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Symplectic invariance of the CCR
on Fock spaces

This chapter is a continuation of Chap. 9, where we studied Fock CCR repre-
sentations. Our goal is to extend the results of Chap. 10 about the symplectic
invariance of canonical commutation relations to the case of Fock CCR repre-
sentations in any dimension.

11.1 Symplectic group on a Kähler space

The basic framework of this section, as well as most other sections of this chapter,
is the same as that of Chap. 9.

In particular, throughout the section, (Y, ·, ω, j) is a complete Kähler space.
We recall that for r ∈ B(Y), r# denotes the adjoint of r for the Euclidean scalar
product of Y.

Recall that the holomorphic space Z in CY is defined as Ran 1
2 (1l− ij), so that

CY = Z ⊕ Z. Z is a (complex) Hilbert space.
In this section we study the symplectic group in a complete Kähler space of

any dimension. We treat the symplectic form ω as the basic structure of the
Kähler space Y. However, the additional structure on Y plays an important role.
In particular, it gives Y a Hilbertian topology, which is especially useful when
we consider the infinite-dimensional case.

11.1.1 Basic properties

Definition 11.1 The group of linear transformations on Y that are bounded,
symplectic and have a bounded inverse will be denoted by Sp(Y). Similarly, the
Lie algebra of bounded infinitesimally symplectic transformations on Y will be
denoted by sp(Y).

Note that sp(Y) is the set of generators of norm continuous one-parameter
groups in Sp(Y).

We can use the anti-involution j instead of the symplectic form ω to describe
various properties of symplectic and infinitesimally symplectic transformations.

The following proposition can be compared with Prop. 1.37.

Proposition 11.2 (1) r ∈ Sp(Y) iff

a) r# jr = j, and b) rjr# = j.
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11.1 Symplectic group on a Kähler space 267

(2) r ∈ Sp(Y) iff r# ∈ Sp(Y).
(3) If r ∈ Sp(Y), then r−1 = −jr# j.

Proposition 11.3 (1) a ∈ sp(Y) iff a# j + ja = 0.
(2) a ∈ sp(Y) iff a# ∈ sp(Y).

11.1.2 Unitary group on a Kähler space

Recall that a complete Kähler space Y can be viewed as a complex Hilbert
space. It is then denoted by YC, with the imaginary unit given by j and the
scalar product given by (y1 |y2) := y1 · y2 + iy1 ·ωy2 (see (1.37)).

Proposition 11.4 We have the following characterizations of the unitary group
and Lie algebra on a Kähler space:

U(YC) = O(Y) ∩ Sp(Y) = O(Y) ∩GL(YC) = Sp(Y) ∩GL(YC),

u(YC) = o(Y) ∩ sp(Y) = o(Y) ∩ gl(YC) = sp(Y) ∩ gl(YC).

It is easy to characterize elements of U(YC) and u(YC) by their extensions to
CY = Z ⊕Z.

Proposition 11.5 (1) r ∈ U(YC) iff

rC =
[

p 0
0 p

]
,

with p ∈ U(Z).
(2) a ∈ u(YC) iff

aC = i
[−h 0

0 h

]
,

with h = h∗.

11.1.3 Symplectic transformations on Kähler spaces

We recall that if a ∈ B(Z1 ,Z2), then a# := a∗ ∈ B(Z2 ,Z1). We recall also that
Bs(Z,Z) denotes the set of g ∈ B(Z,Z) such that g# = g, and Bh(Z) denotes
the set of h ∈ B(Z) such that h∗ = h (see Subsect. 2.2.3).

Proposition 11.6 r ∈ Sp(Y) iff its extension to CY equals

rC =
[

p q

q p

]
, (11.1)

with p ∈ B(Z), q ∈ B(Z,Z), and the following conditions hold:

conditions implied by Prop. 11.2 (1a): p∗p− q# q = 1l, p∗q − q# p = 0,

conditions implied by Prop. 11.2 (1b): pp∗ − qq∗ = 1l, pq# − qp# = 0.
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268 Symplectic invariance of the CCR on Fock spaces

Proposition 11.7 a ∈ sp(Y) iff its extension to CY equals

aC = i
[−h g

−g h

]
, (11.2)

with h ∈ Bh(Z) and g ∈ Bs(Z,Z).

We describe now a convenient factorization of a symplectic map. Let r ∈
Sp(Y), and let p, q be defined as in (11.1). Note that

pp∗ ≥ 1l, p∗p ≥ 1l.

Hence p−1 and p∗−1 are bounded operators, and we can set

c := q# (p# )−1 , (11.3)

d := qp−1 . (11.4)

Recall that, for a, b ∈ Bh(Z), a < b means a ≤ b and Ker(b− a) = {0}.
Proposition 11.8 (1) We have c, d ∈ Bs(Z,Z) and

c∗c < 1l, d∗d < 1l. (11.5)

(2) The following equivalent characterizations of c, d hold:

c = p−1q, (11.6)

d = (p∗)−1q# . (11.7)

(3) One has the following factorization:

rC =
[

1l d

0 1l

] [
(p∗)−1 0

0 p

] [
1l 0
c 1l

]
. (11.8)

(4) We have

(r∗C)−1 =
[

p −q

−q p

]
,

(rCr∗C − 1l)(rCr∗C + 1l)−1 =
[

0 d

d 0

]
,

(r∗CrC − 1l)(r∗CrC + 1l)−1 =
[

0 c

c 0

]
. (11.9)

(5) We have the identities

1l− cc∗ = (p∗p)−1 , 1l− d∗d = (p p∗)−1 . (11.10)

Proof For example, the first inequality of (11.5) follows from the fact that
pp∗ > qq∗, which implies that (p∗)−1p−1 = (pp∗)−1 < (q∗)−1q−1 . Now c∗c =
q∗(p∗)−1p−1q < 1l. �
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11.1 Symplectic group on a Kähler space 269

11.1.4 Positive symplectic transformations

Symplectic transformations that are at the same time positive enjoy special prop-
erties. We devote this subsection to a discussion of their basic properties.

Let r ∈ Sp(Y) such that r = r# and r > 0 as an operator on (Y, ·). Recall that
the unitary structure on CY is obtained from the Euclidean structure of Y as in
Subsect. 1.3.4. Hence, rC = r∗

C
and rC > 0. We have

rC =
[

p q

q p

]
,

where p = p∗ > 0 and q = q# . The conditions in Prop. 11.6 simplify to

p2 − qq = 1l, pq − qp = 0.

We have

r−1
C

=
[

p −q

−q p

]
.

In the case of positive symplectic transformations some of the identities of
Prop. 11.8 simplify:

Proposition 11.9 Let r ∈ Sp(Y) such that r = r# and r > 0. Let c ∈ Bs(Z,Z)
be defined as in (11.3). Then c∗c < 1l,

rC =

[
(1l− cc∗)−

1
2 (1l− cc∗)−

1
2 c

c∗(1l− cc∗)−
1
2 (1l− c∗c)−

1
2

]
(11.11)

=
[

1l c

0 1l

] [
(1l− cc∗)

1
2 0

0 (1l− c∗c)−
1
2

] [
1l 0
c∗ 1l

]
,

(r2
C − 1l)(r2

C + 1l)−1 =
[

0 c

c 0

]
. (11.12)

Conversely, let c ∈ Bs(Z,Z) satisfy c∗c < 1l, and let r be defined by (11.11).
Then r ∈ Sp(Y), r = r# , r > 0.

Proof The properties of c follow directly from the properties of p, q given above.
Next let c ∈ Bs(Z,Z) with c∗c < 1l. Clearly, cc∗ = c∗c < 1l, and hence the oper-

ators 1l− cc∗ and 1l− c∗c are invertible. We check that the operator r defined by
(11.11) is a positive symplectic transformation. �

Positive symplectic transformations can be obtained as exponentials of self-
adjoint infinitesimally symplectic transformations:

Proposition 11.10 Let a ∈ sp(Y) such that a = a# . Then aC = a∗
C
, and hence

there exists g ∈ Bs(Z,Z) such that

aC = i
[

0 g

−g 0

]
. (11.13)
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270 Symplectic invariance of the CCR on Fock spaces

Moreover, r = ea belongs to Sp(Y) and satisfies r = r# , r > 0 and

rC =

[
cosh

√
gg∗ i sinh

√
gg∗√

gg∗ g

−ig∗ sinh
√

gg∗√
gg∗ cosh

√
g∗g

]
, (11.14)

c = i
tanh

√
gg∗√

gg∗
g. (11.15)

11.1.5 Polar decomposition of symplectic maps

Proposition 11.11 (1) Let r ∈ Sp(Y) such that r > 0. Then, for each ε ∈ R,
rε ∈ Sp(Y).

(2) Let r ∈ Sp(Y). Then there exist unique k ∈ Sp(Y), u ∈ U(YC) such that
k = k# , k > 0 and r = ku. The operators u, k are given by the polar decom-
position of r as an operator on the real Hilbert space (Y, ·).

Proof Let r ∈ Sp(Y) such that r = r# and r > 0. Then rj = jr−1 , since
r ∈ Sp(Y). This implies that (z − r)−1 j = j(z − r−1)−1 for z ∈ C\R, and
hence

f(r)j = jf(r−1), for any measurable function f.

In particular, for ε ∈ R we have rε j = jr−ε , and hence rε ∈ Sp(Y). This proves
(1).

Now let r ∈ Sp(Y). Set k = (rr# )
1
2 . By (1), k ∈ Sp(Y). Set u = k−1r. Clearly,

u ∈ Sp(Y). By the properties of the polar decomposition in (Y, ·) we have u ∈
O(Y). Hence u ∈ U(YC), which proves (2). �

11.1.6 Restricted symplectic group

In this subsection we introduce a subgroup of the symplectic group on the Kähler
space that plays an important role in Shale’s theorem, a basic result of the theory
of CCR representations on Fock spaces.

Proposition 11.12 Let r ∈ Sp(Y). Consider p, q, c, d defined by (11.1), (11.3)
and (11.4). The following conditions are equivalent:

(1) j− r−1 jr ∈ B2(Y).

(2) rj− jr ∈ B2(Y).

(3) Trq∗q < ∞.

(4) Tr(p∗p− 1l) < ∞.

(5) Tr(pp∗ − 1l) < ∞.

(6) d ∈ B2(Z,Z).

(7) c ∈ B2(Z,Z).
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11.1 Symplectic group on a Kähler space 271

Proof Clearly, (1)⇔ (2).
We have

(rj− jr)C =
[

0 −2iq
2iq 0

]
, (rj− jr)∗C(rj− jr)C =

[
4q# q 0

0 4q∗q

]
.

Hence

Tr(rj− jr)∗C(rj− jr)C = 4(Tr q# q + Tr q∗q) = 8Tr q∗q = 8Tr (p∗p− 1l),

using that q# q = p∗p− 1l. This implies that (2)⇔(3)⇔(4). If v ∈ U(Z) and p =
v|p| = |p∗|v is the polar decomposition of p, we have pp∗ = vp∗pv∗. So (4)⇔(5).

The identities c = p−1q and d = qp−1 and the fact that p is invertible show that
(3)⇒(6) and (3)⇒(7). The identities 1l− cc∗ = (p∗p)−1 and 1l− d∗d = (pp# )−1

show that (7)⇒(4) and (6)⇒(5). �

Definition 11.13 Let Spj(Y) be the set of r ∈ Sp(Y) satisfying the conditions of
Prop. 11.12. The set Spj(Y) is called the restricted symplectic group. We equip
it with the metric

dj(r1 , r2) := ‖p1 − p2‖+ ‖q1 − q2‖2 . (11.16)

Equivalent metrics are ‖[j, r1 − r2 ]+‖+ ‖[j, r1 − r2 ]‖2 and ‖r1 − r2‖+
‖[j, r1 − r2 ]‖2 .

We say that a ∈ spj(Y) if a ∈ sp(Y) and aj− ja ∈ B2(Y), or equivalently g ∈
B2

s (Z,Z), where we use the decomposition (11.2).

Proposition 11.14 (1) Spj(Y) is a topological group.
(2) spj(Y) is a Lie algebra.
(3) If a ∈ spj(Y) then ea ∈ Spj(Y).

Proof The fact that Spj(Y) is a topological group is clear, since [r1r2 , j] =
r1 [r2 , j] + [r1 , j]r2 . To prove (3), we write

ea j− jea =
∞∑

n=0

1
n!

[an , j],

and use that ‖[an , j]‖2 ≤ n‖a‖n−1‖[a, j]‖2 , which yields

‖ea j− jea‖2 ≤ e‖a‖‖aj− ja‖2 . �

11.1.7 Anomaly-free symplectic group

In this subsection we introduce another, much smaller subgroup of the symplectic
group on the Kähler space. Its name is suggested by the well-known terminology
used in quantum field theory.

Definition 11.15 Let Spj,af (Y) be the set of r ∈ Spj(Y) such that
2j− (jr + rj) ∈ B1(Y), or equivalently p− 1lZ ∈ B1(Z), where we use the
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272 Symplectic invariance of the CCR on Fock spaces

decomposition (11.1). Spj,af (Y) will be called the anomaly-free symplectic group
and will be equipped with the metric

dj,af (r1 , r2) := ‖p1 − p2‖1 + ‖q1 − q2‖2 .

An equivalent metric is ‖[j, r1 − r2 ]+‖1 + ‖[j, r1 − r2 ]‖2 .
We also define spj,af (Y) to be the set of a ∈ spj(Y) such that aj + ja ∈ B1(Y),

or equivalently h ∈ B1(Y), where we use the decomposition (11.2).

Proposition 11.16 (1) Spj,af (Y) is a topological group.
(2) spj,af (Y) is a Lie algebra.
(3) If a ∈ spj,af (Y) then ea ∈ Spj,af (Y).

Proof If r ∈ Spj,af (Y), then 1l− r ∈ B2(Y). It follows that if r1 , r2 ∈ Spj,af (Y),
then r1r2 − (r1 + r2) + 1l ∈ B1(Y), which easily implies that r1r2 ∈ Spj,af (Y)
and proves (1). To prove (2), note that spj,af (Y) ⊂ B2(Y). To prove (3), we
use that if a ∈ spj,af (Y), then ea − (1l + a) ∈ B1(Y). �

Proposition 11.17 (1) Let r ∈ Sp(Y) be positive. Then r ∈ Spj(Y) iff r ∈
Spj,af (Y).

