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A Lower Bound on the Number of Cyclic
Function Fields With Class Number
Divisible by n

Allison M. Pacelli

Abstract. In this paper, we find a lower bound on the number of cyclic function fields of prime degree l

whose class numbers are divisible by a given integer n. This generalizes a previous result of D. Cardon

and R. Murty which gives a lower bound on the number of quadratic function fields with class numbers

divisible by n.

1 Introduction

The divisibility of the class number is an important problem for both number fields

and function fields. In 1801, Gauss proved [8] that the class number of a quadratic

number field is divisible by the exact power 2t , where t is the number of primes

dividing the discriminant of the field. In the mid-1800’s, Kummer [9] related the

divisibility of the class number of a cyclotomic field to a special case of Fermat’s Last

Theorem. In particular, he showed that there are no non-trivial solutions in integers

to the equation xp + y p
= zp for regular primes p, that is, those primes p not dividing

the class number of K = Q(ζp), where ζp is a primitive p-th root of unity.

In the twentieth century, much progress was made on the question of divisibil-

ity of class numbers. For example, in 1922 Nagell [12] proved that for any integer

n, infinitely many imaginary quadratic number fields have class number divisible by

n. The analogous result for real quadratic number fields was proven in 1969 by Ya-

mamoto [15] and for real quadratic function fields in 1992 by Friesen [7]. In 1983,

Cohen and Lenstra [4] conjectured something stronger, namely that for any integer

n, as x → ∞, a positive fraction of quadratic number fields with discriminant < x

should have class number divisible by n. Their argument has been generalized to

number fields of any degree [2] and to function fields [6] as well, but the conjecture

has not been proven yet in any of these cases.

In 1999, however, Murty [11] was able to construct a lower bound on the number

of imaginary quadratic number fields with class number divisible by n; namely, he

showed that if n > 2 is an integer, then there are more than a positive constant times

x
1
2

+ 1
n imaginary quadratic number fields with discriminant ≤ x and class number

divisible by n (this bound has been improved by K. Soundararajan [14], Yu [16] and

Luca [10] for the case n even, and Chakraborty and Murty [3] and Byeon and Koh

[1] for the case n = 3). Then in 2001, Murty and Cardon [2] proved the analogous

result for function fields to show that if q is a power of an odd prime, and n is a fixed
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integer > 2, then there exist more than a positive constant times qx( 1
2

+ 1
n

) quadratic

extensions Fq(T,
√

D) of Fq(T) with deg(D) ≤ x and class number divisible by n. In

this paper, we extend the latter result to cyclic extensions Fq(T, l
√

D) of Fq(T) where l

is a prime dividing q − 1.

Let q be a power of an odd prime, and let Fq be the field with q elements. Fix a

transcendental element T over Fq so that Fq(T) is the rational function field. If K is

any extension of Fq(T), then denote by OK the integral closure of Fq[T] in K. We

write ClK to denote the ideal class group of OK , and hK to denote the class number.

We use the notation f (x) ≫ g(x) to mean that there exists a positive constant c with

f (x) > cg(x). The main result is as follows:

Theorem 1 Let l be a prime dividing q− 1. If n is a fixed positive integer that satisfies

(i) n > l2 − l,

(ii) n has no prime divisors less than l, and

(iii) 1
l
− 1

n
> log 2

log q
,

then there are ≫ qx( 1
l
+ 1

n
) cyclic extensions K = Fq(T)( l

√
D) of Fq(T) with deg(D) ≤ x

and hK divisible by n.

Notice that when l = 2, the first condition states that n > 2 as in [2]. The second

condition is trivial in that case, and the third condition of the theorem implies that

q > 2l, which also reduces to the condition q ≥ 5 in [2]. If q > 2l, but n is an

integer that fails to satisfy one of the three conditions in Theorem 1, it is still possible

to compute a lower bound on the number of cyclic extensions Fq(T, l
√

D) of Fq(T)

with class number divisible by n; the new bound is qx(1/l + 1/nt)for some t > 1.

