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Abstract

Blackwell (1951), in his seminal work on comparison of experiments, ordered two
experiments using a dilation ordering: one experiment, Y , is ‘more spread out’ in the
sense of dilation than another one, X, if E(c(Y )) ≥ E(c(X)) for all convex functions c.
He showed that this ordering is equivalent to two other orderings, namely (i) a total time
on test ordering and (ii) a martingale relationship E(Y ′ | X′) = X′, where (X′, Y ′) has a
joint distribution with the same marginals asX and Y . These comparisons are generalized
to balayage orderings that are defined in terms of generalized convex functions. These
balayage orderings are equivalent to (i) iterated total integral of survival orderings and
(ii) martingale-type orderings which we refer to as k-mart orderings. These comparisons
can arise naturally in model fitting and data confidentiality contexts.
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1. Introduction and background

In his seminal work on comparison of experiments, Blackwell (1951) studied the dilation
ordering, according to which Y is a dilation of X if both random variables have finite means
and

E(c(Y )) ≥ E(c(X)) (1.1)

for every convex function c. He showed that if two experiments are related to each other
through (1.1), then there exists a transition kernel between the experiments such that (X, Y ) is
a one-step martingale, i.e.

E(Y | X) = X. (1.2)

Identity (1.2) has implications for stochastic model building where a principal objective is
to choose a simple baseline model that describes the salient features of the population. In
particular, from (1.2) we have the stochastic model

Y = X + ε, (1.3)

where Y is the population, X is the baseline model, and ε is an error term. Two features of X
in (1.3) are that it is ‘fair’ and uncorrelated with the error term. Formally,

E(Y ) = E(X) and cov(X, ε) = 0. (1.4)
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106 F. VERA AND J. LYNCH

In Section 4, the above ideas are extended to more general notions of ‘convexity’, utilizing
a martingale-type structure called a k-mart. Background material on generalized convexity
defined in terms of Chebyshev systems is given in Section 2.

An operational way to verify (1.1) is through the use of tail integral of survival comparisons.
Let F denote a cumulative distribution function with nonnegative support and finite mean µ
(i.e. µ = ∫

x dF(x)). Then the tail integral of survival transform is

F̄1(y) :=
∫ ∞

y

(1 − F(x)) dx =:
∫ ∞

y

F̄ (x) dx.

It is well known that (1.1) holds if and only if

E(Y ) = E(X) and Ḡ1 ≥ F̄1, (1.5)

where G and F denote the distribution functions of Y and X, respectively (see, e.g. Ross
(1983) and Shaked and Shanthikumar (1994, Section 2.A.1)). Moreover, (1.5) holds if and
only if there exists a joint distribution for Y and X such that (1.2) holds, i.e. (X, Y ) has a
martingale structure (see, e.g. Blackwell (1951), (1953), Meyer (1966, Section XI.2), Strassen
(1965), and references therein).

Blackwell (1951) used a transform similar to the tail integral of survival transform in his
work on comparing experiments. More general transformations are presented in Section 3, and
are shown to be related to stochastic orderings similar to (1.1), but with more general notions
of ‘convexity’.

Blackwell’s proof of (1.2) is constructive; the required transition kernel is obtained as an
iterative procedure where each iteration is a dilation and the iteration converges to the required
transition kernel after an infinite number of steps. An alternative proof of Blackwell’s result is
presented in Section 6. It is also constructive, but the construction is direct, not iterative, with
the added benefit that the joint distribution is the one that makesX ‘most nearly identical’ to Y .

Besides the comparison of experiments, k-marts and balayages have other applications, for
instance in data confidentiality. One way of protecting data is to release a synthetic version of
the data rather than the real data. The released data should be similar to the real one, in order
that inferences made from the released version of the data be valid (Willenborg and de Waal
(2001b)). The synthesization can be achieved through a variety of techniques such as swapping,
round off, aggregation or grouping, and adding noise to the data. Here we are interested in
developing a theory which addresses aggregation and addition of noise that preserves moment
structure in one-way tables or arrays (and the authors are currently developing techniques for
the multivariate situation). In Section 5, the moment structure is used to construct and generate
k-marts which relate the distribution of the original data to the synthetic version.

