
Glasgow Math. J. 54 (2012) 359–369. C© Glasgow Mathematical Journal Trust 2012.
doi:10.1017/S001708951200002X.

ON STABLE QUADRATIC POLYNOMIALS

OMRAN AHMADI
Claude Shannon Institute, University College Dublin, Dublin 4, Ireland

e-mail:omran.ahmadi@ucd.ie

FLORIAN LUCA
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Abstract. We recall that a polynomial f (X) ∈ K [X ] over a field K is called stable
if all its iterates are irreducible over K . We show that almost all monic quadratic
polynomials f (X) ∈ �[X ] are stable over �. We also show that the presence of squares
in so-called critical orbits of a quadratic polynomial f (X) ∈ �[X ] can be detected by a
finite algorithm; this property is closely related to the stability of f (X). We also prove
there are no stable quadratic polynomials over finite fields of characteristic 2 but they
exist over some infinite fields of characteristic 2.

2010 Mathematics Subject Classification. 11C08, 11T06, 37P05

1. Introduction. For a field K and a polynomial f (X) ∈ K [X ] we define the
sequence of iterations:

f (0)(X) = X, f (n)(X) = f
(
f (n−1)(X)

)
, n = 1, 2, . . . .

Following [1, 2, 12, 13, 14], we say that f (X) is stable if all polynomials f (n)(X) are
irreducible over K .

As in [13], for a quadratic polynomial f (X) = aX2 + bX + c ∈ K [X ], where the
characteristic of K is not 2, we define γ = −b/2a as the unique critical point of f (that
is, zero of the derivative f ′) and consider the set

Orb(f ) = {
f (n)(γ ) : n = 2, 3, . . .

}
,

which is called the critical orbit of f (we note that this definition is more convenient for
our purpose but slightly deviates from the one more common in literature which also
includes f (1)(γ ) = f (γ ) in Orb(f )).
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If K = �q, q odd, clearly there is some t such that f (t)(γ ) = f (s)(γ ) for some positive
integer s < t. Then f (n+t)(γ ) = f (n+s)(γ ) for any n � 0. Accordingly, for the smallest
value of t with the above property denoted by tf , we have

Orb(f ) = {f (n)(γ ) : n = 2, . . . , tf }

and #Orb(f ) = tf − 1 or #Orb(f ) = tf − 2 (depending whether s = 1 or s � 2).
It is shown in [11, 12, 13] that critical orbits play a very important role in the

dynamics of polynomial iterations. In particular, by [13, Proposition 2.3], a quadratic
polynomial f (X) ∈ K [X ] is stable if the set {−f (γ )} ∪ Orb(f ) contains no squares. In the
case when K = �q is a finite field of odd characteristic, this property is also necessary.

Here, we obtain several more results about stable polynomials. First of all we show
that non-stable quadratic polynomials over � form a very sparse set. This is certainly
expected since most polynomials over � are irreducible. Thus treating f (n) as “random”
polynomials of degree 2n, we arrive to the above heuristic expectation. We also show
that the existence of squares in critical orbits of quadratic polynomials over � can be
effectively tested.

We note that for finite fields the situation is quite different. For example,
Gomez and Nicolás [7], developing some ideas from [15], have proved that there are
O(q5/2(log q)1/2) stable quadratic polynomials over �q for an odd prime power q. Note
that in [7] a weaker bound O(q5/2 log q) is asserted but optimising the choice of the
parameter K to satisfy 2K � q1/2(log q)−1/2 � 2K+1 in the proof of [7, Theorem 1], one
easily obtains the claimed improvement, see also [8] for an upper bound on the number
of stable polynomials of a given degree d over �q. Here, we extend the result of [15]
on the length of critical orbits of stable quadratic polynomials over a finite field of
odd characteristic to stable compositions of quadratic polynomials with an arbitrary
polynomial.

We also show that over finite fields of characteristic 2 stable quadratic polynomials
do not exist. In fact, we derive it as a corollary of a more general result about stability
of shifted linearised polynomials.