(2) Let a ∈ sp(Y) be self-adjoint. Then a ∈ spj(Y) iff a ∈ spj,af (Y).

Proof (1) We know that r ∈ Spj(Y) iff c ∈ B2(Z,Z). But (11.11) then implies
that r ∈ Spj,af (Y).

(2) By the decomposition (11.2), a ∈ spj(Y) is self-adjoint iff h = 0 and g ∈
B2

s (Z,Z). �

Proposition 11.18 Let r ∈ B(Y) and let r = r0u be its polar decomposition.
Then

(1) r ∈ Sp(Y) iff r0 ∈ Sp(Y).
(2) r ∈ Spj(Y) iff r0 ∈ Spj(Y).
(3) r ∈ Spj,af (Y) iff r0 ∈ Spj,af (Y) and u ∈ Spj,af (Y).

11.1.8 Pairs of Kähler structures on symplectic spaces

In this subsection we study the relationship between two Kähler anti-involutions
on a given symplectic space. One of them is denoted j and is treated as the basic
one. The other is denoted j1 .

In the first proposition, j1 is obtained by conjugating j with an arbitrary
symplectic map.

Proposition 11.19 Let r ∈ Sp(Y). Set j1 = r−1 jr.

(1) j1 is a Kähler anti-involution.
(2) r ∈ U(YC) iff j1 = j.
(3) If r = u|r| is the polar decomposition of r, then j1 = |r|−1 j|r|.
(4) j1 = jr# r.
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11.1 Symplectic group on a Kähler space 273

Proof Since r ∈ Sp(Y), we have y·ωj1y = y·ωr−1jry = (ry)·ωjry, which shows
that (ω, j1) is Kähler and proves (1). Clearly, r ∈ U(YC) iff [r, j] = 0, which
is equivalent to j1 = j. This proves (2). If r = u|r|, then [u, j] = 0, hence j1 =
|r|−1 j|r|, which proves (3). (4) follows from Prop. 11.2 (1a). �

The next proposition is a partial converse of the previous one. In particular,
we compute a positive symplectic map that transforms j into j1 .

Theorem 11.20 (1) Let j1 be an anti-involution such that (ω, j1) is Kähler.
Then k := −jj1 is a positive symplectic transformation.

(2) Let k ∈ Sp(Y) be positive. Then j1 := jk is a Kähler anti-involution.
(3) Let k, j1 be as in (2). Then r = k

1
2 defined in Subsect. 2.3.2 satisfies

r ∈ Sp(Y), r = r# , r > 0, r−1jr = j1 . (11.17)

(r is positive symplectic and intertwines j and j1 .)
(4) There exists c ∈ Bs(Z,Z) such that(

k − 1l
k + 1l

)
C

=
[

0 c

c 0

]
. (11.18)

(5) We have

rC =

[
(1l− cc∗)−

1
2 (1l− cc∗)−

1
2 c

c∗(1l− cc∗)−
1
2 (1l− c∗c)−

1
2

]
, (11.19)

kC =
[

(1l + cc∗)(1l− cc∗)−1 2(1l− cc∗)−1c

2c∗(1l− cc∗)−1 (1l + c∗c)(1l− c∗c)−1

]
, (11.20)

j1C = i
[

(1l + cc∗)(1l− cc∗)−1 2(1l− cc∗)−1c

−2c∗(1l− cc∗)−1 −(1l + c∗c)(1l− c∗c)−1

]
. (11.21)

Proof Since j, j1 ∈ Sp(Y), k = −jj1 ∈ Sp(Y). Since (ω, j1) is Kähler, we have

0 = (j1y1)·ωy2 + y1 ·ωj1y2 = −(j1y1)·jy2 − y1 ·jj1y2 ,

i.e. j#
1 j = −jj1 . Hence

(jj1)# = j#
1 j# = −j#

1 j = jj1 ,

i.e. k = k# . Again using that (ω, j1) is Kähler, we get −y · jj1y = y·ωj1y > 0, i.e.
k > 0. This proves (1).

Let us prove (3). The fact that r ∈ Sp(Y) follows from Prop. 11.11 (1). Using
that r = r# and r ∈ Sp(Y), we obtain that j1 = jr2 = r−1 jr.

Set b := k−1l
k+1l . We check that jb = −bj. This implies (4). Then using (11.12) we

see that rC equals (11.11), which is repeated as (11.19). Then we use k = r2 and
j1 = jk to obtain (11.20) and (11.21). �
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274 Symplectic invariance of the CCR on Fock spaces

Proposition 11.21 Let Z and Z1 be the holomorphic subspaces of CY � Z ⊕ Z
for the anti-involutions j and j1 . Let c be as above. Then

Z1 =
{
(z,−cz) : z ∈ Z},

Z1 =
{
(−cz, z) : z ∈ Z}.

Proof Every vector of Z1 is of the form (1l− ij1)y1 for some y1 ∈ Y. Since k > 0,
every vector of Y is of the form y1 = (1l + k)−1y for some y ∈ Y. Now

(1l− ij1)(1l + k)−1y = (1l− ijk)(1l + k)−1y

= 1lZy − 1lZ( k−1l
k+1l )y

= z − cz,

where z = 1lZy ∈ Z. Hence every vector of Z1 is of the form z − cz for z ∈ Z.
Applying the canonical conjugation on CY we obtain the corresponding result
for Z1 . �

The following proposition will be used to describe the unitary equivalence of
two Fock CCR representations (one of the versions of Shale’s theorem).

Proposition 11.22 Let j, j1 , k, c be as above. The following conditions are
equivalent:

(1) j− j1 ∈ B2(Y).
(2) 1l− k ∈ B2(Y).
(3) c ∈ B2(Z,Z).
(4) There exists a positive r ∈ Spj,af (Y) such that j1 = rjr−1 .
(5) There exists r ∈ Spj(Y) such that j1 = rjr−1 .

Proof The identity −j(j− j1) = 1l− k and j ∈ Sp(Y) imply the equivalence of
(1) and (2).

(11.18) and the boundedness of (1l + k)−1 show that (2) implies (3).
Since c∗c < 1lZ and c = c# , we have cc∗ < 1lZ , and hence (1lZ − c∗c)−1 and

(1lZ − cc∗)−1 are bounded. From (11.20) we obtain that (3) implies (2).
(4) ⇒ (5) is obvious. (5) ⇒ (1) is obvious. (3)⇒(4) follows from (11.19). �

Remark 11.23 The Hilbert–Schmidt property in conditions (1) and (2) uses the
real scalar product on Y that belongs to the Kähler structure (·, ω, j). Therefore,
conditions (1) and (2) may not seem symmetric w.r.t. the anti-involutions j and
j1 . Nevertheless, if they are satisfied, then the scalar products · and ·k are related
with the operator k, which is bounded with a bounded inverse, hence the set of
Hilbert–Schmidt operators w.r.t. the scalar products · and ·k coincide.
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11.1 Symplectic group on a Kähler space 275

11.1.9 Conjugation adapted to a pair of Kähler involutions

Generically, a pair of Kähler anti-involutions determines a conjugation for both
Kähler structures, as expressed in the following proposition:

Proposition 11.24 Suppose that j1 is an anti-involution such that (ω, j1) is
Kähler. Then the following is true:

(1) There exists τ ∈ B(Y) such that

τ 2 = 1l, τ jτ = −j, τ j1τ = −j1 .

(τ is a conjugation for both j and j1 .)
(2) Let k = −jj1 . Then τkτ = k.
(3) If Ker(j− j1) = {0}, or equivalently Ker(1l− k) = {0}, then we can take

τ := 1l]1,+∞[(k)− 1l]0,1[(k).

Proof Recall that k# = k, k > 0.
Assume first that Ker(j− j1) = {0}, and hence Ker(1l− k) = {0}. Set τ =

1l]1,+∞[(k)− 1l]0,1[(k). We have τ 2 = 1l and τ ∈ O(Y). Using that kj = jk−1 , we
see that τ j = −jτ . Since τk = kτ , we have also τ j1 = −j1τ .

If Ker(j− j1) �= {0}, we set Y1 := 1l{1}(k)Y. The spaces Y1 and Y0 := Y⊥
1 are

invariant under j since kj = jk−1 . We first construct the conjugation τ0 on Y0 as
above. On Y1 we have j = j1. We can choose an arbitrary anti-unitary involution
τ1 of YC

1 . Then we set τ = τ1 ⊕ τ0 on Y = Y1 ⊕ Y0 . �

Recall that Y±τ := {y ∈ Y : τy = ±y}. Set X = Y−τ . As in Subsect. 1.3.10,
we can identify the Kähler space with conjugation Y with X ⊕ X by the map

Y � y �→
(
j

1
2
√

2
(1l + τ)y,

1√
2
(1l− τ)y

)
∈ X ⊕ X ,

which corresponds to the choice c = 1l in (1.38). We set m := k−1
∣∣
X , which is a

positive self-adjoint operator on the real Hilbert space X . The symplectic form
on Y � X ⊕ X is

(x+
1 , x−

1 )·ω(x+
2 , x−

2 ) = x+
1 ·x−

2 − x−
1 ·x+

2 .

Proposition 11.25 We have

τ =
[

1l 0
0 −1l

]
, j =

[
0 − 1

2 1l
21l 0

]
, j1 =

[
0 −(2m)−1

2m 0

]
, k =

[
m 0
0 m−1

]
.

Proof The matrix representation of τ and j on X ⊕ X was shown in Subsect.
1.3.10. To compute k, we note that if y ∈ Y is identified with (jx1 , x2) ∈ X ⊕ X ,
then ky is identified with (kjx1 , kx2) = (jmx1 ,m

−1x2) since jk = k−1j. The
formula for j1 follows from j1 = jk. �

https://doi.org/10.1017/9781009290876.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290876.012


276 Symplectic invariance of the CCR on Fock spaces

11.2 Bosonic quadratic Hamiltonians on Fock spaces

The basic framework of this section is the same as that of the previous one. Recall,
in particular, that Z is a Hilbert space and Y := Re(Z ⊕ Z) is the corresponding
Kähler space. We consider the Fock CCR representation over Y in Γs(Z).

11.2.1 Wick and anti-Wick quantizations of quadratic polynomials

Let us consider various kinds of complex quadratic polynomials on Y and their
quantizations. We recall that Bfd(Z) denotes the set of finite-dimensional oper-
ators on Z.

Let h ∈ Bfd(Z). Consider the polynomial

Y# � (z, z) �→ z·hz. (11.22)

The Wick, Weyl–Wigner and anti-Wick quantizations of (11.22) are, respectively,

dΓ(h), dΓ(h) +
Tr h

2
1l, dΓ(h) + (Tr h)1l.

Note that the anti-Wick and Weyl–Wigner quantizations of (11.22) can be
extended to the case h ∈ B1(Z), that is, to trace class h. The Wick quantization
of (11.22) can be defined, e.g. for h ∈ B(Z), or even for much more general h.

Suppose that g ∈ Bfd
s (Z,Z) � a l

Γ
2
(Z). Consider the polynomial

Y# � (z, z) �→ z·gz. (11.23)

The Wick, anti-Wick and Weyl–Wigner quantizations of (11.23) coincide with
the two-particle creation operator a∗(g), according to the notation of Subsect.
3.4.4. Following the notation of Def. 9.46, this can be written as Opa∗,a(|g)

)
. It

can be defined as a closable operator also if g ∈ B2
s (Z,Z) � Γ2

s (Z). It will act
on Ψn ∈ Γn

s (Z) as

a∗(g)Ψn :=
√

(n + 2)(n + 1)g ⊗s Ψn . (11.24)

(Note that on the right of (11.24) g is treated as an element of Γ2
s (Z).)

The complex conjugate of (11.23) equals

Y# � (z, z) �→ z·g∗z = z·gz. (11.25)

Its Wick, anti-Wick and Weyl–Wigner quantizations coincide with the two-
particle annihilation operator a(g); see again Subsect. 3.4.4. Following the nota-
tion of Def. 9.46, this can be written as Opa∗,a((g|). It is clear that a(g) extends
to a closable operator iff g ∈ B2

s (Z,Z) � Γs(Z), and a(g)∗ = a∗(g).
A general element of CPol2s (Y# ) is

Y# � (z, z) �→ 2z·hz + z·g1z + z·g2z, (11.26)
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where h ∈ Bfd(Z), g1 , g2 ∈ Bfd
s (Z,Z). We can write (11.26) as

(z, z)·ζ(z, z), where ζC =
[

g1 h

h# g2

]
∈ Bs(Z ⊕ Z,Z ⊕ Z). (11.27)

(Recall that CY � Z ⊕ Z, CY# � Z ⊕Z and we use elements of Bfd
s (Y# ,Y) for

symbols of bosonic quadratic Hamiltonians, as in Def. 10.15.)
The quantizations of ζ are

Opa∗,a(ζ) = 2dΓ(h) + a∗(g1) + a(g2), (11.28)

Op(ζ) = 2dΓ(h) + (Tr h)1l + a∗(g1) + a(g2), (11.29)

Opa,a∗
(ζ) = 2dΓ(h) + (2Tr h)1l + a∗(g1) + a(g2).

Clearly,

Op(ζ) =
1
2

(
Opa∗,a(ζ) + Opa,a∗

(ζ)
)

.

We can extend the definition of Op(ζ) and Opa,a∗
(ζ) to the case of g1 , g2 ∈

B2
s (Z,Z) and h ∈ B1(Z). Opa∗,a(ζ) is defined under much more general con-

ditions. All these quantizations are Hermitian operators iff h is Hermitian and
g1 = g2 .

11.2.2 Bosonic Schwinger term

For simplicity, in this subsection we assume that Z is finite-dimensional. Recall
from Thm. 10.13 that the Weyl–Wigner quantization restricted to quadratic
symbols yields an isomorphism of the Lie algebra sp(Y) into quadratic Hamilto-
nians in CCRpol(Y). This is no longer true in the case of the Wick quantization,
where the so-called Schwinger term appears. This is described in the following
proposition:

Proposition 11.26 Let ζ, ζi ∈ Bs(Y# ,Y), i = 1, 2. Then

Op(ζ) = Opa∗,a(ζ)− 1
2
(Tr ζωj) 1l, (11.30)[

Opa∗,a(ζ1),Opa∗a(ζ2)
]

= 2iOpa∗,a(ζ2ωζ1 + ζ1ωζ2)− i(Tr [ζ2ω, ζ1ω]j) 1l.