Dilations can arise quite naturally when fitting mixture models in which the means of
the population and the fitted model are the same (Shaked (1980)). Consequently, the joint
distribution of (X, Y ) can be constructed to have a martingale structure. Higher-order mixture
models can often be fitted in a hierarchical way in which the k-point fitted model and the
population mixture have a k-mart structure rather than a martingale structure. These ideas are
discussed in Section 4

2. Generalized convexity

The concept of convexity with respect to extended complete Chebyshev systems is presented
in this section, following the treatment in Karlin and Studden (1966, Chapter I). The following
definitions are needed.
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Definition 2.1. Let u0, . . . , un be real-valued functions on the interval [a, b]. The collection
{ui}n0 is said to be a Chebyshev system, or a C-system, on [a, b] if

det[ui(xj ) : i = 0, . . . , n, j = 0, . . . , n] > 0

for any choice of n real numbers xi, a ≤ x0 < x1 < · · · < xn ≤ b. (Unless otherwise
indicated, in the matrix [Ui(xj )] the first index is for the rows and the second index is for the
columns.) If the functions constitute a C-system on any interval [a, b], a < b, then we say that
they constitute a C-system on (−∞,∞).

In the next definition, u(i) denotes the ith derivative of the function u andCi[a, b] denotes the
set of real-valued functions on [a, b] with continuous ith derivatives (if no interval is specified,
the property is assumed to be true on (−∞,∞)).

Definition 2.2. The C-system {ui}n0 is called an extended complete Chebyshev system, or an
ECC-system, on [a, b] if ui ∈ Cn[a, b] and, for k = 0, . . . , n, W(u0, . . . , uk) > 0 on [a, b],
where W(u0, . . . , uk) denotes the Wronskian of the functions u0, . . . , uk , i.e.

W(u0, . . . , uk)(t) = det[u(j)i (t) : i = 0, . . . , k, j = 0, . . . , k]
(see Karlin and Studden (1966, Chapter XI, Theorem 1.1)). If the functions constitute an
ECC-system on any interval [a, b], a < b, then we say that they constitute an ECC-system on
(−∞,∞) (this is assumed if no interval is specified).

Remark 2.1. Without loss of generality, it is assumed that there exists a constant c ∈ [a, b] for
which u(j)i (c) = 0, i = 1, . . . , n, j = 0, . . . , i−1 (see Karlin and Studden (1966, Chapter XI,
Remark 1.2)). Furthermore, the ECC-system U = {1, x, . . . , xn} will be referred to as the
classical ECC-system or classical C-system.

Definition 2.3. Let {ui}n0 be an ECC-system. The Wronskian functions, w0, . . . , wn, corre-
sponding to u0, . . . , un are defined by wj = Djuj , j = 0, . . . , n, where the differential
operator Dj is recursively defined as follows:

D0u = u, Dju = d

dt

Dj−1u

wj−1
, j = 1, . . . , n.

Here, for j = n, (d/dt)(Dn−1u/wn−1) can be replaced by either the right or the left derivative
of Dn−1u/wn−1, and Dn respectively denoted by DR

n or DL
n .

The next lemma characterizes Wronskians in terms of Wronskian functions.

Lemma 2.1. Let {ui}n0 be an ECC-system with correspondingWronskian functionsw0, . . . , wn.
Then, for k = 0, . . . , n,

W(u0, . . . , uk) = wk+1
0 wk1 · · ·wk.

Proof. See Karlin and Studden (1966, p. 243 or p. 380) for details.

As an immediate corollary, we have the following result.

Corollary 2.1. The collection {ui}n0 is an ECC-system if and only if wi > 0, i = 0, 1, . . . , n.

The next lemma characterizes ECC-systems in terms of Wronskian functions and is needed
in Section 3. Its proof can be found in Vera and Lynch (2005b, Lemma 2.3).
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108 F. VERA AND J. LYNCH

Lemma 2.2. For any number x, functions f and g of the forms

f (t) = w0(t)

∫ t

x

w1(v1)

∫ v1

x

w2(v2) · · ·
∫ vk−1

x

wk(vk) dvk · · · dv1 (2.1)

and

g(t) = w0(t)

∫ x

t

w1(v1)

∫ x

v1

w2(v2) · · ·
∫ x

vk−1

wk(vk) dvk · · · dv1 (2.2)

are polynomials in (i.e. linear combinations of) the functions u0, . . . , uk corresponding to
w0, . . . , wk .

Definition 2.4. A function f is said to be convex with respect to a C-system U = {ui}n0, or
U -convex, if ∣∣∣∣∣∣∣∣∣∣∣

u0(t0) u0(t1) · · · u0(tn+1)

u1(t0) u1(t1) · · · u1(tn+1)
...