As in [2], we show first that if f and g are monic elements of Fq[T], −a ∈ F×
q is

not an l-th power, deg( f n) > deg(g l), and D = g l − a f n is l-th power free, then the

class group of Fq(T, l
√

D) contains an element of order n. We then give a lower bound,

using sieve methods, on the number of f and g for which D is l-th power free, and

estimate the number of repeated values of D as f and g vary.

2 Constructing an Element of Order n in the Class Group

Lemma 1 Let n be a positive integer with n > l2 − l, and suppose that l | (q − 1).

Assume that f , g ∈ Fq[T] are monic, −a ∈ F×
q is not an l-th power, deg( f n) > deg(g l),

and D = g l − a f n is l-th power free. Then the class group of K = Fq(T, l
√

D) contains

an element of order n.

Proof Notice that f and g are relatively prime, because any common factor would

also divide D to the l-th power. Let ζl be a primitive l-th root of unity. The ideal (a f n)

factors as follows:

(1) ( f n) = (a f n) = (g l − D) = (g − l
√

D)(g − ζl
l
√

D) · · · (g − ζ l−1
l

l
√

D).

We claim that the ideals on the right-hand side of (1) are pairwise relatively prime.

To see that this is true, suppose that I is a prime ideal dividing both (g − ζ
j

l
l
√

D) and
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(g − ζ i
l

l
√

D) for some 0 ≤ i < j ≤ l − 1. Then

l
√

D(ζ i
l − ζ

j
l ) = (g − ζ

j
l

l
√

D) − (g − ζ i
l

l
√

D) ∈ I,

g(ζ
j−i

l − 1) = ζ
j−i

l (g − ζ i
l

l
√

D) − (g − ζ
j

l
l
√

D) ∈ I.

Since ζ i
l − ζ

j
l and ζ

j−i
l − 1 are nonzero constants, it follows that g, l

√
D ∈ I. But this

contradicts the fact that f and g are relatively prime, so the ideals on the right-hand

side of (1) must, in fact, be pairwise relatively prime as claimed.

As a result, there exist ideals a = a0, a1, . . . , al−1 with an
i = (g − ζ i

l
l
√

D). We shall

show that a has order n in the class group. Since all of the ai ’s are conjugate, they

have equal norm. Let |b| = |OK/b| denote the norm of b ⊂ OK , and let N(v) denote

the norm from K down to Fq(T) of an element v in K. By (1), then,

|an|l = |( f n)| = qnl deg( f ),

and so, |a| = qdeg( f ). If the order of a is not n, then ar is principal for some r < n.

Let r be the order of a so that r | n.

For any h ∈ Fq[T], let {h} denote the l-th power free part of h and [h] an l-th root

of h
{h} . Then h = {h}[h]l. By [13, Theorem 1.2], an integral basis for OK consists of

{

1,
l
√

D

[D]
,

l
√

D
2

[D2]
, . . . ,

l
√

D
l−1

[Dl−1]

}

.

Let v ∈ OK be such that ar
= (v), and write

v =

l−1
∑

i=0

vi

l
√

Di

[Di]

for some vi ∈ Fq[T].

Now since the leading coefficient−a of D is not an l-th power, the prime at infinity

is either totally ramified or inert in K. Let k∞ denote the completion of Fq(T) at ∞.

It follows that the only units in K are the roots of unity. Because (v)n/r
= an, it

follows that ωvn/r
= g − l

√
D for some root of unity ω. This implies that v /∈ Fq(T)

since l
√

D /∈ Fq(T). As a result, we can choose i, 1 ≤ i ≤ l − 1, such that vi 6= 0. Let

σ j(
l
√

D) = ζ
j

l
l
√

D, 0 ≤ j ≤ l − 1, be the l elements of Gal(K/Fq(T)), and notice that

N(v) =

l−1
∏

j=0

(σ j(v)).

