.

An alternative to GEE estimation in longitudinal GLMs is to use a Bayesian
approach for estimation. This will require the use of Markov Chain Monte
Carlo (MCMC) methods (see for example Gilks et al. (1996) and Gamerman
(1990)). Bayesian model selection criteria such as Bayes factors (see Kaas and
Raftery (1995)) and the deviance information criteria (DIC) by Spiegelhalter
et al. (2002) can then be applied to assess the goodness of fit and the choice
of the link-function. This approach will be pursued in future research.
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