Proof Let ζ be as in (11.27). We have ωC = i
[

0 1l
−1l 0

]
∈ B(Z ⊕ Z,Z ⊕ Z).

Therefore,

ζCωC = i
[ −h g1

−g2 h#

]
, ζCωCjC =

[
h g1

g2 h#

]
.

Therefore, (11.30) follows from (11.29).
Now to compute the Schwinger term we apply Prop. 10.16 (1) and (11.30). �
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11.2.3 Infimum of bosonic quadratic Hamiltonians

For simplicity, in this subsection we again assume that Z is finite-dimensional.
The Wick quantization of a positive quadratic symbol is then bounded from
below. In the following theorem we compute the infimum of the spectrum of
such Hamiltonians.

Theorem 11.27 Let h ∈ Bh(Z), g ∈ B2
s (Z,Z). Suppose that for z ∈ Z

(z, z)·ζ(z, z) = 2z·hz + z·g∗z + z·gz ≥ 0. (11.31)

Set

ζC =
[

g h

h# g∗

]
∈ Bs(Z ⊕ Z,Z ⊕ Z). (11.32)

Then

inf Opa∗,a(ζ) =
1
2
Tr

([
h2 − gg∗ −hg + gh#

g∗h− h# g∗ h# 2 − g∗g

] 1
2

−
[

h 0
0 h#

])
.

Proof We have (ζCωC)2 = −
[

h2 − gg∗ −hg + gh#

g∗h− h# g∗ h# 2 − g∗g

]
. Thus, by Thm. 10.17,

inf Opa∗,a(ζ) + Trh = inf Op(ζ)

=
1
2
Tr |ζω| = 1

2
Tr
[

h2 − gg∗ −hg + gh#

g∗h− h# g∗ h# 2 − g∗g

] 1
2

.

�

11.2.4 Gaussian vectors

Let c ∈ Γ2
s (Z). Recall that we can define the two-particle creation operator a∗(c)

acting on Γfin
s (Z) as in Subsect. 3.4.4, and that we can identify c with an oper-

ator c ∈ B2
s (Z,Z) (see Subsect. 3.3.4). Since c ∈ B2(Z,Z), c∗c is trace-class, so

det(1l− c∗c) is well defined. If we assume also that c∗c < 1l, then det(1l− c∗c) > 0.
So we can define

Ωc := det(1l− c∗c)
1
4 e

1
2 a∗(c)Ω. (11.33)

Theorem 11.28 (1) If c ∈ B2
s (Z,Z) and c∗c < 1l, then Ωc is a normalized vec-

tor in Γs(Z).
(2) Let k be a positive number with k2 |c| < 1l. Then Ωc belongs to Dom kN and

kN Ωc = Ωk 2 c , where N is the number operator.
(3) Suppose that c is a densely defined operator from Z to Z such that (z1 |cz2) =

(z2 |cz1), i.e. c ⊂ c# . Suppose that there exists Ψ ∈ Γs(Z) satisfying(
a(z)− a∗(cz)

)
Ψ = 0, z ∈ Dom c,
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in the weak sense. Then c ∈ B2
s (Z,Z) and c∗c < 1l. Moreover, Ψ is propor-

tional to Ωc .
(4) Let c1 , c2 ∈ B2

s (Z,Z) and c∗i ci < 1l. Then

(Ωc1 |Ωc2 ) = det(1l− c∗1c1)
1
4 det(1l− c∗2c2)

1
4 det(1l− c∗1c2)−

1
2 .

Proof First let Ψ be as in (3), and let z1 , z2 , . . . be a sequence of vectors in
Dom c. For I ⊂ {1, 2, . . . } finite, set

M(I) =
(

Π
i∈I

a∗(zi)Ω
∣∣Ψ).

From

0 =
(

Π
i∈{1,···n}

a∗(zi)Ω
∣∣(a∗(zn+1)− a(czn+1))Ψ

)
we obtain

M({1, · · · , n + 1}) =
n∑

i=1

(zi |czn+1)M({1, · · · , n}\{i}).

This yields

(a∗(z1) · · · a∗(z2m+1)Ω|Ψ) = 0,

(a∗(z1) · · · a∗(z2m )Ω|Ψ) = λ
∑

σ∈Pair2 m

m−1
Π

i=0
(zσ (2i+1) |czσ (2i+2)),

where λ := (Ω|Ψ) and Pair2m is the set of pairings in {1, . . . , 2m} (see Subsect.
3.6.10).

In particular, for z1 , z2 ∈ Dom c this gives the following formula for the two-
particle component of Ψ:

√
2(z1 ⊗s z2 |Ψ) = λ(z1 |cz2). (11.34)

Since Ψ ∈ Γs(Z), the l.h.s. of (11.34) can be extended to a bounded functional
on Γ2

s (Z). This implies that either λ = 0 or c ∈ Γ2
s (Z), and then the l.h.s. of

(11.34) equals λ(z1 ⊗s z2 |c).
We have

(z1 ⊗s · · · ⊗s z2m |c⊗s m ) =
1

2m!

∑
σ∈S2 m

m−1
Π

i=0
(zσ (2i+1) |czσ (2i+2))

=
m!2m

2m!

∑
σ∈Pair2 m

m−1
Π

i=0
(zσ (2i+1) |czσ (2i+2)),

which implies that

Ψ2m = λ

√
(2m)!

2m m!
c⊗s m = λ

1
2m m!

(a∗(c))m Ω, Ψ2m+1 = 0,

i.e. Ψ = λe
1
2 a∗(c)Ω.
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Let us compute ‖e 1
2 a∗(c)Ω‖2 . Since c∗c is trace-class, we can by Corollary 2.88

find an o.n. basis {ei, : i ∈ I} of Z such that cei = λiei , λi ≥ 0. Using this basis,
we can unitarily identify Z with ⊕

i∈I
C. By the exponential law of Subsect. 3.5.4,

we unitarily identify Γs(Z) with ⊗
i∈I

(Γs(C),Ω). Under this identification,

e
1
2 a∗(c)Ω � ⊗

i∈I
e

1
2 λi a

∗2
Ω,∥∥∥e 1

2 a∗(c)Ω
∥∥∥2

Γs (Z)
=
∏
i∈I

∥∥∥e 1
2 λi a

∗2
Ω
∥∥∥2

Γs (C)

=
∏
i∈I

∞∑
m=0

(2m)!λ2m
i

22m (m!)2 (11.35)

=
∏
i∈I

(
1− λ2

i

)− 1
2

= det
(
1l− c∗c

)− 1
2
.

This shows that the vector Ωc in (1) is normalized. Moreover, if λi ≥ 1 for some
i ∈ I, then one of the series on the r.h.s. of (11.35) is divergent, which contra-
dicts the fact that the vector Ψ is normalizable. This shows the necessity of the
condition c∗c < 1l and completes the proof of (3).

Let us now prove (2). Since eitN a∗(c)e−itN = e2ita∗(c), we obtain that

eitN Ωc = det(1l− c∗c)
1
4 e

1
2 a∗(ct )Ω,

for ct = e2itc. It follows that if k4c∗c < 1l, eitN Ωc extends holomorphically in
{z ∈ C : Im z > − log k} and is uniformly bounded on this set. Therefore, Ωc ∈
Dom kN and kN Ωc = det(1l− c∗c)1/4e

1
2 a∗(k 2 c)Ω, which proves (2).

It remains to prove (4). Let us first assume that Z is finite-dimensional. In the
complex-wave representation, e

1
2 a∗(c)Ω equals e

1
2 z ·cz and(

e
1
2 a∗(c1 )Ω|e 1

2 a∗(c2 )Ω
)

= (2πi)−d

ˆ
Re(Z⊕Z)

e−|z |2 e
1
2 z ·c1 z e

1
2 z ·c2 zdzdz. (11.36)

To compute this integral, we use the arguments in Subsect. 4.1.9. We are led to
compute det ν, where ν is an operator on Re(Z ⊕ Z) given by

νC = det
[

1l −c1

−c2 1l

]
.

But det ν = det νC = det(1l− c1c2). From (4.10), we obtain that (11.36) equals

(e
1
2 a∗(c1 )Ω|e 1

2 a∗(c2 )Ω) = det(1l− c1c2)−
1
2 .

Let us now prove (4) in the general case. For simplicity, we will assume that Z is
separable (the non-separable case can be treated by the same argument, replacing
sequences by nets). Let us fix an increasing sequence of finite rank projections
π1 , π2 , . . . such that s − lim

n→∞πn = 1l. For c ∈ B2
s (Z,Z) we set cn = πncπn , so
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that cn → c in the Hilbert–Schmidt norm. We claim that

lim
n→∞Ωcn

= Ωc . (11.37)

By approximating c1 , c2 by c1,n , c2,n , this implies (4) in the general case.
It remains to prove (11.37). Using (4) in the finite-dimensional case, we get

that

‖Ωcn
− Ωcm

‖2 = 2− 2Re(Ωcn
|Ωcm

)→ 0 when n,m →∞,

hence the sequence Ωc1 ,Ωc2 , . . . converges to a normalized vector Ψ. There exists
k > 1 and k0 < 1 such that, for all n, k4c∗ncn < k4

0 1l. Using (2), we obtain that
Ψ ∈ Dom N and that Ωcn

converges to Ψ in Dom N . Therefore, we can let n →∞
in the identity (

a(z)− a∗(cnz)
)
Ωcn

= 0

to get (
a(z)− a∗(cz)

)
Ψ = 0.

Since (Ψ|Ω) = lim
n→∞(Ωcn

|Ω) ≥ 0, (3) implies that Ψ = Ωc . �

11.2.5 Gaussian vectors in the real-wave representation

Let c ∈ B2
s (Z,Z) such that c∗c < 1l. Let k be the positive symplectic transfor-

mation defined in terms of c by formula (11.20), that is,

kC =
[

(1l + cc∗)(1l− cc∗)−1 2(1l− cc∗)−1c

2c∗(1l− cc∗)−1 (1l + c∗c)(1l− c∗c)−1

]
.

As discussed in Subsect. 11.1.9, we can identify Y with X ⊕ X , where X is a real
Hilbert space, the symplectic form on Y has the standard form and

j =
[

0 − 1
2 1l

21l 0

]
, k =

[
m 0
0 m−1

]
,

where m ∈ Bs(X ), m > 0 and 1l−m ∈ B2(X ).
In Sect. 9.3 we described the unitary map T rw between the Fock space Γs(Z)

and the Gaussian L2 space L2(X , e−
1
2 x2

dx) intertwining the Fock and the real-
wave representations such that T rwΩ = 1.

Proposition 11.29 In the real-wave representation, we have

T rwΩc(x) = Ce
1
4 x·(1l−m−1 )x ,

where C is a “normalizing constant” (see Prop. 5.79). If 1l−m ∈ B1(X ) then

T rwΩc(x) = (detm)−
1
4 e

1
4 x·(1l−m−1 )x .
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Proof Assume first that Y is finite-dimensional. The proposition can then be
proved by a direct computation, using that

L2(X , e−
1
2 x2

dx) = L2(X , (2π)−
d
2 e−

1
2 x2

dx).

In the general case, we use the same approximation argument as in the proofs
of Thm. 11.28 and of Thm. 5.78, given in Subsect. 11.4.6. �

11.2.6 Two-particle creation and annihilation operators

In this subsection we discuss certain properties of two-particle creation and anni-
hilation operators.

Proposition 11.30 Let c ∈ Γ2
s (Z) � B2

s (Z,Z). Then

(1) a∗(c) and a(c) with domain Γfin
s (Z) are densely defined closable operators.

(2) a∗(c) + a(c) is essentially self-adjoint on Γfin
s (Z).

(3) e
1
2 a∗(c) and e

1
2 a(c) are closable on Γfin

s (Z) iff c∗c < 1l, and we have

e−
1
2 a∗(c)a(z) =

(
a(z) + a∗(cz)

)
e−

1
2 a∗(c) , z ∈ Z; (11.38)

e
1
2 a(c)a∗(z) =

(
a∗(z) + a(cz)

)
e

1
2 a(c) , z ∈ Z. (11.39)

Proof We have a(c) ⊂ a∗(c)∗, a∗(c) ⊂ a(c)∗, which proves (1).
To prove (2) we will use Nelson’s commutator theorem, Thm. 2.74 (1), with

the comparison operator N + 1l. By Prop. 9.50 we get that (N + 1l)−1a∗(c) and
a(c)(N + 1l)−1 are bounded. Since

Na∗(c) = a∗(c)(N + 21l), Na(c) = a(c)(N − 21l),

we obtain that a∗(c)(N + 1l)−1 is bounded, so a∗(c) + a(c) is bounded on DomN .
Next, since

[N, a∗(c) + a(c)] = 2(a∗(c)− a(c)),

we get that ±[N, a∗(c) + a(c)] ≤ C(N + 1l). Applying Nelson’s commutator the-
orem, we see that a∗(c) + a(c) is essentially self-adjoint on DomN , hence on
Γfin

s (Z).
It remains to prove (3). Clearly, e

1
2 a(c) is defined on Γfin

s (Z). We note also that
e

1
2 a∗(c)Ω ∈ Γs(Z) iff c∗c < 1l, by Thm. 11.28. It remains to prove that if c∗c < 1l,

then e
1
2 a∗(c) is defined on Γfin

s (Z). This is equivalent to showing that e
1
2 a∗(c)Ω ∈

Dom
n

Π
i=1

a∗(zi) for all z1 , . . . , zn ∈ Z. But this follows from Thm. 11.28 (2). Since

e
1
2 a(c) ⊂ (e

1
2 a∗(c))∗, e

1
2 a∗(c) ⊂ (e

1
2 a(c))∗, we see that e

1
2 a(c) and e

1
2 a∗(c) are closable.

Identities (11.38) and (11.39) are direct computations. �
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11.3 Bosonic Bogoliubov transformations on Fock spaces

We use the same framework as in the previous section. (Y, ·, ω, j) is a complete
Kähler space. Z is the holomorphic subspace of CY, so that we can identify Y
with Re(Z ⊕ Z).

Y � y �→W (y) ∈ U
(
Γs(Z)

)
(11.40)

is the Fock CCR representation.
The central result of this section is the version of Shale’s theorem which

says that a symplectic transformation is implementable in the Fock CCR rep-
resentation iff it belongs to the restricted symplectic group. The corresponding
automorphism of the algebra of operators will be called the Bogoliubov auto-
morphism. Unitary operators implementing Bogoliubov automorphisms (the so-
called Bogoliubov implementers) form a group Mpc

j (Y), which can be viewed
as the natural generalization of the group Mpc(Y) to the case of an infinite
dimension.