We claim that deg(N(v)) ≥ 1
l−1

deg(D). Assuming this for a moment, the lemma is

proved by noticing that

qr deg( f )
= |a|r = |(v)| = |N(v)| = qdeg(N(v)) ≥ q

deg(D)
l−1

= q
deg(gl

−a f n)
l−1

= q
n deg( f )

l−1 ,
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which implies that

n

r
≤ l − 1.

But n
r

is an integer dividing n, so by hypothesis we must have that n = r, as desired.

To prove the claim above, we first show that

l−1
∑

j=0

ζ
− ji
l σ j(v) =

lvi
l
√

D
i

[Di]
.

To see this, note that

(2)

l−1
∑

j=0

ζ
jk− ji

l = 1 + ζk−i
l + (ζk−i

l )2 + (ζk−i
l )3 + · · · + (ζk−i

l )l−1

=

{

l if k = i,

0 otherwise.

It follows that

l−1
∑

j=0

ζ
− ji
l σ j(v) =

l−1
∑

j=0

ζ
− ji
l σ j

( l−1
∑

k=0

vk

l
√

Dk

[Dk]

)

=

l−1
∑

j=0

ζ
− ji
l

l−1
∑

k=0

vk

[Dk]
(ζ

j
l

l
√

D)k

=

l−1
∑

j=0

l−1
∑

k=0

vk

[Dk]
ζ

jk− ji
l

l
√

D
k

=

l−1
∑

k=0

( l−1
∑

j=0

ζ
jk− ji

l

)

vk

[Dk]

l
√

D
k

=

lvi
l
√

D
i

[Di]
.

Let p∞ denote the sole prime in K lying above ∞. For all j, 0 ≤ j ≤ l − 1,

ordp∞
(v) = ordp∞

(σ j(v)) = ordp∞
(ζ

− ji
l σ j(v)).
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Then

ordp∞
(v) = min{ordp∞

(ζ
− ji
l σ j(v))}0≤ j≤l−1

≤ ordp∞

( l−1
∑

j=0

ζ
− ji
l σ j(v)

)

= ordp∞

( lvi
l
√

D
i

[Di]

)

= ordp∞
(vi) + ordp∞

(
l
√

D
i
) − ordp∞

([Di]).

Since vi ∈ Fq[T], we know ordp∞
(vi) < 0; therefore

(3) ordp∞
(v) < ordp∞

(
l
√

D
i
) − ordp∞

([Di]).

Since p∞ is the only prime lying over∞, the same inequality holds for each conjugate

of v. Summing (3) over the conjugates of v gives that

(4) ordp∞
(N(v)) < ordp∞

(Di) − ordp∞
([Di]l).

Notice that because N(v), Di , and [Di]l are all in Fq[T], and p∞ is the only prime

above ∞, we can replace p∞ by ∞ in (4) to get

ord∞(N(v)) < ord∞

( Di

[Di]l

)

= ord∞

(

{Di}
)

.

Therefore deg(N(v)) > deg({Di}). To finish the proof of the claim, we will show

that deg({Di}) ≥ deg(D)
l−1

. Define

rad(D) =

∏

p|D
p monic,irred

p.

First, we claim that rad(D) divides {Di} for 1 ≤ i ≤ l − 1. To see that this is

true, observe that if p | D, then ord p(D) < l since D is l-th power free. Then

i ord p(D) is not divisible by l, which implies that p divides {Di}. This is true for all

p dividing D and therefore proves the claim. Finally, notice that since D is l-th power

free, D | (rad(D))l−1. Then

deg(D) ≤ (l − 1) deg(rad(D)) ≤ (l − 1) deg({Di}).

This completes the proof.
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3 When Is D = g l − a f n l-th power Free?

We need to find a lower bound on the number of D satisfying the hypotheses of

Lemma 1. We proceed as in [2]. First, let k = deg( f ), and set

j =

{

⌊ nk
l
⌋ if l ∤ nk,

nk
l
− 1 if l | nk.