...
. . .

...

un(t0) un(t1) · · · un(tn+1)

f (t0) f (t1) · · · f (tn+1)

∣∣∣∣∣∣∣∣∣∣∣
≥ 0

for t0 < t1 < · · · < tn < tn+1. If the inequality is strict then we say that the function is strictly
U -convex.

Definition 2.5. A function f is said to be U -concave if −f is U -convex.

The next two lemmas, which were proved in Karlin and Studden (1966, Chapter XI), give
some characterizations of functions that are convex with respect to ECC-systems.

Lemma 2.3. If f is convex with respect to the ECC-system {ui}n0 and n ≥ 1, then f ∈ Cn−1.

Lemma 2.4. The following statements are equivalent.

(i) f is convex with respect to the ECC-system {ui}n0 .

(ii) ρRf := DR
n f/wn is a right-continuous, nondecreasing function.

(iii) ρLf := DL
n f/wn is a left-continuous, nondecreasing function.

A useful representation of U -convex functions in terms of the operator ρR is presented in
the next theorem.

Theorem 2.1. If f is bounded and convex with respect to {ui}n0 , where u(j)i (c) = 0, i =
1, . . . , n, j = 0, . . . , i − 1, for some constant c, then

f (t) = w0(t)

∫ t

c

w1(x1)

∫ x1

c

w2(x2) · · ·
∫ xn−1

c

wn(xn)

∫ xn

c

dρRf (u) dxn · · · dx1

+ f (c)

w0(c)
u0(t)+ D1f (c)

w1(c)
u1(t)+ · · · + Dn−1f (c)

wn−1(c)
un−1(t)+ DR

n f (c)

wn(c)
un(t)
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for t ≥ c and

f (t) = (−1)n+1w0(t)

∫ c

t

w1(x1)

∫ c

x1

w2(x2) · · ·
∫ c

xn−1

wn(xn)

∫ c

xn

dρRf (u) dxn · · · dx1

+ f (c)

w0(c)
u0(t)+ D1f (c)

w1(c)
u1(t)+ · · · + Dn−1f (c)

wn−1(c)
un−1(t)+ DR

n f (c)

wn(c)
un(t)

for t < c.

Proof. Note first that, for t ≥ c and i = 0, 1, . . . , n− 1,

Dif (t) = wi(t)

∫ t

c

Di+1f (x) dx + Dif (c)

wi(c)
wi(t).

Applying this identity recursively gives

f (t) = w0(t)

∫ t

c

D1f (x1) dx1 + f (c)

w0(c)
w0(t)

= w0(t)

∫ t

c

w1(x1)

∫ x1

c

D2f (x2) dx2 dx1

+ D1f (c)

w1(c)
w0(t)

∫ t

c

w1(x1) dx1 + f (c)

w0(c)
w0(t)

...

= w0(t)

∫ t

c

w1(x1)

∫ x1

c

· · ·wn−1(xn−1)

∫ xn−1

c

DR
n f (xn) dxn · · · dx1

+ Dn−1f (c)

wn−1(c)
w0(t)

∫ t

c

w1(x1)

∫ x1

c

· · ·wn−2(xn−2)

∫ xn−2

c

wn−1(xn−1) dxn−1 · · · dx1

+ · · · + D1f (c)

w1(c)
w0(t)

∫ t

c

w1(x1) dx1 + f (c)

w0(c)
w0(t)

= w0(t)

∫ t

c

w1(x1)

∫ x1

c

· · ·wn−1(xn−1)

∫ xn−1

c

wn(xn)

∫ xn

c

dρRf (u) dxn · · · dx1

+ DR
n f (c)

wn(c)
w0(t)

∫ t

c

w1(x1)

∫ x1

c

· · ·

× wn−2(xn−2)

∫ xn−2

c

wn−1(xn−1)

∫ xn−1

c

wn(xn) dxn · · · dx1

+ Dn−1f (c)

wn−1(c)
w0(t)

∫ t

c

w1(x1)

∫ x1

c

· · ·wn−2(xn−2)

∫ xn−2

c

wn−1(xn−1) dxn−1 · · · dx1

+ · · · + D1f (c)

w1(c)
w0(t)

∫ t

c

w1(x1) dx1 + f (c)

w0(c)
w0(t)

= w0(t)

∫ t

c

w1(x1)

∫ x1

c

· · ·wn−1(xn−1)