We will also describe the group Mpj,af (Y), which is a generalization of the
group Mp(Y) to infinite dimensions. Note that both Mpc

j (Y) and Mpj,af (Y)
depend on the Kähler structure on Y (which is expressed by putting j as a
subscript).

11.3.1 Symplectic transformations in the Fock representation

Definition 11.31 We define Mpc
j (Y) to be the set of U ∈ U

(
Γs(Z)

)
such that{

UW (y)U∗ : y ∈ Y} =
{
W (y) : y ∈ Y}.

We equip Mpc
j (Y) with the strong operator topology.

Definition 11.32 Let r ∈ Sp(Y).

(1) We say that U ∈ B
(
Γs(Z)

)
intertwines r if

UW (y)U∗ = W (ry), y ∈ Y. (11.41)

(2) If in addition U is unitary, then we say that U implements r.
(3) If there exists U ∈ U

(
Γs(Z)

)
that implements r, then we say that r is imple-

mentable on Γs(Z).

We will prove:

Theorem 11.33 (Shale’s theorem about Bogoliubov transformations) (1) Let
r ∈ Sp(Y). Then r is implementable iff r ∈ Spj(Y).

(2) Let U ∈ Mpc
j (Y). Then there exists a unique r ∈ Spj(Y) such that r is imple-

mented by U . Mpc
j (Y) is a group and the map Mpc

j (Y) → Spj(Y) obtained
this way is a group homomorphism.
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(3) Let r ∈ Spj(Y). Let p, d, c be defined as in Subsect. 11.1.3. Define

U j
r = |det pp∗|− 1

4 e−
1
2 a∗(d)Γ

(
(p∗)−1)e 1

2 a(c) . (11.42)

Then U j
r is the unique unitary operator implementing r in the Fock repre-

sentation such that

(Ω|U j
rΩ) > 0. (11.43)

All operators implementing r in the Fock representation are of the form μUr ,
where |μ| = 1.

(4) We have an exact sequence

1 → U(1) → Mpc
j (Y) → Spj(Y) → 1. (11.44)

Proof of Thm. 11.33. Let us prove (3). By Prop. 3.53, we have

Γ(p∗−1)a∗(z) = a∗(p∗−1z)Γ(p∗−1), (11.45)

Γ(p∗−1)a(z) = a(pz)Γ(p∗−1). (11.46)

Set V := e−
1
2 a∗(d)Γ

(
(p∗)−1

)
e

1
2 a(c) . Using (11.45), (11.46), (11.38) and (11.39),

we see that

V a∗(z) =
(
a∗(p∗−1z + dpcz) + a(pcz)

)
V =

(
a∗(pz) + a(qz)

)
V,

V a(z) =
(
a(pz) + a∗(dpz)

)
V =

(
a∗(qz) + a(pz)

)
V.

Therefore,

V φ(y) = φ(ry)V, y ∈ Y.

Thus V intertwines the representations (11.40) and (11.41). These representa-
tions are irreducible. Hence, by Prop. 8.13, V is proportional to a unitary oper-
ator. Clearly,

V Ω = e−
1
2 a∗(d)Ω.

By Thm. 11.28,

‖V Ω‖2 = det(1l− d∗d)−
1
2 = (det pp∗)

1
2 .

Hence, U j
r = (det pp∗)−

1
4 V is unitary. (Ω|U j

rΩ) = (det pp∗)−
1
4 > 0, hence U j

r also
satisfies the condition (11.43). The uniqueness is obvious.

Let r ∈ Sp(Y). Suppose that UW (y) = W (ry)U , y ∈ Y. Define the operator
c as in (11.3). Then the vector UΩ satisfies the conditions of Thm. 11.28 (3).
Hence, c ∈ B2

s (Z,Z). By Prop. 11.12, this is equivalent to r ∈ Spj(Y). �
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11.3.2 One-parameter groups of Bogoliubov transformations

Let h ∈ Bh(Z), g ∈ B2
s (Z,Z). Let ζ ∈ Bs(Y# ,Y) be defined by ζC =

[
g h

h g

]
.

Recall that

Opa∗,a(ζ) = 2dΓ(h) + a∗(g) + a(g)

is a self-adjoint operator. If in addition h ∈ B1
h(Z), then we can use the Weyl–

Wigner quantization to quantize ζ, obtaining

Op(ζ) = 2dΓ(h) + a∗(g) + a(g) + (Trh)1l. (11.47)

Let a ∈ sp(Y) be given by

aC = ζCωC = i
[−h g

−g h

]
(see (11.2)). Let rt = eta and

rtC =
[

pt qt

qt pt

]
For t ∈ R we set

dt := qtp
−1
t , ct := q#

t (p#
t )−1 .

The following theorem gives the unitary group generated by the Wick and Weyl–
Wigner quantizations of ζ:

Theorem 11.34 (1) For any t ∈ R, pte−ith − 1l ∈ B1(Z), dt, ct ∈ B2(Z,Z)
and

eitOpa ∗ , a (ζ ) =
(
det pte−ith)− 1

2 e−
1
2 a∗(dt )Γ(p∗−1

t )e
1
2 a(ct ) . (11.48)

Besides, (11.48) implements rt .
(2) If in addition h ∈ B1

h(Z), then pt − 1l ∈ B1(Z) and

eitOp(ζ ) = (det pt)−
1
2 e−

1
2 a∗(dt )Γ(p∗−1

t )e
1
2 a(ct ) . (11.49)

(In both (11.48) and (11.49) the branch of the square root is determined by
continuity.)

11.3.3 Implementation of positive symplectic transformations

Let us consider a positive r ∈ Spj(Y). From formula (11.11) we know that there
exists c ∈ B2

s (Z,Z) such that

rC =
[

1l c

0 1l

] [
(1l− cc∗)

1
2 0

0 (1l− c∗c)−
1
2

] [
1l 0
c∗ 1l

]
.
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By Thm. 11.33, r is then implemented by

U j
r = det(1l− cc∗)

1
4 e−

1
2 a∗(c)Γ(1l− cc∗)

1
2 e

1
2 a(c) . (11.50)

We recall also that a ∈ spj(Y) is self-adjoint iff

aC = i
[

0 −g

g∗ 0

]
, (11.51)

for g ∈ B2
s (Z,Z).

The following formula is essentially a special case of (11.48) for rt = eta :

U j
rt

= e
i t
2

(
a∗(g)+a(g)

)
(11.52)

= (det cosh
(
t
√

gg∗)
)− 1

2 e
i t
2 a∗( t a n h

√
g g ∗√

g g ∗ g)
Γ
(
cosh(t

√
gg∗)
)−1e

− i t
2 a
(

t a n h
√

g g ∗√
g g ∗ g

)
.

Suppose now that τ is a conjugation as in Thm. 11.24. By Prop. 11.25 we can
identify Y with X ⊕ X , so that for m ∈ Ls(X ), m > 0,

r =
[

m 0
0 m−1

]
.

Recall also that we defined the unitary map T rw between the Fock space Γs(Z)
and Gaussian L2 space L2(X , e−

1
2 x2

dx) intertwining the Fock and real-wave
representations such that T rwΩ = 1.

Proposition 11.35 In the real-wave representation on L2(X , e−
1
2 x2

dx) the oper-
ator U j

r takes the form

T rwU j
rT

rw∗F (x) = (detm)
1
2 e

1
4 x·(1l−m 2 )xF (mx).

11.3.4 Metaplectic group in the Fock representation

Spj(Y) � r �→ Uj
r is not a representation – it is only a projective representation.

To construct a true representation we need to restrict ourselves to Spj,af (Y).
Thus we will obtain a generalization of the metaplectic representation to infinite
dimensions.

Definition 11.36 For r ∈ Spj,af (Y) we define

±Ur := ±(det p∗)−
1
2 e−

1
2 a∗(d)Γ

(
(p∗)−1)e 1

2 a(c) . (11.53)

(We take both signs of the square root, thus ±Ur denotes a pair of operators
differing by the sign.)

Definition 11.37 We denote by Mpj,af (Y) the set of operators of the form ±Ur

for some r ∈ Spj,af (Y). We equip it with the strong operator topology.

Theorem 11.38 Mpj,af (Y) is a topological group. We have the exact sequence

1 → Z2 →Mpj,af (Y) → Spj,af (Y) → 1. (11.54)
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If Y is finite-dimensional, then Mpj,af (Y) coincides with Mp(Y) introduced in
Def. 10.28.

The proof of this theorem is based on the following lemma:

Lemma 11.39 (1) ±Ur are unitary.
(2) UrW (y)U∗

r = W (ry).
(3) Ur1 Ur2 = ±Ur1 r2 .
(4) If Y is finite-dimensional, then ±Ur coincides with ±Ur introduced in Def.

10.27.

Proof The operators Ur differ by a phase factor from U j
r from Thm. 11.33.

Therefore, they are unitary and implement r. This proves (1) and (2).
Let us prove (3). We know that

(Ω|Ur1 r2 Ω) = ±(det p∗)−
1
2 = ±(det(p1p2 + q1q2)

∗)− 1
2 . (11.55)

Moreover,

(Ω|Ur1 Ur2 Ω) = ±(e 1
2 a∗(c1 )Ω|e− 1

2 a∗(d2 )Ω
)
(det p∗1)

− 1
2 (det p∗2)

− 1
2

= ±det(1l + d2c
∗
1)

− 1
2 (det p∗1)

− 1
2 (det p∗2)

− 1
2 ,

using Thm. 11.28 (4) and the fact that c1 , d2 are symmetric. Using the formulas
in Subsect. 11.1.3, we see that

(p1p2 + q1q2)
∗ = p∗2(1l + d2c

∗
1)p

∗
1 ,

which implies that

(Ω|Ur1 Ur2 Ω) = ±(Ω|Ur1 r2 Ω). (11.56)

We know that Ur1 r2 and Ur1 Ur2 differ by a phase factor. This phase factor must
be equal to ±1 by (11.56), which completes the proof of (3). �

The following theorem gives an alternative definition of the group Mpj,af (Y):

Theorem 11.40 Mpj,af (Y) is the subgroup of U
(
Γs(Z)

)
generated by eiOp(ζ ),

where Op(ζ) are defined as in (11.47) with g ∈ B2
s (Z,Z) and h ∈ B1

h(Z).

11.4 Fock sector of a CCR representation

The main result of this section is a necessary and sufficient criterion for two Fock
CCR representations to be unitarily equivalent. This result goes under the name
Shale’s theorem and is closely related to Thm. 11.33 about the implementability
of bosonic Bogoliubov transformations, which we also call Shale’s theorem.

Another, closely related, subject of this chapter can be described as follows.
Consider a symplectic space Y and a CCR representation in a Hilbert space H.
Suppose that we are given a Kähler anti-involution j. We will describe how to
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find a subspace of H on which this representation is unitarily equivalent to a
multiple of the Fock representation associated with j.

The basic framework of this section is slightly different from that of the preced-
ing sections of this chapter. As previously, in this section (Y, ω) is a symplectic
space and j ∈ L(Y) is a Kähler anti-involution. We do not, however, assume that
Y is complete.

The notation and terminology of this section is based on Subsects. 1.3.6 and
1.3.8, 1.3.9, and was also recalled at the beginning of Chap. 9. Recall, in par-
ticular, that y1 · y2 := −y1 ·ωjy2 is the corresponding symmetric form, so that
(Y, ·, ω, j) is a Kähler space (not necessarily complete). Z := 1l−ijC

2 CY is the cor-
responding holomorphic space. We have identifications CY � Z ⊕ Z and

Y � y �→
(

1
2
(y − ijy),

1
2
(y + ijy)

)
∈ Re(Z ⊕ Z). (11.57)

We recall also that Z inherits a unitary structure. If (zi, zi) = yi , then

y1 · y2 = 2Re(z1 |z2), (11.58)

y1 ·ωy2 = 2Im(z1 |z2).

Recall that the completion of Y is denoted Ycpl. Clearly, Zcpl is the holomor-
phic subspace of the complete Kähler space Ycpl.

11.4.1 Vacua of CCR representations

Suppose that

Y � y �→ Wπ (y) = eiφπ (y ) ∈ U
(
Γs(Z)

)
(11.59)

is a regular CCR representation. As in Subsect. 8.2.4, we introduce the creation,
resp. annihilation operators aπ∗(z), resp. aπ (z) by

aπ∗(z) := φπ (z), aπ (z) := φπ (z), z ∈ Z. (11.60)

Note that these operators depend not only on the representation π, but also
on the Kähler anti-involution j, so in some situations it is natural to call them
j-creation, resp. j-annihilation operators.

Definition 11.41 The space of j-vacua is defined as

Kπ :=
{
Ψ ∈ H : aπ (z)Ψ = 0, z ∈ Z}.

Proposition 11.42 (1) Kπ is a closed subspace of H.
(2) Let Ψ ∈ H. Then

Ψ ∈ Kπ ⇔ (
Ψ|Wπ (y)Ψ

)
= ‖Ψ‖2e−

1
4 ‖y‖2

, y ∈ Y.
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(3) Elements of Kπ are analytic vectors of φπ (y), y ∈ Y.
(4) If Φ,Ψ ∈ Kπ , then(

Φ|Wπ (y)Ψ
)

= (Φ|Ψ)e−
1
4 ‖y‖2

, y ∈ Y;(
Φ|φπ (y1)φπ (y2)Ψ

)
=

1
2
(Φ|Ψ)(y1 · y2 + iy1 ·ωy2), y1 , y2 ∈ Y.

Proof Let us suppress the superscript π to simplify notation.
(1). The space of vacua K is closed as an intersection of kernels of closed

operators.
Let us prove (2)⇐. Let Ψ ∈ H such that

(
Ψ|W (y)Ψ

)
= ‖Ψ‖2e−

1
4 ‖y‖2

. Without
loss of generality we can assume that ‖Ψ‖ = 1. Taking the first two terms of the
Taylor expansion of

R � t �→ (Ψ|W (ty)Ψ
)

= ‖Ψ‖2e−
1
4 t2 ‖y‖2

,

we obtain (
Ψ|φ(y)Ψ

)
= 0,

(
Ψ|φ(y)2Ψ

)
=

1
2
‖y‖2 . (11.61)

In particular, Ψ ∈ Dom φ(y), y ∈ Y. Let z = y − ijy ∈ Z. Then

a∗(z)a(z) = φ(z)φ(z)

=
(
φ(y)− iφ(y))(φ(y) + iφ(jy)

)
= φ(y)2 + φ(jy)2 − ‖y‖2 .