We will consider only those polynomials g with deg(g) = j, so that deg( f n) >
deg(g l). The expression

∑

f will always be used to denote the sum over all monic

f of fixed degree k.

For h ∈ Fq[T], define

s(h) =

{

1 if h is l-th power free,

0 otherwise,

sz(h) =

{

1 if dl ∤ h whenever 1 ≤ deg(d) ≤ z,

0 otherwise.

We will use the following lemma with an appropriate choice of z, dependent on k, to

show that for large k, the number of distinct l-th power free values of D of degree nk

is approximately

∑

f ,g

sz(g l − a f n) ∼
∑

f ,g

s(g l − a f n) ≫ q j+k.

Lemma 2

∑

f ,g

sz(g l − a f n) ≥
∑

f ,g

s(g l − a f n) ≥
∑

f ,g

sz(g l − a f n) −
∑

f ,g,p
deg(p)>z

pl|g l−a f n

1.

Proof For the first inequality, notice that for fixed f and g, if g l − a f n is l-th power

free, then sz(g l − a f n) = 1 = s(g l − a f n). If g l − a f n is not l-th power free, then

s(g l − a f n) = 0 ≤ sz(g l − a f n).

The second inequality also follows from considering, for fixed f and g, the two

cases in which g l − a f n is or is not l-th power free. If g l − a f n is l-th power free, then

s(g l − a f n) = 1 = sz(g l − a f n) and
∑

deg(p)>z,g l−a f n≡0 (mod pl) 1 ≥ 0, so

s(g l − a f n) ≥ sz(g l − a f n) −
∑

deg(p)>z

g l−a f n≡0 (mod pl)

1.

If g l − a f n is not l-th power free, write g l − a f n
= pe1

1 · · · per
r per+1

r+1 · · · pet
t , where

ei ≥ l for 1 ≤ i ≤ r and ei < l for r + 1 ≤ i ≤ t . If sz(g l − a f n) = 0, then

s(g l − a f n) = 0 ≥ −
∑

deg(p)>z

g l−a f n≡0 (mod pl)

1 = sz(g l − a f n) −
∑

deg(p)>z

g l−a f n≡0 (mod pl)

1.
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If sz(g l − a f n) = 1, then deg(pi) > z for some i ≤ r, so

∑

deg(p)>z

g l−a f n≡0 (mod pl)

1 ≥ 1,

which implies

s(g l − a f n) = 0 ≥ sz(g l − a f n) −
∑

deg(p)>z

g l−a f n≡0 (mod pl)

1.

The following lemma will also be important later on.

Lemma 3 If π(u) is the number of monic, irreducible polynomials in Fq[T] of degree

u > 0, then π(u) ≤ qu

u
.

Proof Since qu
=

∑

c|u cπ(c) =

∑

c|u,c<u cπ(c) + uπ(u) ≥ uπ(u), the result follows.

For fixed f , d ∈ Fq[T], define

ρ f (d) = #{g ∈ Fq[T]/dFq[T] | g l − a f n ≡ 0 (modd)}.

Lemma 4 For d, d1, d2, and p ∈ Fq[T], with d square free and p irreducible, we have

(i) ρ f (d1d2) = ρ f (d1)ρ f (d2) if d1 and d2 are relatively prime;

(ii) ρ f (pl) = q(l−1) deg(p) if p | f ;

(iii) ρ f (pl) ≤ l if p ∤ f ;

(iv) ρ f (dl) ≤ lν(d)q(l−1) deg( f ), where ν(d) is the number of distinct non-constant,

monic, irreducible polynomials dividing d.

Proof The first statement follows from the Chinese remainder theorem.

For the second statement, let

S = {g ∈ Fq[T]/pl
Fq[T] | g l − a f n ≡ 0 (mod pl)}.

Since p is irreducible, p | f , and n ≥ l, then g ∈ S if and only if p | g. So ρ f (pl) =

#S = q(l−1) deg(p).