2. Stable polynomials over �. Using [12, Theorem 4.4], we first show that almost
all monic quadratic polynomials f (X) ∈ �[X ] are stable over �.

THEOREM 1. Let E(A, B) be the number of pairs (a, b) ∈ �2 with |a| � A and |b| � B
for which f (X) = X2 + aX + b is irreducible but not stable over �. Then we have

E(A, B) = O
(
min{A3/2, B3/4}) .

Proof. Given an irreducible polynomial f (X) = X2 + aX + b ∈ �[X ], we denote
by γ = −a/2 its critical point and write it as

f (X) = (X − γ )2 + δ,

where

δ = b − a2/4.
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By [12, Theorem 4.4], we see that if f (X) is not stable over �, then either

|δ − γ | � 6 + 3
√

|γ | + 1, (1)

or √
f (2)(γ ) ∈ �. (2)

Clearly, condition (1) implies that b = a2/4 + O(|a|1/2). Thus, if |b| � B then the
above condition can be satisfied only if |a| � C1B1/2 where C1 > 0 is some absolute
constant. Furthermore, for every fixed a, there are at most O(|a|1/2) possible values of
b. Thus, (1) holds for at most

O

⎛
⎝ ∑

|a|�min{A,C1B1/2}
|a|1/2

⎞
⎠ = O

(
min{A3/2, B3/4})

pairs (a, b) ∈ �2 with |a| � A and |b| � B.
For condition (2), we note that

f (2)(γ ) = a4 − 4a3 − 8a2b + 16ab + 16b2 + 16b
16

= (2b + a2 − 2a − 2)2 − (8a + 4)
16

.

Hence, if (2) is satisfied, then

(2b + a2 − 2a − 2)2 − (8a + 4) = r2

for some integer r, which implies that

(s − r)(s + r) = 8a + 4, (3)

where s = 2b + a2 − 2a − 2.
We now see that for a fixed value for a, the number of solutions (r, s) ∈ �2 to

equation (3) is at most 2τ (|8a + 4|), where τ (k) is the number of positive integer
divisors of an integer k � 1. We also notice that when a and s are fixed, the number b
is uniquely defined.

Furthermore, since r − s and r + s are divisors of 8a + 4, we have s = O(|a|) =
O(A). Thus, b = a2 + O(A). This implies that (2) is possible only for |a| � C2B1/2,
where C2 > 0 is some absolute constant.

Thus, using the well-known bound on the mean value of the divisor function
(see [9, Theorem 320]), we conclude that (2) holds for at most

2
∑

|a|�min{A,C2B1/2}
τ (|8a + 4|) � 2

∑
k�8 min{A,C2B1/2}+4

τ (k)

= O
(
min{A log A, B1/2 log B})

pairs (a, b) ∈ �2 with |a| � A and |b| � B, and this last expression is dominated by the
number of such pairs for which (1) holds. �
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Taking A = B = H we obtain:

COROLLARY 2. Let E(H) be the number of pairs (a, b) ∈ �2 with

max{|a|, |b|} � H

for which f (X) = X2 + aX + b is irreducible but not stable over �. We then have

E(H) = O(H3/4).

We also derive from Theorem 1 and [7, Lemma 2] that almost all quadratic
polynomials f (X) ∈ �[X ] are stable over �. To prove this, we need the following result
which is given in [7, Lemma 2] for the case of finite fields. However, its proof applies to
any field.

LEMMA 3. Let � be a field. Let f (X) ∈ �[X ] and α ∈ �∗. Then f (X) is stable if and
only if g(X) = α−1f (αX) is stable.

THEOREM 4. Let F(H) be the number of triples (a, b, c) ∈ �3 with

max{|a|, |b|, |c|} � H

for which f (X) = aX2 + bX + c is irreducible but not stable over �. We then have

F(H) � H3/2+o(1) as H → ∞.