∫ xn−1

c

wn(xn)

∫ xn

c

dρRf (u) dxn · · · dx1

+ DR
n f (c)

wn(c)
un(t)+ Dn−1f (c)

wn−1(c)
un−1(t)+ · · · + D1f (c)

w1(c)
u1(t)+ f (c)

w0(c)
u0(t),

where the last equality follows from Lemma 2.2 of Vera and Lynch (2005b). A similar proof
holds for t < c.
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3. Balayages

The concept of balayages is introduced in this section, following the treatments in Meyer
(1966) and Lynch (1988). Then a characterization in terms of iterated integrals, similar to the
one in Karlin and Studden (1966, Chapter XI, Theorem 5.2), is presented (see also Denuit et
al. (1998), who did the same thing for classical polynomials).

Definition 3.1. Let U = {ui}n0 be an ECC-system. Let F and G be two finite measures with

∫
|ui | dF < ∞,

∫
|ui | dG < ∞, i = 0, . . . , n.

We say that G is a balayage of F , written G >U F , if

∫
c dG ≥

∫
c dF

for any U -convex function c satisfying | ∫ c dG| < ∞ and | ∫ c dF | < ∞. If U = {1, x} then
(under the same conditions) we say that G is a dilation of F , written G >d F .

Remark 3.1. If F andG have densities f and g with respect to some measure ν, then we write
g >U f if G >U F . Similarly, if X ∼ F and Y ∼ G then we write Y >U X if G >U F , i.e.
E(c(Y )) ≥ E(c(X)) for any U -convex function c satisfying

| E(c(X))| < ∞, | E(c(Y ))| < ∞.

Remark 3.2. Notice that ∫
ui dF =

∫
ui dG, i = 0, . . . , n,

since both ui and −ui are U -convex.

Definition 3.2. Let {ui}n0 be an ECC-system, with corresponding Wronskian functionsw0, . . . ,

wn, such that u(j)i (c) = 0, i = 1, . . . , n, j = 0, . . . , i − 1. Let F denote a finite measure. The
lower and upper iterated integrals of F with respect to {ui}n0 are functions recursively defined
as follows:

F0(t) =
∫ t

−∞
w0(u) dF(u), Fi(t) =

∫ t

−∞
wi(u)Fi−1(u) du, i = 1, . . . , n,

F̄0(t) =
∫ ∞

t

w0(u) dF(u), F̄i(t) =
∫ ∞

t

wi(u)F̄i−1(u) du, i = 1, . . . , n.

The next few results give useful properties of the iterated integrals defined above. In
preparation, let {ui}n0 be an ECC-system, with corresponding Wronskian functionsw0, . . . , wn,
such that u(j)i (c) = 0, i = 1, . . . , n, j = 0, . . . , i − 1, and let F denote a finite measure for
which

∫ |ui | dF < ∞, i = 0, . . . , n.
The following proposition characterizes U -moments in terms of iterated integrals. Its proof

can be found in Vera and Lynch (2005b, Proposition 3.1).

Proposition 3.1. (−1)iFi(c)+ F̄i(c) = ∫
ui dF .

https://doi.org/10.1239/aap/1175266471 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1175266471


General convex stochastic orderings 111

Now, similar to (2.1) and (2.2), define

ft,i(u) = w0(t)

∫ u

t

w1(v1)

∫ v1

t

w2(v2) · · ·
∫ vi−1

t

wi(vi) dvi · · · dv1

and

gt,i(u) = w0(t)

∫ t

u

w1(v1)

∫ t

v1

w2(v2) · · ·
∫ t

vi−1

wi(vi) dvi · · · dv1.

Note that by Lemma 2.2 both ft,i and gt,i are polynomials in the ui . The next proposition
relates conditional expectations of ft,i and gt,i with the iterated integrals from Definition 3.2.

Proposition 3.2. Assume that F is a probability distribution and let F̄ = 1 − F (not to be
confused with the upper and lower iterated integrals of F ). Also, let X ∼ F . Then

E(ft,i (X) | X > t) = F̄i(t)

F̄ (t)

and

E(gt,i (X) | X ≤ t) = Fi(t)

F (t)
.

Proof. A simple application of Fubini’s theorem shows that

F̄i(t) =
∫ ∞

t

ft,i (u) dF(u).

The first result follows by dividing both sides of this equation by F̄ (t). The proof of the second
result is analogous.