Next, suppose that p ∤ f , and g l − a f n ≡ 0 (modpl). Let gi be such that g ≡
gi (mod pi) for 1 ≤ i ≤ l − 1. Then g l

i − a f n ≡ 0 (mod pi). If i = 1, the congruence

has at most l solutions. It is a standard fact that each of these solutions modulo p lifts

uniquely to a solution mod pl since p does not divide f or g.
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Finally, for the fourth statement, if d is square free, then

ρ f (dl) =

∏

p|d
p| f

ρ f (pl)
∏

p|d
p∤ f

ρ f (pl)

≤
∏

p|d
p| f

q(l−1) deg(p)
∏

p|d
p∤ f

l

≤ q(l−1) deg( f )lν(d).

For the rest of the paper, the expression
∏

p will denote the product over monic,

irreducible polynomials p. Define

N f ,z( j) =

∑

deg(g)= j

sz(g l − a f n) and P(z) =

∏

deg(p)≤z

p.

Lemma 5 Given any ǫ > 0, we can choose κ so that if z = κ ln(k), then

N f ,z( j) = q j
∏

deg(p)≤z

(1 − ρ f (pl)q− deg(pl)) + O(q(l−1+ǫ)k).

Proof First, observe that

sz(g l − a f n) =

∑

d monic
dl|(g l−a f n,P(z)l)

µ(d).

To see this, notice that if g l−a f n is l-th power free, then sz(g l−a f n) = 1 and µ(1) = 1

is the only term in the sum. Also, if z < deg(pi) for all pi with pl
i dividing g l − a f n,

then sz(g l − a f n) = 1, and again, µ(1) = 1 is the only term in the sum. Otherwise,

sz(g l − a f n) = 0. Let r be the number of distinct primes that both divide g l − a f n to

a power ≥ l and have degree at most z. Then

∑

d monic
dl|(g l−a f n,P(z)l)

µ(d) =

r
∑

i=0

(

r

i

)

(−1)i
= 0.

Thus

N f ,z( j) =

∑

deg(g)= j

∑

d monic
dl|(g l−a f n,P(z)l)

µ(d)

=

∑

d monic
d|P(z)

µ(d)
∑

deg(g)= j

g l−a f n≡0 (mod dl)

1.
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There are two possibilities for the sum on the right. If j ≥ deg(dl), then
∑

deg(g)= j

g l−a f n≡0 (mod dl)

1 = ρ f (dl) · #{g | deg(g) = j and g ≡ g0 (mod dl)},

where g0 is a given polynomial mod dl with g l
0 − a f n ≡ 0 (mod dl). If g = g0 + sdl,

then deg(s) = j − deg(dl), so there are q j−deg(dl) such s that are monic. Thus
∑

deg(g)= j

g l−agn≡0 (mod dl)

1 = ρ f (dl)q j−deg(dl).

If, on the other hand, j < deg(dl), then
∑

deg(g)= j,g l−a f n≡0 (mod dl) 1 ≤ ρ f (dl). There-

fore, putting the two cases together yields

N f ,z( j) =

∑

d|P(z)

µ(d)
[

ρ f (dl)q j−deg(dl) + O(ρ f (dl))
]

= q j
∑

d|P(z)

µ(d)ρ f (dl)q− deg(dl) +
∑

d|P(z)

O(ρ f (dl))

= q j
∏

deg(p)≤z

(1 − ρ f (pl)q− deg(pl)) + O(ρ f (dl)),

where the product is over all monic p. From Lemma 4, we have
∑

d|P(z)

ρ f (dl) ≤
∑

d|P(z)

lν(d)q(l−1) deg( f )
= q(l−1)k

∑

d|P(z)

lν(d)
= q(l−1)k

∏

deg(p)≤z

(l + 1)

≤ q(l−1)k(l + 1)qz

.