Proof. Discarding the O(H2) triples (a, b, c) with a = 0 and max{|b|, |c|} � H, we
note that Lemma 3 taken with α = a−1, implies that f (X) = aX2 + bX + c ∈ �[X ]
is stable if and only if g(X) = X2 + bX + ac is stable. We also see that each such
polynomial g(X) corresponds to at most τ (|g(0)|) values of a and c, and thus to at
most τ (|g(0)|) polynomials f (X). Recalling the estimate τ (k) = ko(1) as k → ∞ on the
divisor function (see [9, Theorem 317]), we derive that

F(H) � E(H, H2)Ho(1) as H → ∞.

Applying Theorem 1, we conclude the proof. �
Although over K = � the property that the set {−f (γ )} ∪ Orb(f ) contains no

squares is known not to be necessary, it is still interesting to understand whether it can
be efficiently tested.

THEOREM 5. For an irreducible polynomial f (X) = aX2 + bX + c ∈ �[X ], if f (n)(γ )
is a square, then

n < exp
(
21377H80) ,

where H = max{|a|, |b|, |c|, 3}.
Proof. Put g(X) = X2 + 2bX + 4ac. By applying repeatedly the relation 4a f (x) =

g(2ax), we have for all n � 2,

a2n+1 f (n)(x) = g
(
a2n f (n−1)(x)

) = g(2)(a2n−1 f (n−2)x
) = · · · = g(n)(2ax).
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Thus, 2n+1a f (n)(γ ) = g(n)(−b) ∈ �. If δ ∈ {0, 1} is such that n + 1 ≡ δ (mod 2), then
we write 2δa = a0a2

1, where a0 and a1 are integers with a0 squarefree. We now see that
if f (n)(γ ) = η2 for some rational number η, then

g(n)(−b) = 2n+1aη2 = a0(2(n+1−δ)/2a1η)2 ∈ �,

which implies that y = 2(n+1−δ)/2a1η ∈ �. Thus, putting x = g(n−2)(−b), we get that
(x, y) is an integer solution to

g(2)(x) = a0y2. (4)

Put

G(X) = a0g(2)(X) = c0X4 + c1X3 + c2X2 + c3X + c4, (5)

where

c0 = a0, c1 = a0b, c2 = a0(4b2 + 8ac + 2b),

c3 = a0(16abc + 4b2), c4 = a0(16a2c2 + 8abc + 4ac).
(6)

Putting z = a0y, we see that equation (4) leads to an integer solution (x, z) to the
equation

G(x) = z2. (7)

We now observe that G(X) has only simple roots. For if not, there exists a common
root ζ of G(ζ ) = a0g(g(ζ )) and G′(ζ ) = a0g′(g(ζ ))g′(ζ ). If g′(ζ ) = 0, then ζ = −b ∈ �,
so g(ζ ) is an integer root of g(X), which is false because g(X) is irreducible since it
is obtained from f (X) by an affine transformation. Similarly, if g′(g(ζ )) = 0, we get
that g(ζ ) = −b is an integer root of both g′(X) and g(X), which again contradicts the
irreducibility of g(X). By the celebrated result of Baker [3], if

F(X) = c0Xd + c1Xd−1 + · · · + cd ∈ �[X ]

is a polynomial of degree d with at least three simple roots, then all integer solutions
(u, v) of the diophantine equation F(u) = v2 satisfy

max{|u|, |v|} � exp(exp(exp((d10dK)d2
))),

where K = max{|c0|, . . . , |cm|}. We apply this with F(X) = G(X), which has d = 4
simple roots. From list (6), and the fact that |a0| � 2|a|, one checks easily that K �
56H5. Thus,

(d10dK)d2 � (440 × 56 × H5)16 < (443 × H5)16 = 21376H80.