Hence,

‖a(z)Ψ‖2 =
(
Ψ|φ(y)2Ψ

)
+
(
Ψ|φ(jy)2Ψ

)− ‖y‖2 = 0.

To prove (2) ⇒, note that if Ψ ∈ K, then Ψ ∈ Dom φ(y), y ∈ Y. In particular,
the function

R � t �→ F (t) = (Ψ|W (ty)Ψ)

is C1 . Let y ∈ Y, z = 1
2 (y − ijy) ∈ Z. Using Thm. 8.25 (1), we get

φ(y)W (ty) = a∗(z)W (ty) + W (ty)a(z) +
it
2
‖y‖2W (ty). (11.62)

This yields
d
dt F (t) = i

(
Ψ|φ(y)W (ty)Ψ

)
= i

2

(
a(z)Ψ|W (ty)Ψ

)
+ i

2

(
Ψ|W (ty)a(z)Ψ

)− t
2 ‖y‖2

(
Ψ,W (ty)Ψ

)
= − t

2 ‖y‖2F (t).

Since F (0) = ‖Ψ‖2 , we get that F (t) = ‖Ψ‖2e−
1
4 ‖y‖2

.
From (2) we know that F (t) is analytic, hence by the spectral theorem Ψ ∈ K

is an analytic vector for φ(y), y ∈ Y, which proves (3). Finally, (4) follows from
(11.61) by polarization. �

https://doi.org/10.1017/9781009290876.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290876.012


290 Symplectic invariance of the CCR on Fock spaces

11.4.2 Fock CCR representations

As in Sect. 3.4, for z ∈ Zcpl we introduce creation, resp. annihilation operators
a∗(z), resp. a(z) acting on the bosonic Fock space Γs(Zcpl).

Definition 11.43 The regular CCR representation

Y � y �→ W (y) = eia∗(z )+ia(z ) ∈ U
(
Γs(Zcpl)

)
, y = (z, z), (11.63)

is called the Fock representation over the Kähler space Y.

This is a slight generalization of the definition used in Subsect. 9.1.1, since
we allow for a non-complete space Y. Clearly, the representation (11.63) can be
extended to a representation over Ycpl in an obvious way.

Note that j-creation, resp. j-annihilation operators defined for the CCR repre-
sentation (11.63) coincide with the usual creation, resp. annihilation operators
a∗(z), resp. a(z). Likewise, a vector Ψ ∈ Γs(Zcpl) is a j-vacuum for (11.63) iff it
is proportional to Ω.

We can also consider another Kähler anti-involution j1 , not necessarily equal
to j. The following theorem describes the vacua inside Γs(Zcpl) corresponding to
j1 . It is essentially a restatement of parts of Thm. 11.28.

Theorem 11.44 (1) Let c ∈ B2
s (Zcpl

,Zcpl), cc∗ < 1l, and let j1 be the Kähler
anti-involution determined by c as in Subsect. 11.1.8. Then Ωc is the unique
vector in Γs(Zcpl) satisfying the following conditions:

(i) ‖Ωc‖ = 1,

(ii) (Ωc |Ω) > 0,
(iii) Ωc is a j1-vacuum.
(2) The statement (1)(iii) is equivalent to(

a(z)− a∗(cz)
)
Ωc = 0, z ∈ Z. (11.64)

11.4.3 Unitary equivalence of Fock CCR representations

Suppose that we are given a symplectic space (Y, ω) endowed with two Kähler
structures, defined e.g. by two Kähler anti-involutions. Each Kähler structure
determines a Fock representation. In this subsection we will prove a necessary
and sufficient condition for the equivalence of these two representations.

Theorem 11.45 (Shale’s theorem about Fock representations) Let Z, Z1 be the
holomorphic subspaces of CY corresponding to Kähler anti-involutions j and j1 .
Let

Y � y �→ eiφ(y ) ∈ U
(
Γs(Z)

)
, (11.65)

Y � y �→ eiφ1 (y ) ∈ U
(
Γs(Z1)

)
(11.66)
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be the corresponding Fock CCR representations. Then the following statements
are equivalent:

(1) There exists a unitary operator W : Γs(Z) → Γs(Z1) such that

Wφ(y) = φ1(y)W. (11.67)

(2) j− j1 is Hilbert–Schmidt (or any of the equivalent conditions of Prop. 11.22
hold).

Proof Let a∗
1 , a1 ,Ω1 denote the creation and annihilation operators and the

vacuum for the representation (11.66).
(2)⇒(1). Assume that j− j1 ∈ B2(Y). We know by Prop. 11.22 that there

exists r ∈ Spj(Y) such that j1 = rjr# . Thus, by Thm. 11.33 there exists Ur ∈
U
(
Γs(Z)

)
such that Urφ(y)U∗

r = φ(ry).
Note that rC is a unitary operator on CY and rCZ = Z1 . Set u := rC

∣∣
Z . Then

u ∈ U(Z,Z1), hence Γ(u) ∈ U
(
Γs(Z),Γs(Z1)

)
and

Γ(u)a∗(z)Γ(u)∗ = a∗
1(uz), Γ(u)a(z)Γ(u)∗ = a1(uz), z ∈ Z.

Consequently, Γ(u)φ(y)Γ(u)∗ = φ1(ry). Therefore, W := Γ(u)U∗
r satisfies

(11.67).
(1)⇒(2). Suppose that the representations (11.65) and (11.66) are equivalent

with the help of the operator W ∈ U
(
Γs(Z1),Γs(Z)

)
. Then Ψ := WΩ1 satisfies(

a(z)− a∗(cz)
)
Ψ = 0, z ∈ Z.

By Thm. 11.28, this implies that c ∈ B2(Z,Z). Hence, j− j1 ∈ B2(Y). �

11.4.4 Fock sector of CCR representations

Let us go back to an arbitrary regular CCR representation (11.59) over a Kähler
space Y. We will describe how to determine the largest sub-representation of
(11.59) unitarily equivalent to a multiple of the j-Fock representation over Y in
Γs(Zcpl).

Theorem 11.46 Set

Hπ := Spancl{Wπ (y)Ψ : Ψ ∈ Kπ , y ∈ Y}. (11.68)

(1) Hπ is invariant under Wπ (y), y ∈ Y.
(2) There exists a unique unitary operator

Uπ : Kπ ⊗ Γs(Zcpl) → Hπ

satisfying

Uπ Ψ⊗W (y)Ω = Wπ (y)Ψ, Ψ ∈ Kπ , y ∈ Y,

where W (y) denote Weyl operators in the Fock representation on Γs(Zcpl).
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(3)

Uπ 1l⊗W (y) = Wπ (y)Uπ , y ∈ Y. (11.69)

(4) If there exists an operator U : Γs(Zcpl) → H such that UW (y) = Wπ (y)U ,
y ∈ Y, then Ran U ⊂ Hπ .

(5) Hπ depends on j only through the equivalence class of j w.r.t. the relation

j1 ∼ j2 ⇔ j1 − j2 ∈ B2(Y). (11.70)

Definition 11.47 Introduce the equivalence relation (11.70) in the set of Kähler
anti-involutions on Y. Let [j] denote the equivalence class w.r.t. this relation.
Then the subspace Hπ defined in (11.68) is called the [j]-Fock sector of a CCR
representation Wπ .

Proof of Thm. 11.46. Clearly, Hπ is invariant under Wπ (y), y ∈ Y. Now let
Ψi ∈ Kπ , yi ∈ Y for i = 1, 2. We have(

Wπ (y1)Ψ1 |Wπ (y2)Ψ2
)

= e
i
2 y1 ·ωy2

(
Ψ1 |Wπ (y2 − y1)Ψ2

)
= (Ψ1 |Ψ2)e

i
2 y1 ·ωy2 e−

1
4 (y2 −y1 )·(y2 −y1 ) .

Similarly, if (zi, zi) = yi , we have(
Ψ1 ⊗W (y1)Ω|Ψ2 ⊗W (y2)Ω

)
= (Ψ1 |Ψ2)e

i
2 (z1 ,z1 )·ω (z2 ,z2 )e−

1
2 (z2 −z1 )·(z2 −z1 ) ,

using (9.13). Using (11.58), we obtain that(
Wπ (y1)Ψ1 |Wπ (y2)Ψ2

)
=
(
Ψ1 ⊗W (y1)Ω|Ψ2 ⊗W (y2)Ω

)
. (11.71)

Let us set

Uπ Ψ⊗W (y)Ω := Wπ (y)Ψ

and extend Uπ to Kπ ⊗ a l
Γs(Zcpl) by linearity. By the identity (11.71), we see

that Uπ is well defined and isometric. It extends as a unitary operator between
Kπ ⊗ Γs(Zcpl) and Hπ . Property (3) follows from the definition of Uπ .

Finally, let U : Γs(Zcpl) → H be an operator such that UW (y) = Wπ (y)U .
Then, by the argument leading to (11.71), we see that UCΩ ⊂ Kπ . Therefore,
Ran U ⊂ Ran Uπ .

Let us prove (5). For i = 1, 2 denote by Hi , Ki the spaces Hπi , Kπi corres-
ponding to the anti-involution ji . It suffices to prove that H2 ⊂ H1 . We first
claim that

K2 ∩H1 �= {0}. (11.72)

In fact, by Thm. 11.46 (1) we know that H1 is invariant under W (y), y ∈ Y.
Besides, y �→W (y)

∣∣
H1

is unitarily equivalent to a multiple of the Fock rep-
resentation on Γs(Z1). Since j1 − j2 ∈ B2(Y), it follows from Thm. 11.45 that
y �→W (y)

∣∣
H1

contains vacua for j2 , hence (11.72) holds.
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We claim now that K2 ⊂ H1 , which implies that H2 ⊂ H1 . If K2 �⊂ H1 , then
K2 ∩H⊥

1 is the non-trivial space of j2-vacua for y �→ W (y)
∣∣
H⊥

1
.

Applying the analog of (11.72) to H⊥
1 , we see that H⊥

1 should contain vacua
for j1 , which is absurd. Hence, K2 ⊂ H1 , which completes the proof. �

Proposition 11.48 If the CCR representation (11.59) is irreducible and Kπ �=
{0}, then it is unitarily equivalent to the [j]-Fock representation.

Proof Since (11.59) is irreducible, we have Hπ = {0} or Hπ = H, which proves
the proposition. �

11.4.5 Number operator of regular CCR representations

In this subsection we consider an arbitrary regular CCR representation (11.59)
over a Kähler space Y with a Kähler anti-involution j. We now discuss the notion
of the number operator Nπ associated with (11.59). The number operator Nπ

allows for a direct description of the Fock sector Hπ . In some cases this descrip-
tion can be used to show that Hπ = H. This is in particular the case for a finite-
dimensional Y, when Thm. 11.52 gives an alternative proof of the Stone–von
Neumann theorem (Thm. 8.49).

Here is the first definition of Nπ .

Definition 11.49 Let N be the usual number operator on the bosonic Fock space.
Let Uπ be defined as in Thm. 11.46. Define Dom Nπ := Uπ Kπ ⊗Dom N , which
is a dense subspace of Hπ . The number operator in the representation π is the
operator on H with the domain Dom Nπ defined by

Nπ := Uπ (1l⊗N)Uπ∗.

(Note that Nπ need not be densely defined.)
Before we give an alternative definition of Nπ , let us recall some facts about

quadratic forms. We will assume that a positive quadratic form is defined on the
whole space H and takes values in [0,∞]. The domain of a positive quadratic
form b is defined as

Dom b :=
{
Φ ∈ H : b(Φ) <∞}.

If the form b is closed, then there exists a unique positive self-adjoint operator
B such that

Dom b = Dom B
1
2 , b(Φ) = (Φ|BΦ).

If A is a closed operator, then ‖AΦ‖2 is a closed form. The sum of closed forms
is a closed form, and the supremum of a family of closed forms is a closed
form.
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Definition 11.50 For each finite-dimensional subspace V ⊂ Z, set

nπ
V(Φ) :=

dimV∑
i=1

‖aπ (vi)Φ‖2 ,

where {vi}dim V
i=1 is an o.n. basis of V. (If Φ �∈ Dom aπ (vi) for some i, set nπ

V(Φ) =
∞.)

The quadratic form nπ
V does not depend on the choice of the basis {vi}dim V

i=1
of V. Moreover, by Thm. 8.29, nπ

V is densely defined.

Definition 11.51 The number quadratic form nπ is defined by

nπ (Φ) := sup
V

nπ
V(Φ), Φ ∈ H.

The following theorem says that the number quadratic form of Def. 11.51 gives
the number operator introduced in Def. 11.49.

Theorem 11.52 Let nπ be the number quadratic form associated with Wπ and
j. Then Dom nπ = Dom(Nπ )

1
2 and

nπ (Φ) = (Φ|Nπ Φ), Φ ∈ Dom Nπ .

In particular, Hπ = (Dom nπ )cl.

To prepare for the proof of the above theorem, note that nπ defines a positive
operator (with a possibly non-dense domain), which we temporarily denote Ñπ ,
such that Dom nπ = Dom(Ñπ )

1
2 and

nπ (Φ) = (Φ|Ñπ Φ), Φ ∈ Dom Ñπ . (11.73)

Our aim is to show that Ñπ = Nπ .
Note also that

Dom nπ ⊂ Dom φπ (y), y ∈ Y. (11.74)

Lemma 11.53 If Φ ∈ Dom(Ñπ )
1
2 and F is a Borel function, then

aπ (z)F (Ñπ − 1l)Φ = F (Ñπ )aπ (z)Φ. (11.75)

Proof Let us suppress the superscript π to simplify notation. First we note
that W (y) maps Dom Ñ

1
2 into itself and have

n(W (y)Φ) = n(Φ) +
(
Φ|φ(jy)Φ

)
+

1
2
‖y‖2‖Φ‖2 . (11.76)

In fact, using (8.21) we see that (11.76) is true if we replace n with nV , where V
is a finite-dimensional subspace of Y containing y. Then (11.76) follows immedi-
ately.
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By the polarization identity, (11.76) has the following consequence for Φ,Ψ ∈
Dom Ñ

1
2 : (

Ñ
1
2 W (y)Φ|Ñ 1

2 W (y)Ψ
)

(11.77)

=
(
Ñ

1
2 Φ|Ñ 1

2 Ψ
)

+
(
Φ|φ(jy)Ψ

)
+

1
2
‖y‖2(Φ|Ψ).