Choose κ < 1
ln(q)

. Then for any ǫ > 0, and for sufficiently large k,

kκ ln(q) ≪ ǫk
ln(q)

ln(l + 1)

ekκ ln(q) ln(l+1) ≪ eǫk ln(q)

(l + 1)e(ln(k))κ ln(q) ≪ qǫk

(l + 1)qκ ln(k) ≪ qǫk

(l + 1)qz ≪ qǫk

Therefore, for sufficiently large k, we have

N f ,z( j) = q j
∏

deg(p)≤z

(1 − ρ f (pl)q− deg(pl)) + O(q(l−1+ǫ)k),

as desired.
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Lemma 6
∑

f ,g

sz(g l − a f n) =

∑

deg( f )=k

N f ,z( j) ≫ q j+k.

Proof Notice that the equality above follows from the definitions of sz and N f ,z. We

also have that

∏

deg(p)≤z

(1 − ρ f (pl)q− deg(pl)) =

∏

p| f
deg(p)≤z

(1 − q(l−1) deg(p)q−l deg(p))

×
∏

(p, f )=1
deg(p)≤z

(1 − ρ f (pl)q− deg(pl))

≥
∏

p| f
deg(p)≤z

(1 − q− deg(p))
∏

(p, f )=1
deg(p)≤z

(1 − lq− deg(pl))

≥
∏

p| f
deg(p)≤z

(1 − q− deg(p))
∏

all p

(1 − lq− deg(pl))

≫
∏

p| f
deg(p)≤z

(1 − q− deg(p))

≥
∏

p| f

(1 − q− deg(p))

=

∑

d| f

µ(d)q− deg(d).

Summing over f , we see that

∑

deg( f )=k

∏

deg(p)≤z

(1 − ρ f (pl)q− deg(pl)) ≫
∑

deg( f )=k

∑

d|m

µ(d)q− deg(d)

=

∑

deg(d)≤k

µ(d)q− deg(d)qk−deg(d)

= qk
∑

deg(d)≤k

µ(d)q−2 deg(d)

= qk

k
∑

i=0

(

∑

deg(d)=i

µ(d)q−2i
)

= qk(1 − q−1)

≫ qk.
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Thus by Lemma 5,

∑

deg( f )=k

N f ,z( j) =

∑

deg( f )=k

[

q j
∏

deg(p)≤z

(1 − ρ f (pl)q− deg(pl)) + O(q(l−1+ǫ)k)
]

≫ q j+k + O
(

∑

deg( f )=k

q(l−1+ǫ)k
)

= q j+k + O(q(l+ǫ)k).

It remains to show that q j+k + O(q(l+ǫ)k) ≫ q j+k.

For ǫ < 1
l
− 1

k
, we have k( 1

l
− ǫ) > 1. Then

k
(

l − 1 +
1

l

)

− 1 > k(l + ǫ − 1), so
k

l
(l2 − l + 1) − 1 > k(l + ǫ − 1).

But we also know that

j ≥ nk

l
− 1 ≥ k

l
(l2 − l + 1) − 1 > k(l + ǫ − 1).

Thus

q j+k + O(q(l+ǫ)k) = q j+k
[

1 + O(q(l+ǫ−1)k− j))
]

= q j+k
[

1 + O(q(l+ǫ−1− j/k)k)
]

≫ q j+k.

Lemma 7
∑

deg( f )=k

ν( f ) ≪ ln(k)qk.

Proof First notice that
∑

deg( f )=k ν( f ) ≤
∑

deg(p)≤k qk−deg(p), since for a fixed p | f ,

the contribution of p to the sum is the number of monic polynomials r with f = rp.

But we also have

∑

deg(p)≤k

qk−deg(p) ≤ qk
∑

u≤k

q−uπ(u) ≤ qk
∑

u≤k

1

u
≪ qk ln(k),

which completes the proof.