Thus, we get that

|g(n−2)(−b)| � exp
(
exp

(
exp

(
21376H80))) . (8)
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We next show that if u ∈ � is such that |u| > H8, then |g(u)| > |u|e1/e
. Indeed,

observe that for such u we have

|g(u)| � |u|2 − (4H2 + 2)|u| � u2 − (H4 − 1)|u|e1/e
> |u|e1/e

. (9)

The first inequality above is obvious, the second follows from the fact that H4 − 1 >

2H2 + 2, which is true for all H � 3, whereas the third follows because it is equivalent
to

|u| > H4/(2−e1/e),

which holds for us because |u| > H8 and 8 > 4/(2 − e1/e).
We now compute g(m)(−b) for all m = 1, 2, . . . , 2H8 + 2. Assume first that

|g(m)(−b)| � H8 for all such m. Since there are 2H8 + 2 such m and only 2H8 + 1
integers v such that |v| � H8, it follows that there exists m1 < m2 such that g(m1)(−b) =
g(m2)(−b). Thus, in this case H = Orb(g) is finite and since 2n+1a f (n)(γ ) ∈ H for all
positive integers n, we get that

lim
n→∞ f (n)(γ ) = 0,

which contradicts the recurrence

f (n+1)(γ ) = f (f (n)(γ )) = a(f (n)(γ ))2 + b f (n)(γ ) + c

as c 
= 0. This implies that there exists m0 in {1, 2, . . . , 2H8 + 2} with |g(m0)(−b)| > H8.
Then, by (9), putting B = g(m0)(−b), we have

|g(m0+1)(−b)| = |g(B)| > |B|e1/e

and then by a simple inductive argument we derive

|g(n−2)(−b)| = |g(m0+(n−m0−2))(B)| > |B|e(n−m0−2)/e
.

Comparing the last inequality above with (8), and using that B � H8 > e, we get

exp(n − m0 − 2)/e) < exp
(
exp

(
21376H80)) ,

so

n < exp
(
21376H80 + 1

) + m0 + 2 � exp
(
21376H80 + 1

) + 2H8 + 3

< exp
(
21377H80) ,

which concludes the argument. �
In particular we see from Theorem 5 that the presence of squares in Orb(f ) can be

detected in a finitely many steps.

3. Stable polynomials over finite fields. As in [15], we estimate the length of the
critical orbit, and therefore the complexity of testing even degree polynomials f (X) in
�q[X ], with q odd, for stability.

We need first the following result (see [13, Lemma 2.5]), which characterises
completely the stability of quadratic polynomials over finite fields:
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LEMMA 6. Let K be a field of odd characteristic, f (X) = aX2 + bX + c ∈ K [X ], and
γ = −b/2a be the critical point of f . Suppose that h ∈ K [X ] is such that h(f (n−1)) has
degree d and is irreducible over K for some n � 1. Then h(f (n)) is irreducible over K if
(−a)dh(f (n)(γ )) is not a square in K. If K is finite then we may replace the “if” statement
with an “if and only if” statement.

Given two polynomials f and g ∈ �q[X ], we write g ◦ f for the composition F(X) =
g(f (X)).

Let now f be an irreducible quadratic polynomial and g ∈ �q[X ] be an irreducible
polynomial of degree d. Define F = g ◦ f ∈ �q[X ] which is a polynomial of degree 2d.

By Lemma 6, taken with n = 1 and h = F (n−1) ◦ g we have the following easy result:

LEMMA 7. Let F = g ◦ f ∈ �q[X ], where f, g ∈ �q[X ] and deg f = 2. Assume that
F (n−1) ◦ g is irreducible over �q for some n � 1. Then F (n) is irreducible over �q if and only
if F (n)(γ ) is not a square in �q, where γ = −b/2a is the critical point of f .

We consider the set

Orbγ (F) = {
F (n)(γ ) : n = 2, 3, . . .