Replacing Φ by W (y)∗Φ and using the invariance of Dom Ñ
1
2 under W (y), we

can rewrite (11.77) as follows:(
Ñ

1
2 Φ|Ñ 1

2 W (y)Ψ
)

(11.78)

=
(
Ñ

1
2 W (y)∗Φ|Ñ 1

2 Ψ
)

+
(
W (y)∗Φ|φ(jy)Ψ

)
+

1
2
‖y‖2(W (y)∗Φ|Ψ).

Next assume in addition that Φ,Ψ ∈ Dom Ñ . Then we can rewrite (11.78) as(
ÑΦ|W (y)Ψ

)
(11.79)

=
(
W (y)∗Φ|ÑΨ

)
+
(
W (y)∗Φ|φ(jy)Ψ

)
+

1
2
‖y‖2(W (y)∗Φ|Ψ).

We replace y by ty and differentiate (11.79) w.r.t. t. (Differentiating is allowed
by (11.74).) We obtain

(ÑΦ|φ(y)Ψ) = (φ(y)Φ|ÑΨ)− i(Φ|φ(jy)Ψ). (11.80)

Substituting jy for y in (11.80), we obtain(
ÑΦ|φ(jy)Ψ

)
= −(φ(jy)Φ|ÑΨ

)
+ i
(
Φ|φ(y)Ψ

)
. (11.81)

Adding up (11.80) and (11.81), we get(
ÑΦ|a(z)Ψ

)
=
(
a∗(z)Φ|ÑΨ

)− (Φ|a(z)Ψ
)
. (11.82)

Next let us assume that Φ ∈ Dom Ñ
3
2 . Then ÑΦ ∈ Dom Ñ

1
2 ⊂ Dom a(z).

Hence, (11.82) implies(
ÑΦ|a(z)Ψ

)
=
(
Φ|a(z)(Ñ − 1l)Ψ

)
. (11.83)

Therefore, a(z)Ψ ∈ Dom Ñ , and we have

Ñ a(z)Ψ = a(z)(Ñ − 1l)Ψ, (11.84)

or equivalently

(Ñ + λ1l)a(z)Ψ = a(z)(Ñ + λ1l− 1l)Ψ. (11.85)

Now let Φ ∈ Dom Ñ
1
2 and λ > 1. Then (Ñ + λ1l− 1l)−1Φ ∈ Dom Ñ

3
2 . Therefore,

by (11.85),

(Ñ + λ1l)a(z)(Ñ + λ1l− 1l)−1v = a(z)Φ. (11.86)

Multiplying this by (Ñ + λ1l)−1 , we obtain

a(z)(Ñ + λ1l− 1l)−1Φ = (Ñ + λ1l)−1a(z)Φ. (11.87)
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Since linear combinations of functions (Ñ + λ1l)−1 with λ > 0 are strongly
dense in the von Neumann algebra of bounded Borel functions of Ñ , and a(z) is
closed, (11.87) implies

a(z)F (Ñ − 1l)Φ = F (Ñ )a(z)Φ, Φ ∈ Dom Ñ
1
2 ,

for any bounded Borel function F . �

Lemma 11.54 Kπ = {0} implies Dom Ñπ = {0}.
Proof Again we suppress the superscript π to simplify notation. Suppose that
Dom Ñ �= {0}. We know that Ñ ≥ 0. Therefore, spec Ñ is non-degenerate and
bounded from below. Hence, λ0 := inf spec Ñ is a finite number, and

Ran 1l[λ0 ,λ0 +1[(Ñ) �= {0}.
By Lemma 11.53, for any z ∈ Z

aπ (z)1l[λ0 ,λ0 +1[(Ñ) = 1l[λ0 −1,λ0 [(Ñ)aπ (z). (11.88)

But

1l[λ0 −1,λ0 [(Ñ) = 0.

Therefore, (11.88) is zero and

Ran 1l[λ0 ,λ0 +1[(Ñ) ⊂ K = {0},
which is a contradiction. �

The following lemma is immediate:

Lemma 11.55 Suppose that H = H0 ⊕H1 . Suppose that

Y � y �→Wπ (y) ∈ H
is a CCR representation and Wπ (y), y ∈ Y, leaves H0 invariant. Then Wπ (y)
also leaves H1 invariant. Thus we have two CCR representations,

Y � y �→Wπ (y)
∣∣
H0 , Y � y �→Wπ (y)

∣∣
H1 .

Let Ki, Ñ i denote the corresponding spaces of vacua and the operators defined
by (11.73) for the representations i = 0, 1. Then

K = K0 ⊕K1 , Ñ = Ñ 0 ⊕ Ñ 1 . (11.89)

Proof of Thm. 11.52. We are in the situation of Lemma 11.55: we have two
CCR representations, in H0 = Hπ and in H1 = (H0)⊥.

By the definition of Nπ , we have

Nπ = N 0 ⊕N 1 ,
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where Dom N 1 = {0}. From Uπ 1l⊗W (y) = Wπ (y)Uπ , y ∈ Y, we get
Uπ 1l⊗ a(z) = aπ (z)Uπ , z ∈ Z, and hence Ñ 0 = N 0 .

We know that K ⊂ H0 , hence K1 = {0}. By Lemma 11.54, this implies
Dom Ñ 1 = {0}. Therefore, Ñπ = Nπ . �

11.4.6 Relative continuity of Gaussian measures

In this subsection we prove Thm. 5.78, the Feldman–Hajek theorem, which says
that the Gaussian measures with covariances A1 , A2 are relatively continuous iff
A

− 1
2

1 A2A
− 1

2
1 − 1l is Hilbert–Schmidt.

Proof of Thm. 5.78. To conform with the notation used in this chapter we
denote the covariances A1 , A2 of Thm. 5.78 by a1 , a2 .

Without loss of generality we can assume that a1 = 1l. In fact, note that

(ξ|a1ξ)X = (ξ|ξ)
a
− 1

2
1 X

, (ξ|a2ξ)X = (ξ|bξ)
a
− 1

2
1 X

,

for b = a−1
1 a2 . Since a

1
2
1 is unitary from a

− 1
2

1 X to X , we see that 1l− a−1
1 a2 ∈

B2(a− 1
2

1 X ) iff 1l− a
− 1

2
1 a2a

− 1
2

1 ∈ B2(X ). Hence, replacing X by a
− 1

2
1 X and a2 by

a−1
1 a2 , we may assume that a1 = 1l and denote a2 simply by a.
Let us consider the real-wave representations for the covariances 1l and a, as

in Sect. 9.3. From Prop. 9.16 we know that they are unitarily equivalent to
the Fock representations for the symplectic space (X ⊕ X , ω) with the Kähler
anti-involutions

j =
[

0 − 1
2

2 0

]
, j1 =

[
0 −(2a)−1

2a 0

]
.

We set

k = −jj1 =
[

a 0
0 a−1

]
.

It is easy to see that 1l− k is Hilbert–Schmidt for the real scalar product on
X ⊕ X coming from the Kähler structure (ω, j) iff 1l− a is Hilbert–Schmidt on
X .
Proof of ⇒. Assume that 1l− a ∈ B2(X ). For simplicity let us denote the two
Gaussian L2 spaces by L2(X ,dμ) and L2(X ,dμ̃).

By Thm. 11.45, we know that the two real-wave representations above are
unitarily equivalent. In particular, there exists a unitary operator U intertwining
these representations. By restriction to the position operators, we deduce that

U : L2(X ,dμ) → L2(X ,dμ̃), UF (x)U−1 = F (x),

for all cylinder continuous functions F on X . By monotone convergence, this
identity extends first to all bounded Bcyl-measurable functions, and then to all
measurable functions (see Subsect. 5.2.1). We note then that if A ∈ B,
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then μ(A) = 0, resp. μ1(A) = 0 iff 1lA (x) = 0 as a multiplication operator on
L2(X ,dμ), resp. L2(X ,dμ̃), which shows that μ and μ1 are mutually absolutely
continuous.
Proof of ⇐. Assume now that μ and μ̃ are mutually absolutely continuous. Then
we have

dμ̃ = Fdμ, for F ≥ 0 a.e., and
ˆ
X

Fdμ = 1.

Clearly, Ψ := F
1
2 is a unit vector in L2(X ,dμ). We will show that

arw (w)Ψ− a∗
rw (cw)Ψ = 0, w ∈ CX , (11.90)

in the weak sense, where c = a−1l
a+1l and a∗

rw (·), arw (·) are the creation and annihi-
lation operators in the real-wave representation on L2(X ,dμ) defined in Subsect.
9.3.1.

We claim that (11.90) implies that 1l− a ∈ B2(X ). In fact, by Prop. 9.16,
the real-wave representation on L2(X ,dμ) with the anti-involution j above is
unitarily equivalent to the Fock representation on Γs(CX ). Applying Thm. 11.28,
we deduce from (11.90) that c ∈ B2(CX ), i.e. 1l− a ∈ B2(X ).

Note that if X is finite-dimensional, then

F (x) = (det a)−
1
2 e−

1
2 (x|a−1 x)+ 1

2 (x|x) ,

Ψ(x) = F
1
2 (x) = (det a)−

1
4 e−

1
4 (x|a−1 x)+ 1

4 (x|x) . (11.91)

Hence,

w · ∇xΨ(x) =
1
2
(1l− a−1)w · xΨ(x),

which is equivalent to (11.90). In the general case we will approximate X by an
increasing family of finite-dimensional subspaces Xn on which (11.91) is valid,
and pass to the limit n → +∞.

We choose an increasing sequence (πn )n∈N of rank n orthogonal projections in
X such that s − lim

n→∞πn = 1l. We set

Xn := πnX , an := πnaπn , Bn := BXn ,

where we recall from Sect. 5.2.1 that BY is the σ-algebra of cylinder sets based
on Y.

We note that B is generated by
⋃

n∈N
Bn . This follows from the fact that the

polynomials based on
⋃

n∈N
Xn are dense in L2(X ,dμ), which is a consequence

of Thm. 5.56.
We denote by μn , resp. μ̃n the Gaussian measures on Xn with covariances 1l,

resp. an . For ξ ∈ Xn we haveˆ
Xn

eiξ ·xdμn =
ˆ
X

eiξ ·xdμ,

ˆ
Xn

eiξ ·xdμ̃n =
ˆ
X

eiξ ·xdμ̃,
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which by a density argument implies thatˆ
Xn

u(x)dμn =
ˆ
X

u(x)dμ,

ˆ
Xn

u(x)dμ̃n =
ˆ
X

u(x)dμ̃, (11.92)

if u is a Bn -measurable integrable function.
We denote by Fn := EBn

(F ) the conditional expectation of F w.r.t. Bn . We
recall that if (Q,B, μ) is a probability space and B0 ⊂ B is a σ-algebra, then
EB0 is defined on L2(Q,dμ) as the orthogonal projection on the subspace of
B0-measurable L2 functions. EB0 extends to a contraction on L1(Q,dμ) with´

Q
EB0 (u)dμ =

´
Q

udμ. In our case, since B is generated by
⋃

n∈N
Bn , we know

that

Fn → F μ a.e. and in L1(X ,dμ). (11.93)

If Φ is Bn -measurable, we have, using (11.92),
ˆ
Xn

Φ(x)dμ̃n =
ˆ
X

Φ(x)dμ̃ =
ˆ
X

Φ(x)Fdμ =
ˆ
X

Φ(x)Fndμ =
ˆ
Xn

Φ(x)Fndμn ,

which shows that

dμ̃n = Fndμn , n ∈ N. (11.94)

For P ∈ CPols(Xn ) and w ∈ CXn , we have
ˆ
Xn

w · ∇xP (x)F (x)dμn =
ˆ
Xn

w · ∇xP (x)dμ̃n ,

which we can rewrite as

(w · ∇xP |F )L2 (Xn ,dμn ) = (w · ∇xP |1)L2 (Xn ,dμ̃n ) .

On L2(X ,dμn ), we have

(w·∇x)∗ = −w·∇x + w·x, (11.95)

and on L2(X ,dμ̃n ), we have

(w·∇x)∗ = −w·∇x + a−1
n w·x. (11.96)

This yields ˆ
Xn

w · ∇xPFndμn =
ˆ
Xn

a−1
n w · xPFndμn . (11.97)

Since Xn is n-dimensional, μn and μ̃n can be realized on Xn with

dμn = (2π)−n/2e−
1
2 (x|x)dx, dμ̃n = (2π)−n/2(det an )−

1
2 e−

1
2 (x|a−1

n x)dx,

so that

Fn (x) = (det an )−
1
2 e−

1
2 (x|a−1

n x)+ 1
2 (x|x) .
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It follows from (11.97) that Fn satisfies in the usual sense the identity

w · ∇xFn (x) = (1l− a−1
n )w · xFn (x).

Let us set

Ψn := F
1
2

n ,

so that Ψn ∈ L2(Xn ,dμn ), ‖Ψn‖ = 1. From ∇xΨn = 1
2 F

− 1
2

n ∇xFn , we get that

w · ∇xΨn (x) =
1
2
(1l− a−1

n )w · xΨn (x), w ∈ CXn .

Considering now Ψn as a function on X , using (11.95) we can rewrite this identity
as ˆ

X

(−w · ∇x +
1
2
(1l + a−1

n )w · x)PΨndμ = 0, P ∈ CPols(Xn ), w ∈ CXn ,

or equivalently
ˆ
X

(−anw · ∇x +
1
2
(1l + an )w · x)PΨndμ = 0, P ∈ CPols(Xn ), w ∈ CXn .

(11.98)
We note now that if w ∈ X and wn := πnw, then for all P ∈ CPols(X )

lim
n→∞(anwn − aw) · ∇xP = 0,

lim
n→∞

(
(an + 1l)wn · x− (a + 1l)w · x)P = 0 in L2(X, μ).