Lemma 8
∑

f ,g,p
deg(p)>z

g l−a f n≡0 (mod pl)

1 = o(q j+k).
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Proof Let

M f ,p( j) =

∑

deg(g)= j

g l−a f n≡0 (mod pl)

1,

so that the sum in question is
∑

f

∑

deg(p)>z M f ,p( j). If j ≥ deg(pl), then M f ,p( j) =

ρ f (pl)q j−deg(pl), while if j < deg(pl), then M f ,p( j) ≤ ρ f (pl). With Lemma 4, this

gives

M f ,p( j) ≤











l(q j−deg(pl) + 1) if p ∤ f ,

q j−deg(p) if p | f and j ≥ deg(pl),

q(l−1) deg(p) if p | f and j < deg(pl).

Summing over irreducible p gives that

∑

z<deg(p)≤ j

M f ,p( j) ≤
∑

z<deg(p)≤ j
p∤ f

l (q j−deg(pl) + 1) +
∑

z<deg(p)≤ j
p| f

deg(p)≤ j/l

q j−deg(p)

+
∑

z<deg(p)≤ j
p| f

deg(p)> j/l

q(l−1) deg(p).

We consider each of the three sums above separately. For the first, we have

∑

z<deg(p)≤ j
p∤ f

l (q j−deg(pl) + 1) ≪
j

∑

i>z

qi

i
(q j−li + 1)

≪ q j−lzqz

z

(

1 +
1

q
+

1

q2
+ · · ·

)

+
q j

j

(

1 +
1

q
+

1

q2
+ · · ·

)

≪ q j−lzqz

z
+

q j

j
.

For the second sum, we have
∑

z<deg(p)≤ j
p| f

v(p)≤ j/l

q j−deg(p) ≤ ν( f )q j−z.

Finally, for the third sum, suppose p1, . . . , pl are distinct primes dividing f with

deg(pi) > j/l. Then deg(p1) + · · · + deg(pl) ≤ deg( f ) = k. But deg(p1) + · · · +

deg(pl) > l( j/l) = j > k. So at most l − 1 distinct primes occur in the sum, each

with degree at most k. Thus

∑

z<deg(p)≤ j
p| f

deg(p)> j/l

q(l−1) deg(p) ≤ (l − 1)q(l−1)k.
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Putting this together, we now have

(5)
∑

z<deg(p)≤ j

M f ,p( j) ≪ q j−lzqz

z
+

q j

j
+ ν( f )q j−z + q(l−1)k.

Because n > l2 − l, it follows that q(l−1)k− j → 0 as j, k → ∞. Therefore, summing

(3) over f yields the desired result:

∑

f

∑

deg(p)>z

M f ,p( j) ≪ qkq j−lzqz

z
+

q j+k

j
+ qlk + q j−z

∑

f

ν( f )

≪ q j+k+(1−l)z

z
+

q j+k

j
+ qlk + q j−zqk ln(k)

= q j+k
( 1

zq(l−1)z
+

1

j
+ q(l−1)k− j +

ln(k)

qz

)

= o(q j+k)

4 Duplication

We have already shown that there are ≫ q j+k l-th power free values of g l − a f n as f

and g vary. The next lemma examines how many values are duplicated.

Lemma 9 The number of elements of Fq(T) of the form g l − a f n with deg(g) = j

and deg( f ) = k that are representable in more than one way is o(q j+k).

Proof Let S be the collection of pairs ( f , g) of monic polynomials with deg( f ) = k,

deg(g) = j, and g l − a f n representable in more than one way. If f1, f2 are fixed,

distinct polynomials such that g l
1 − a f n

1 = g l
2 − a f n

2 for some g1 and g2, then

a( f n
1 − f n

2 ) = g l
1 − g l

2 = (g1 − g2)(g1 − ζlg2) · · · (g1 − ζ l−1
l g2).

The choices for g1 and g2 are therefore determined by the divisors of a( f n
1 − f n

2 ). Since

deg( f n
1 − f n

2 ) < nk, then a( f n
1 − f n

2 ) is divisible by at most nk − 1 distinct, monic,

linear factors, in which case the number of divisors is

(q − 1)

nk−1
∑

v=0

(

nk − 1

v

)

= (q − 1)2nk−1.