}
,

which for g(X) = X coincides with Orb(f ). We call it the γ -critical orbit of F . As before,
we notice that there is some t such that F (t)(γ ) = F (s)(γ ) for some positive integer s < t.
Then F (n+t)(γ ) = F (n+s)(γ ) for any n � 0. Accordingly, we denote by tF the smallest
value of t with the above condition. We then have

Orbγ (F) = {
F (n)(γ ) : n = 2, . . . , tF

}
and #Orbγ (F) = tF − 1, or #Orbγ (F) = tF − 2 (depending whether s = 1 or s � 2 in
the above).

Trivially, we have tF � q + 1. Here, we obtain a nontrivial upper bound on the orbit
length tF of stable compositions F = g ◦ f where f, g ∈ �q[X ], deg f = 2, deg g = d
which for d = 1 coincides with [15, Theorem 1].

THEOREM 8. For any odd q and any stable polynomial F = g ◦ f ∈ �q[X ], where
f = aX2 + bX + c ∈ �q[X ] and g ∈ �q[X ] of degree d, we have

tF = O
(
q1−αd

)
,

where

αd = log 2
2 log(4d)

.

Proof. The proof follows using exactly the same technique as the proof of [15,
Theorem 1]. Let χ be the quadratic character of �q.

We know that F (n) is an irreducible polynomial for any n � 1. This implies that
Gn−1 = F (n−1) ◦ g is an irreducible polynomial. Indeed, if Gn−1 is not irreducible, then
we can write it as Gn−1 = G1G2, where G1, G2 ∈ �q[X ] are nonconstant polynomials.
Then F (n) = Gn−1(f ) = G1(f )G2(f ), which is in contradiction with the irreducibility of
F (n). We now apply Lemma 7, and conclude that if F ∈ �q[X ] is stable then the set
Orbγ (F) contains no squares. That is, χ

(
F (n)(γ )

) = −1, n = 2, 3, . . ..
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We fix an integer parameter K and note that for any n � 1, we have simultaneously

χ
(
F (k+n)(γ )

) = −1, k = 1, . . . , K,

which we rewrite as

χ
(
F (k)(F (n)(γ )

)) = −1, k = 1, . . . , K. (10)

Since by the definition of tF , the values F (n)(γ ), n = 1, . . . , tF − 1, are pairwise distinct
elements of �q, we derive from (10) that

tF − 1 � #Tq(K), (11)

where

Tq(K) = {
x ∈ �q : χ

(
F (k)(x)

) = −1, k = 1, . . . , K
}
.

We have

#Tq(K) = 1
2K

∑
x∈�q

K∏
k=1

(
1 − χ

(
F (k)(x)

))
, (12)

since for every x ∈ Tq(K) the product on the right-hand side of (12) is 2K and is 0 when
χ (F (k)(x)) = 1 for at least one k = 1, . . . , K (note that since by our assumption F (k)(X)
is irreducible over �q, we have that F (k)(x) 
= 0 for all x ∈ �q).

Expanding the product in (12), we obtain 2K − 1 character sums of the shape

(−1)ν
∑
x∈�q

χ

⎛
⎝ ν∏

j=1

F (kj)(x)

⎞
⎠ , 1 � k1 < · · · < kν � K, (13)

with ν � 1 and one trivial sum that equals q (corresponding to the terms equal to 1 in
the product in (12)).

Clearly, F (k)(X) is a polynomial of degree 2kdk. Furthermore, by our assumption,
each one of the polynomials F (k)(X) is irreducible, therefore none of the polynomials

ν∏
j=1

F (kj)(X) ∈ �q[X ], 1 � k1 < · · · < kν � K,

is a perfect square in the algebraic closure of �q. Thus, the Weil bound (see [10,
Theorem 11.23]), applies to every sum (13) and implies that each one of them is
O(2K dK q1/2). Hence,

#Tq(K) = 1
2K

q + O
(
2K dK q1/2). (14)

Choosing K to satisfy

(4d)K � q1/2 < (4d)K+1

and combining (11) and (14), we get the desired result. �
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We recall that a polynomial 
(X) ∈ �q[X ] is called linearised if it is of the form


(X) =
ν∑

j=0

ajXpj
,

where p is the characteristic of �q.
We now show that there are no stable shifted linearised polynomials. In particular,

there are no stable quadratic polynomials over finite fields of characteristic 2. Our proof
is based on one well-known statement which describes the irreducibility of polynomials
of the form 
(X) − b ∈ �q[X ], where 
(X) is a linearised polynomial over �q (see [4,
Lemma 3.17]).