Since Ψn is uniformly bounded in L2(X ,dμ), we deduce from (11.98) that

lim
n→∞

ˆ
X

(−aw · ∇x +
1
2
(1l + a)w · x)PΨndμ = 0, P ∈ CPols(Xm ), w ∈ CX

for some m. (11.99)

We claim now that

w − lim
n→∞Ψn = Ψ. (11.100)

In fact, since Ψn is uniformly bounded in L2 , it suffices to show that, for all
G ∈ L∞(X ,dμ),

lim
n→∞

ˆ
X

(Ψn −Ψ)Gdμ = 0. (11.101)

Let Φn = (Ψn −Ψ)G ∈ L2 ⊂ L1 . We know from (11.93) that Φn → 0 μ a.e..
Moreover the sequence (Φn ) is bounded in L2 , since G ∈ L∞. It follows from
Subsect. 5.1.9 that the sequence (Φn ) is equi-integrable, which using the fact
that Φn → 0 μ a.e. implies (11.101).
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Passing to the limit in (11.99) and using (11.100), we finally get
ˆ
X

(−aw · ∇x +
1
2
(1l + a)w · x)PΨdμ = 0, w ∈ X , (11.102)

first for P ∈ CPols(Xm ) for some m, and then by density for all P ∈ CPols(X ).
Using the definition of arw (w), a∗

rw (w) on L2(X ,dμ), we see that (11.102)
implies (11.90), which completes the proof of the ⇐ part of the theorem. �

Proof of Prop. 5.79. We use the notation of the proof of Thm. 5.78. We have
seen that Ψ, resp. Ψn are the bosonic Gaussian vectors for c = (a− 1l)(a + 1l)−1 ,
resp. cn = πncπn . Since cn → c in B2(X ), it follows from Thm. 11.28 that
Ψn → Ψ in L2 , hence Fn → F in L1 . This proves (1) and (3). (2) is left to the
reader. �

11.5 Coherent sector of CCR representations

This section is devoted to coherent representations, that is, translations of Fock
CCR representations. It is to a large extent parallel to the previous section about
Fock CCR representations.

We keep the same notation as in the previous section. In particular, (Y, ω) is
a symplectic space,

Y � y �→ Wπ (y) ∈ U(H)

is a regular representation of CCR and j ∈ L(Y) is a Kähler anti-involution, so
that we obtain a Kähler space (Y, ·, ω, j).
Z is the holomorphic subspace of CY. As usual, we identify CY with Z ⊕ Z.

We do not assume that Y, or equivalently Z, is complete.
Y# denotes the algebraic dual of Y. Similarly, Z∗ denotes the algebraic anti-

dual of Z. We have the identification Y# = Re(Z∗ ⊕Z∗
).

11.5.1 Coherent vectors in a CCR representation

Let f ∈ Z∗, that is, f is an anti-linear functional on Z, possibly unbounded.
We also introduce a symbol for the corresponding (possibly unbounded) linear
functional on Y, v = (f, f)

∣∣
Y ∈ Y# . Clearly,

v · (z, z) = (f |z) + (z|f).

Definition 11.56 We define the space of j, f -coherent vectors

Kπ
f :=

{
Ψ ∈ H : Ψ ∈ Dom aπ (z), aπ (z)Ψ = (z|f)Ψ, z ∈ Z},

where the j-creation, resp. j-annihilation operators aπ∗(z), resp. aπ (z) are defined
in Subsect. 8.2.4.
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Proposition 11.57 (1) Kπ
f is a closed subspace of H.

(2) Ψ ∈ Kπ
f iff (Ψ|Wπ (y)Ψ) = e−

1
4 y 2 +iv ·y , y ∈ Y.

(3) Elements of Kπ
f are analytic vectors for φπ (y), y ∈ Y.

(4) If Φ,Ψ ∈ Kπ
f , then

(Φ|Wπ (y)Ψ) = (Φ|Ψ)e−
1
4 y 2 +iv ·y ,

(Φ|φπ (y)Ψ) = (Φ|Ψ)v · y,

(Φ|φπ (y1)φπ (y2)Ψ) =
1
2

(y1 ·y2 + iy1 ·ωy2) (Φ|Ψ) + (v·y1)(v·y2)(Φ|Ψ).

Proof We will suppress the superscript π to simplify notation.
(1) Kf is closed as an intersection of kernels of closed operators.
Let us prove (2)⇐. Let Ψ ∈ H such that (Ψ|W (y)Ψ) = ‖Ψ‖2e−

1
4 y 2 +iv ·y . With-

out loss of generality we can assume that ‖Ψ‖ = 1. Taking the first two terms in
the Taylor expansion of

t �→ (Ψ|W (ty)Ψ) = e−
1
4 t2 y 2 +itv ·y ,

we obtain

(Ψ|φ(y)Ψ) = v·y, (Ψ|φ(y)2Ψ) =
1
2
y2 + (v·y)2 . (11.103)

If z = 1
2 (y − ijy) ∈ Z, we have(

a∗(z) −(f |z)1l
)(

a(z)− (z|f)1l
)

= 1
4 φ(y)2 + 1

4 φ(jy)2 + i
4 [φ(y), φ(jy)]

− 1
2 (z|f)φ(y) + i

2 (z|f)φ(jy)− 1
2 (f |z)φ(y)− i

2 (f |z)φ(jy) + (f |z)(z|f)1l.

Using (11.103), we obtain that

‖(a(z)− (z|f)1l
)
Ψ‖2 = 0.

Let us prove (2) ⇒. Consider y ∈ Y. Note that if Ψ ∈ Kf , then Ψ ∈ Dom φ(y).
We consider the function

R � t �→ (Ψ|W (ty)Ψ),

as in the proof of Prop. 11.42. For z = 1
2 (y − ijy) ∈ Z, we get

d
dt F (t) = i

(
Ψ|φ(y)W (ty)Ψ

)
= i

2

(
a(z)Ψ|W (ty)Ψ

)
+ i

2

(
Ψ|W (ty)a(z)Ψ

)− t
2 y2
(
Ψ|W (ty)Ψ

)
= i
(
(f |z) + (z|f)

)
F (t)− t

2 y2F (t),

which yields F (t) = ‖Ψ‖2e−
1
4 t2 y 2 +itv ·y .

(2) immediately implies (3).
(4) follows from (2) and (11.103) by polarization. �
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11.5.2 Coherent vectors in Fock spaces

We consider the bosonic Fock space Γs(Zcpl) and the usual creation and annihi-
lation operators a∗(z), a(z).

Theorem 11.58 Let Ψ ∈ Γs(Zcpl) be an f-coherent vector for the Fock repre-
sentation over Y, that is, for any z ∈ Z, Ψ ∈ Dom a(z) and

a(z)Ψ = (z|f)Ψ.

Then the following is true:

(1) If f is continuous, i.e. f ∈ Zcpl, then Ψ is proportional to W (−if, if)Ω.
(2) If f is not continuous, then Ψ = 0.

Proof By induction we show that, for z1 , . . . , zn ∈ Z,

a(zn−1) · · · a(z1)Ψ ∈ Dom a(zn ), a(zn ) · · · a(z1)Ψ = (z1 |f) · · · (zn |f)Ψ.

This implies

(a∗(z1) · · · a∗(zn )Ω|Ψ) = (z1 |f) · · · (zn |f)(Ω|Ψ). (11.104)

In particular,

(z|Ψ) = (a∗(z)Ω|Ψ) = (z|f)(Ω|Ψ), z ∈ Z.

Using the fact that Z is dense in Zcpl, we see that (Ω|Ψ)f is a bounded functional
on Z, hence it belongs to Zcpl. Thus either f ∈ Zcpl or (Ω|Ψ) = 0. In the latter
case, (11.104) implies that Ψ = 0. �

11.5.3 Coherent representations

Consider the usual Weyl operators W (y), y ∈ Y, on the bosonic Fock space
Γs(Zcpl). Set

Y � y �→ Wf (y) := W (y)e2iRe(f |z ) ∈ U
(
Γs(Zcpl)

)
. (11.105)

Clearly, (11.105) is a regular CCR representation,

Definition 11.59 (11.105) is called the j, f-coherent CCR representation.

Theorem 11.60 (1) (11.105) is the translation of the Fock representation by
the vector (f, f) ∈ Y# (see Def. 8.21).

(2) If f ∈ Zcpl (equivalently, v ∈ Ycpl), then

Wf (y) = W (if,−if)W (y)W (−if, if).

(3) If f �∈ Zcpl, then (11.105) is not unitarily equivalent to the Fock representa-
tion Y � y �→ W (y).
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Proof (3) Let U ∈ U(H) intertwining Wf (·) and W (·). Since UΩ satisfies the
assumptions of Thm. 11.58 we obtain that UΩ = 0, which is a contradiction. �

11.5.4 Coherent sector

Let us go back to an arbitrary CCR representation (11.59) over a Kähler space
Y. We will describe how to determine the largest sub-representation of (11.59)
unitarily equivalent to a multiple of a coherent representation over Y in Γs(Zcpl).

Definition 11.61 Introduce the equivalence relation on the set of Kähler anti-
involutions on Y and anti-linear functionals on the corresponding holomorphic
space Z:

(j1 , f1) ∼ (j2 , f2) ⇔ j1 − j2 ∈ B2(Y), f1 − f2 ∈ Zcpl.

Let [j, f ] denote the equivalence class of (j, f) w.r.t. this relation.
The [j, f ]-coherent sector of the representation Wπ is the subspace of H defined

as

Hπ
[f ] := Spancl{Wπ (y)Ψ : Ψ ∈ Kπ

f , y ∈ Y}.
The CCR representation Wπ is [j, f ]-coherent if Hπ

[f ] = H.

Theorem 11.62 (1) Hπ
[f ] is invariant under Wπ (y), y ∈ Y.

(2) There exists a unique unitary operator

Uπ
f : Kπ

f ⊗ Γs(Zcpl) → Hπ
[f ]

satisfying

Uπ
f Ψ⊗Wf (y)Ω = Wπ (y)Ψ, Ψ ∈ Kπ

f , y ∈ Y.

(3)

Uπ
f 1l⊗Wf (y) = Wπ (y)Uπ

f , y ∈ Y. (11.106)

(4) If there exists an operator U : Γs(Zcpl) → H such that UWf (y) = Wπ (y)U
for y ∈ Y, then Ran U ⊂ Hπ

[f ].

11.6 van Hove Hamiltonians

In this section we will study self-adjoint operators on bosonic Fock spaces of the
form

H =
ˆ

h(ξ)a∗(ξ)a(ξ)dξ +
ˆ

w(ξ)a(ξ)dξ +
ˆ

w(ξ)a∗(ξ)dξ + c

= dΓ(h) + a(w) + a∗(w) + c1l (11.107)

(first written in the “physicist’s notation” and then in the “mathematician’s
notation”). Note that this expression may have only a formal meaning. In some
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cases, the constant c is actually infinite. Following Schweber (1962), we call
(11.107) van Hove Hamiltonians. We will see that in the case of an infinite num-
ber of degrees of freedom these Hamiltonians have a surprisingly rich theory. We
will discuss both classical and quantum van Hove Hamiltonians. Their theories
are parallel to one another.

Throughout this section, Z is a Hilbert space and h is a positive operator on
Z with Kerh = {0}. (It is, however, easy to generalize the theory of van Hove
Hamiltonians to non-positive h.)

In addition to h, van Hove Hamiltonians depend on the choice of w. The choice
w ∈ Z turns out to be too narrow.

In order to explain the nature of w, it will be convenient to use the notation
introduced in Subsect. 2.3.4. In particular, we will consider the spaces (hα +
hβ )Z for 0 ≤ α ≤ β. Note that

w ∈ (hα + hβ )Z ⇔ 1l]0,1](h)w ∈ hαZ, 1l[1,+∞[(h)w ∈ hβZ. (11.108)

For w ∈ (hα + hβ )Z, the behavior of w near h = 0 (resp. h = +∞), i.e. at low
(resp. high) energies, is encoded by the exponent α (resp. β) and connected
with the so-called infrared (resp. ultraviolet ) problem. We will always assume
that

w ∈ (1l + h)Z. (11.109)

Note that if w ∈ (1l + h)Z, then (eith − 1l)h−1w ∈ Z for any t ∈ R.

11.6.1 Classical van Hove dynamics

Definition 11.63 The classical van Hove dynamics is defined for t ∈ R as

αt(z) := eithz + (eith − 1l)h−1w, z ∈ Z, t ∈ R.

It is easy to see that R � t �→ αt is a one-parameter group of affine transfor-
mations of Z preserving the scalar product.

Let us note the following property of the dynamics α. Let p1 , p2 be two comple-
mentary orthogonal projections commuting with h. For i = 1, 2, let Zi := Ran pi .
Thus we have a direct sum decomposition Z = Z1 ⊕Z2 .

Set hi := pih, treated as a self-adjoint operator on Zi . Let αi be the dynamics
on Zi defined by hi , wi . Then the dynamics α splits as

αt(z1 , z2) = (αt
1(z1), αt

2(z2)).

In particular, we can take

p1 := 1l[0,1](h), p2 := 1l]1,∞[(h). (11.110)

Then h1 is bounded and h2 ≥ 1l. In the case of h1 the ultraviolet problem is
absent, but the infrared problem can show up. In the case of h2 we have the
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opposite situation: the infrared problem is absent, but we can face the ultraviolet
problem.

Assume for a moment that w ∈ hZ. Then the van Hove dynamics is equivalent
to the free van Hove dynamics:

αt = τ−1 ◦ αt
0 ◦ τ, (11.111)

where

τ(z) := z + h−1w, αt
0(z) := eithz. (11.112)

11.6.2 Classical van Hove Hamiltonians

Z can be interpreted as a charged symplectic space with the form z1 ·ωz2 :=
i(z1 |z2). In the case of finite dimensions we know that for every charged sym-
plectic dynamics t �→ αt there exists a real function H on Z satisfying

d
dt

αt(z) = i∇zH(αt(z)). (11.113)

This function is called a Hamiltonian of α. It is unique up to an additive constant.
In the case of an infinite number of degrees of freedom the situation is more

complicated. It is even unclear how to give a general definition of a Hamiltonian
of an arbitrary charged symplectic dynamics. It may, for instance, turn out that
natural candidates for a Hamiltonian are defined only on a subset of Z, and
differentiable on a smaller subset.

The classical van Hove dynamics is an example of a charged symplectic dynam-
ics. If the dimension is finite, it is easy to see that its Hamiltonian is

H(z) = (z|hz) + (z|w) + (w|z) + c,

where c is an arbitrary real constant.
In infinite dimensions we will see that the van Hove dynamics possesses natural

Hamiltonians. Clearly, these Hamiltonians will be defined only up to an arbitrary
additive constant. One can ask whether it is possible to fix this constant in a
natural way. We will argue that there are two ways to do so, both under some
additional assumptions on w in addition to (11.109).