This is a very rough estimate of an upper bound on the number of divisors of

a( f n
1 − f n

2 ) when k is large relative to q. With qk choices for f1, qk choices for f2,

and at most (q − 1)2nk−1 choices for g1 and g2, it follows that #S = O(q2k2nk).
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To see that #S = o(q j+k), we just need to show that qk− j2nk → 0 as k → ∞ since

this would imply

q2k2nk
= q j+k(qk− j2nk) = o(q j+k).

Now 1
l
− 1

n
> log 2

log q
by assumption, so (log q)( 1

l
− 1

n
) > log 2. It follows that q

n
l
−1 > 2n.

Then
2n

q
n
l
−1

< 1,

and so,
( 2n

q
n
l
−1

) k

→ 0

as k → ∞. The result follows because

qk− j2nk ≤ qk+1− nk
l 2nk

= q
( 2n

q
n
l
−1

) k

→ 0.

5 Conclusion

We have shown that there are ≫ q j+k distinct values of D = g l − a f n such that

Fq(T, l
√

D) has an element of order n in its class group. Since j = ⌊ nk
l
⌋ or j =

nk
l
− 1,

then there are ≫ qnk( 1
l
+ 1

n
) distinct values of D with an element of order n in the class

group of Fq(T, l
√

D). Thus, there are ≫ qx( 1
l
+ 1

n
) distinct function fields Fq(T, l

√
D)

with deg(D) ≤ x and class number divisible by n.

Note that the third condition on n, q, and l in Theorem 1 is not that restrictive. If

q is large enough, then it requires little more than n > l2 − l. Consider the case of

l = 3. If q = 9, then the theorem gives a bound on the number of cubic function

fields with class number divisible by an odd integer n with n ≥ 55. If q = 16, then n

can be any odd integer with n ≥ 13. If q = 64, then n can be any odd integer with

n ≥ 7. Also note that if the class group of a function field K contains an element of

order n, then it also contains elements of order r for each r dividing n. This expands

further the set of n to which the theorem applies.

If n < l2 − l so that Theorem 1 does not apply, it is still possible to determine a

lower bound on the number of cyclic function fields of the form K = Fq(T, l
√

D) with

class number divisible by n. The following result holds.

Theorem 2 Let q be a power of an odd prime and l a prime dividing q − 1. Assume

that q > 2l. Let n be an integer with prime factorization n = pe1

1 · · · pes
s . If mi is the

smallest integer with mi ≥ log(l−1)
log(pi )

, then set t = pm1

1 . . . pms
s . If nt fails to satisfy one

of the following conditions, then replace t by a suitable multiple of pm1

1 · · · pms
s so that it

does satisfy the conditions:

(i) nt > l2 − l,

(ii) 1
l
− 1

nt
> log 2

log q
.

Then there are ≫ qx( 1
l
+ 1

nt
) cyclic extensions Fq(T, l

√
D) of Fq(T) with deg(D) ≤ x whose

class numbers are divisible by n.
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The proof of Theorem 2 is nearly the same as the proof of Theorem 1. To construct

an element of order n in the class group of Fq(T, l
√

D), first apply Lemma 1 to the

integer pei +mi

i instead of n for each prime pi dividing n. In the proof of the lemma, it

is shown that if r is the order of a, then

n

r
≤ l − 1,

where r | n. Replacing n with pei +mi

i , we can write r = pbi

i for some bi with bi ≤
ei + mi . Thus pei +m−bi

i ≤ l − 1, and so,

bi ≥ ei + mi −
log(l − 1)

log(pi)
> ei.

We have constructed an element of order pbi

i in the class group of Fq(T, l
√

D), so the

class number of Fq(T, l
√

D) is divisible by pei . Repeating the argument for each prime

dividing n shows that the class number of Fq(T, l
√

D) is divisible by n. Applying the

rest of the proof of Theorem 1 to nt rather than n proves Theorem 2.
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