LEMMA 9. Let q = pm, where p is a prime and m � 1 is an integer. Suppose that

(X) is a linearised polynomial over �q of degree pν with ν � 2. Then for any b ∈ �q, the
polynomial 
(X) − b is irreducible if and only if

p = ν = 2,

and 
(X) has the form


(X) = X(X + A)(X2 + AX + B),

with A, B ∈ �q such that X2 + AX + B and X2 + BX + b are both irreducible.

We now show that there are no stable shifted linearised polynomials over a finite
field, which is a generalisation of [14, Corollary 1.6].

THEOREM 10. Let q = pm, where p is a prime as m � 1 is an integer, and let f (X) =

(X) + α ∈ �q[X ], where 
(X) is a linearised polynomial over �q of degree pν with ν � 1.
Then f (n)(X) is reducible over �q for n � 3.

Proof. We note that for any k � 1,

f (k)(X) = 
̃(X) + α̃,

where 
̃(X) ∈ �q[X ] is a linearised polynomial of degree pνk and α̃ ∈ �q. When p 
= 2,
then, by Lemma 9, we get that the polynomial f (X) is not irreducible, and thus not
stable. Thus, we assume that p = 2. In this case, applying again Lemma 9 we obtain
that for k � 3, f (k)(X) is a reducible polynomial over �q, which concludes the proof. �

As a simple consequence, we obtain that there are no stable quadratic polynomials
over finite fields of characteristic 2.

COROLLARY 11. Let q be even, and let f (X) = aX2 + bX + c ∈ �q[x]. Then one of
f (X), f (2)(X) or f (3)(X) is reducible over �q.

The following example shows that Corollary 11 cannot be extended to infinite
fields. Let K = �2(T) be the rational function field in T over �2, where T is
transcendental over �2. Take f (X) = X2 + T ∈ K [X ]. Then it is easy to see that

f (n)(X) = X2n + T2n−1 + T2n−2 + · · · + T2 + T.
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Now, from the Eisenstein criterion for function fields (see, for example, [16,
Proposition III.1.14]), it follows that for every n � 1, the polynomial f (n)(X) is
irreducible over K . Hence, f (X) is stable.

In fact, it is easy to show that a composition f ◦ g of two nonlinear Eisenstein
polynomials is an Eisenstein polynomial again, see [14, Lemma 2.2]. This simple
observation allows one to construct explicit examples of stable polynomials over many
fields such as � or p-adic and function fields.

4. Comments. We note that in condition (2) we have not used the full strength
of [12, Theorem 4.4]. However, surprisingly enough, the bound of Theorem 1 is
dominated by the polynomials for which (1) is satisfied. Maybe a more careful
examination of this case may help to improve Theorem 1.

Certainly, the bound of Theorem 5 can easily be improved by tightening up our
argument and also via using more modern estimates on size of solutions of Diophantine
equations (see, for example, [5, 6] and the references therein, for such better explicit
estimates).

It is also interesting to investigate whether the stability of a quadratic polynomial
f (X) ∈ �[X ] can be tested in finitely many steps. We note that Theorem 5 does not
imply such a test.

ACKNOWLEDGEMENTS. The authors are grateful to Rafe Jones for discussions and
to Domingo Gomez for the idea of the proof of Theorem 4. During the preparation
of this paper, O. A. was supported in part by the Claude Shannon Institute, Science
Foundation Ireland Grant 06/MI/006, F. L. by Grant SEP-CONACyT 79685 and
PAPIIT 100508, A. O. by SNSF Grant 121874, and I. S. by the ARC Grant DP1092835.

REFERENCES
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