Definition 11.64 Assume

w ∈ (1l + h
1
2 )Z. (11.114)

Set DI := Dom h
1
2 , and

HI(z) := (z|hz) + (z|w) + (w|z), z ∈ DI .

We will say that HI is the classical van Hove Hamiltonian of the first kind.
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Definition 11.65 Assume

w ∈ h1/2Z + hZ. (11.115)

Set DII := {z ∈ Z : h1/2z + h−1/2w ∈ Z}, and

HII(z) := (h1/2z + h−1/2w|h1/2z + h−1/2w), z ∈ DII .

We will say that HII is the classical van Hove Hamiltonian of the second kind.

Clearly, both HI and HII are well defined iff

w ∈ h1/2Z = (1l + h
1
2 )Z ∩ (h

1
2 + h)Z,

and then

HII = HI + (w|h−1w).

Definition 11.66 Let w be a functional satisfying (11.109). We split the dynam-
ics α into α1 ⊕ α2 , the functional w into w1 ⊕ w2 as explained in Subsect. 11.6.1,
with the splitting given by (11.110). Then, by (11.108), w1 ∈ Z1 = (1l + h

1
2
1 )Z1

and w2 ∈ h2Z2 = (h
1
2
2 + h2)Z2 . So we can define the Hamiltonian H1,I for the

dynamics α1 on the domain D1,I, and the Hamiltonian H2,II for the dynamics
α2 on the domain D2,II.

Set D := D1,I ⊕D2,II. A function H on D will be called a classical van Hove
Hamiltonian if it is of the form

H(z1 , z2) := H1,I(z1) + H2,II(z2) + c, (z1 , z2) ∈ D,

where c ∈ R is arbitrary.

Note that, in general, there exist w ∈ (1l + h)Z that do not belong to
(1l + h1/2)Z ∪ (h1/2 + h)Z. For such w, the dynamics α is well defined but nei-
ther HI nor HII are well defined.

The following proposition says that van Hove Hamiltonians are in a certain
sense Hamiltonians of the van Hove dynamics. Recall that the Gâteaux differen-
tiability was defined in Def. 2.50.

Proposition 11.67 Let w ∈ (1l + h)Z. Let H be the corresponding van Hove
Hamiltonian with the domain D. Then

(1) The function H is Gâteaux differentiable at z ∈ Z iff hz + w belongs to Z,
and then

∇zH(z) = hz + w.

(2) The dynamics t �→ αt(z) is differentiable w.r.t. t iff hαt(z) + w ∈ Z, and
then

d
dt

αt(z) = i(hαt(z) + w),

which can be written in the form (11.113).
(3) αt leaves D invariant and H is constant along the trajectories.
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The following theorem discusses various special features of van Hove
Hamiltonians.

Theorem 11.68 Let H be a van Hove Hamiltonian.

(1) 0 belongs to D iff w ∈ (1l + h1/2)Z. If this is the case, then H = HI + H(0).
(2) H is bounded from below iff w ∈ (h1/2 + h)Z. If this is the case, then H =

HII + inf H.
(3) H has a minimum iff w ∈ hZ. This minimum is at −h−1w, and then

HII(z) = (τ(z)|hτ(z)) ,

where τ was defined in (11.112).

Proof We split the dynamics, the functional and the vectors in Z. Then the
proofs are immediate. �

Formally,

HI(z) = (z|hz) + (w|z) + (z|w),

HII(z) = (z|hz) + (w|z) + (z|w) + (w|h−1w).

11.6.3 Quantum van Hove dynamics

We again assume w ∈ (1l + h)Z. Many quantum objects are analogous to their
classical counterparts. Typically, in such cases we will use the same symbols in
the classical and quantum case, which should not lead to any confusion.

Definition 11.69 For B ∈ B
(
Γs(Z)

)
, we set

αt (B) := V (t)BV (t)∗,

where V (t) is a family of unitary operators on Γs(Z)

V (t) := Γ(eith) exp
(
a∗((1l− e−ith)h−1w

)− a
(
(1l− e−ith)h−1w

))
.

t �→ αt will be called a quantum van Hove dynamics.

It is easy to check that V (t) is strongly continuous and, for any t1 , t2 ∈ R,

V (t1)V (t2) = c(t1 , t2)V (t1 + t2),

for some c(t1 , t2) ∈ C, |c(t1 , t2)| = 1. Hence, α is a one-parameter group of
∗-automorphisms of B

(
Γs(Z)

)
, continuous in the strong operator topology.

In order to make the relationship with the classical dynamics clearer, one can
note that

αt (a∗(z)) =
(
(eith − 1l)h−1w|z)+ a∗(eithz), z ∈ Z.
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Let Z = Z1 ⊕Z2 , as in Subsect. 11.6.1. Then we have the identification
Γs(Z) = Γs(Z1)⊗ Γs(Z2). The dynamics α factorizes as

αt(B1 ⊗B2) = αt
1(B1)⊗ αt

2(B2), Bi ∈ B
(
Γs(Zi)

)
, i = 1, 2. (11.116)

11.6.4 Quantum van Hove Hamiltonians

Definition 11.70 We say that a self-adjoint operator H is a quantum van Hove
Hamiltonian for the dynamics t �→ αt if

αt(B) = eitH Be−itH . (11.117)

By Prop. 6.68, such a Hamiltonian always exists and is unique up to an additive
real constant.

Assume for a moment that w ∈ hZ. Then, up to a constant, van Hove Hamil-
tonians are unitarily equivalent to the free van Hove Hamiltonian:

H := UdΓ(h)U∗ + c1l,

where U is the “dressing operator”

U := exp
(−a∗(h−1w) + a(h−1w)

)
. (11.118)

In the general case, (11.118) can be ill defined, and the construction of van Hove
Hamiltonians is more complicated.

Definition 11.71 Let w ∈ (1l + h1/2)Z. Define

UI(t) := eiIm(h−1 w |ei t h h−1 w )−it(w |h−1 w )V (t).

We easily check that UI(t) is a one-parameter strongly continuous unitary group.
Therefore, by the Stone theorem there exists a unique self-adjoint operator HI

such that

UI(t) = eitH I .

We will say that HI is the quantum van Hove Hamiltonian of the first kind.

Definition 11.72 Let w ∈ (h1/2 + h)Z. Define

UII(t) := eiIm(h−1 w |ei t h h−1 w )V (t).

We easily check that UII(t) is a one-parameter strongly continuous unitary group.
Therefore, by the Stone theorem there exists a unique self-adjoint operator HII

such that

UII(t) = eitH I I .

We will say that HII is the quantum van Hove Hamiltonian of the second kind.
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Clearly, both HI and HII are well defined iff w ∈ h1/2Z, and then

HII = HI + (w|h−1w).

Theorem 11.73 Let H be a quantum van Hove Hamiltonian of a dynamics
t �→ αt . Then the following statements are true:

(1) Ω belongs to Dom |H|1/2 (the form domain of H) iff w ∈ (1l + h1/2)Z. Under
this condition H = HI + (Ω|HΩ).

(2) The operator H is bounded from below iff w ∈ (h1/2 + h)Z. Under this con-
dition H = HII + inf H, where inf H denotes the infimum of the spectrum of
H.

(3) The operator H has a ground state (inf H is an eigenvalue of H) iff w ∈ hZ.
Then, using the dressing operator defined in (11.118), we can write

HII = UdΓ(h)U∗. (11.119)

Proof We write α as α1 ⊗ α2 , w as w1 ⊕ w2 , with w1 ∈ Z1 , w2 ∈ h2Z2 ; see
(11.116).

The operator dΓ(h1) + a∗(w1) + a(w1) is essentially self-adjoint on DomN1 ,
by Nelson’s commutator theorem with the comparison operator N1 ; see Thm.
2.74 (1). We set

H1,I :=
(
dΓ(h1) + a∗(w1) + a(w1)

)cl
.

Clearly, H1,I is a Hamiltonian of α1 .
Next we set

H2,II := U2dΓ(h2)U∗
2 , U2 := exp

(−a∗(h−1
2 w2) + a(h−1

2 w2)
)
,

which is a Hamiltonian of αt
2 . Hence, any Hamiltonian of α is of the form

H = H1,I ⊗ 1l + 1l⊗H2,II + c1l.

We drop the subscripts I, II in the rest of the proof. Since Ω1 ∈ Dom H1 we see
that

Ω = Ω1 ⊗ Ω2 ∈ Dom |H| 12 ⇔ Ω2 ∈ Dom H
1
2
2

⇔ U∗
2 Ω ∈ Dom dΓ(h2)

1
2 ⇔ w2 ∈ h

1
2
2 Z2 .

This proves (1).
Let us now prove (2). Since H2 ≥ 0, H is bounded below iff H1 is bounded

below. Since Dom N1 is a core for H1 , we have

inf specH1 = inf
Ψ1 ∈DomN1 , ‖Ψ1 ‖=1

(Ψ1 |H1Ψ1).
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Set wε
1 = 1l[ε,1](h)w1 , Uε = exp(−a∗(h−1

1 wε
1) + a(h−1

1 wε
1)). Then

(Ψ1 |H1Ψ1) = lim
ε→0

(
Ψ1 |
(
dΓ(h1) + a∗(wε

1) + a(wε
1)
)
Ψ1

)
= lim

ε→0

((
U∗

ε Ψ1 |dΓ(h1)U∗
ε Ψ1
)− (wε

1 |h−1
1 wε

1
)‖Ψ1‖2

)
.

It follows that if w1 ∈ h
1
2
1 Z1 , then H1 ≥ −(w1 |h−1

1 w1).
Conversely, assume that H1 is bounded below. Then, for

Ωz1 = exp(a∗(z1)− a(z1))Ω1 ,

we have, by Subsect. 9.1.4,

(Ωz1 |H1Ωz1 ) = (z1 |h1z1) + (w1 |z1) + (z1 |w1).

By Thm. 11.68 (2), this implies that w1 ∈ h
1
2
1 Z1 . This completes the proof of (2).

To prove (3), we note that H2 has the ground state U2Ω2. Hence, H has
a ground state iff H1 has one. If w1 ∈ h1Z1 , then H1 = U1dΓ(h1)U∗

1 for U1 =
exp
(−a∗(h−1

1 w1) + a(h−1
1 )w1

)
, hence it has a ground state.

Assume now that H1 has a ground state Ψ. We again split Z1 into Zε
1 ⊕Zε⊥

1 ,
for Zε

1 = 1l[0,ε](h)Z1 . Then H1 splits into Hε
1 ⊗ 1l + 1l⊗Hε⊥

1 , w1 into wε
1 ⊕ wε⊥

1
and Ψ into Ψε ⊗Ψε⊥. Since wε⊥

1 ∈ h−1
1 Zε⊥

1 , we have

Ψε⊥ = exp
(−a∗(h−1

1 wε⊥
1 )− a(h−1

1 wε⊥
1 )
)
Ω,

and therefore

a(z)Ψ = (z|h−1w1)Ψ, z ∈ Zε,⊥
1 .

We apply Thm. 11.58 with Z =
⋃

ε>0
Zε⊥

1 , so that Zcpl = Z1 , and we obtain that

w1 ∈ h1Z1 . �

Formally,

HI = dΓ(h) + a∗(w) + a(w),

HII = dΓ(h) + a∗(w) + a(w) + (w|h−1w)1l.

11.6.5 Nine classes of van Hove Hamiltonians

We can sum up the theory of van Hove Hamiltonians by dividing them into three
classes based on the infrared behavior and three classes based on the ultraviolet
behavior. Altogether we obtain 3× 3 = 9 classes.

Infrared regularity

1.
(
w|1l[0,1](h)h−2w

)
< ∞.

In the classical case, H has a minimum; and in the quantum case, H has a ground
state.
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2.
(
w|1l[0,1](h)h−1w

)
< ∞,

(
w|1l[0,1](h)h−2w

)
= ∞ .

H is bounded from below and HII is well defined, but in the classical case H has
no minimum, and in the quantum case H has no ground state.

3.
(
w|1l[0,1](h)w

)
<∞,

(
w|1l[0,1](h)h−1w

)
=∞.

H is unbounded from below; HII is ill defined.

Ultraviolet regularity

1.
(
w|1l[1,∞[(h)w

)
< ∞.

In the classical case the perturbation is bounded; in the quantum case the per-
turbation is a closable operator.

2.
(
w|1l[1,∞[(h)h−1w

)
< ∞,

(
w|1l[1,∞[(h)w

)
= ∞.

HI is well defined, but in the classical case the perturbation is not bounded, and
in the quantum case the perturbation is not a closable operator.

3.
(
w|1l[1,∞](h)h−2w

)
< ∞,

(
w|1l[1,∞](h)h−1w

)
=∞.

The constant c in (11.107) is infinite; HI is ill defined.

11.7 Notes

The existence of many inequivalent representations of CCR was noticed in the
1950s, e.g. by Segal (1963) and G̊arding–Wightman (1954). Shale’s theorem was
first proven in Shale (1962). Among early works describing implementations of
symplectic transformations on Fock spaces let us mention the books by Friedrichs
(1953) and by Berezin (1966). They give concrete formulas for the implemen-
tation of Bogoliubov transformations in bosonic Fock spaces. Related problems
were discussed, often independently, by other researchers, such as Ruijsenaars
(1976, 1978) and Segal (1959, 1963).

Infinite-dimensional analogs of the metaplectic representation seem to have
been first noted by Lundberg (1976).

The book by Neretin (1996) and the review article by Varilly–Gracia-Bondia
(1992) describe the infinite-dimensional metaplectic group.

The Fock sector of a CCR representation is discussed e.g. in Bratteli–Robinson
(1996). It is, in particular, useful in the context of scattering theory; see Chap.
22 and Dereziński–Gérard (1999, 2000, 2004).

Coherent representations appeared already in the book by Friedrichs (1953),
and were used by Roepstorff (1970). Our presentation follows Dereziński–Gérard
(2004).

The ultraviolet problem of van Hove Hamiltonians is discussed e.g. in the
books of Berezin (1966), Sect. III.7.4, and of Schweber (1962), following earlier
papers by van Hove (1952), Edwards–Peierls (1954) and Tomonaga (1946). The
name “van Hove model” is used in Schweber (1962).

The understanding of the infrared problem of van Hove Hamiltonians can be
traced back to the papers by Bloch–Nordsieck (1937) and by Kibble (1968).

Our presentation of the theory of van Hove Hamiltonians follows Dereziński
(2003).
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