Remark 3.3. For the classical ECC-system, ft,i(x) = (x − t)i and gt,i(x) = (t − x)i . In
reliability theory, E((X − t)j | X > t) is the j th moment of the residual life.

Remark 3.4. For the classical ECC-system, if F0 is the empirical distribution over the n points
xi, x1 < · · · < xn, then Proposition 3.2 helps us to see that

F̄i(xi) = 1

n
((xi+1 − xi)

i + · · · + (xn − xi)
i).

Remark 3.5. Proposition 3.2 tells us that

F̄i(t) = E(ft,i (X)1{X>t}) and Fi(t) = E(gt,i (X)1{X≤t}),

where 1{·} denotes the indicator function. For the classical ECC-system, these expectations are
equivalent to those used in Denuit et al. (1998, Theorem 3.2).

The next lemma tells us that, except for a sign, the difference of upper integrals is the same
as the difference of lower integrals.
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Lemma 3.1. Let F and G be as defined in Definition 3.1. If

∫
ui dF =

∫
ui dG (3.1)

for i = 0, . . . , n, then

Ḡi − F̄i = (−1)i+1(Gi − Fi). (3.2)

Proof. An induction argument is used here. Let i = 0. Then

Ḡ0(t)− F̄0(t) =
∫ ∞

t

w0(u) d(G(u)− F(u))

=
∫ ∞

−∞
w0(u) d(G(u)− F(u))−

∫ t

−∞
w0(u) d(G(u)− F(u))

= 0 − (G0(t)− F0(t))

= −(G0(t)− F0(t)),

where the last equality follows from (3.1). Next, suppose that (3.2) holds for i = 0, . . . , k.
Then, for t < c,

Ḡk+1(t)− F̄k+1(t) =
∫ ∞

t

wk+1(u)(Ḡk(u)− F̄k(u)) du

=
∫ c

t

wk+1(u)(Ḡk(u)− F̄k(u)) du+
∫ ∞

c

wk+1(u)(Ḡk(u)− F̄k(u)) du

=
∫ c

t

wk+1(u)(−1)k+1(Gk(u)− Fk(u)) du+ Ḡk+1(c)− F̄k+1(c)

= Ḡk+1(c)− F̄k+1(c)+ (−1)k+1
∫ c

−∞
wk+1(u)(Gk(u)− Fk(u)) du

− (−1)k+1
∫ t

−∞
wk+1(u)(Gk(u)− Fk(u)) du

= Ḡk+1(c)− F̄k+1(c)+ (−1)k+1(Gk+1(c)− Fk+1(c))

+ (−1)k+2
∫ t

−∞
wk+1(u)(Gk(u)− Fk(u)) du

=
∫
uk+1 d(G− F)+ (−1)k+2(Gk+1(t)− Fk+1(t))

= (−1)k+2(Gk+1(t)− Fk+1(t)),

where the penultimate equality follows from Proposition 3.1 and the last equality follows from
(3.2). A similar proof holds for t > c.

The next theorem is a generalization of a result of Denuit et al. (1998, Theorem 3.3) related
to tail integral of survival transforms, and is similar to a result of Karlin and Studden (1966,
Chapter XI, Theorem 5.1) (also, see Vera and Lynch (2005a, Section 3) for a problem in which
a nonclassical C-system arises in a mixed distribution setting).
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Theorem 3.1. If (3.1) holds then G >U F if and only if Ḡn ≥ F̄n.

Proof. The proof relies on the representation given in Theorem 2.1. First assume that
Ḡn− F̄n ≥ 0, and suppose that f is U -convex with | ∫ f dG| < ∞ and | ∫ f dF | < ∞. Then,
with ai = Dif (c)/wi(c),∫
f d(G− F) =

∫ c

−∞
f (t) d(G(t)− F(t))+

∫ ∞

c

f (t) d(G(t)− F(t))

= (−1)n+1
∫ c

−∞
w0(t)

∫ c

t

w1(x1)

∫ c

x1

· · ·wn(xn)
∫ c

xn

dρRf (u) dxn · · · dx1 d(G(t)− F(t))

+
∫ ∞

c

w0(t)

∫ t

c

w1(x1)

∫ x1

c

· · ·wn(xn)
∫ xn

c

dρRf (u) dxn · · · dx1 d(G(t)− F(t))

+
n∑
i=0

(∫ c

−∞
aiui(t) d(G(t)− F(t))+

∫ ∞

c

aiui(t) d(G(t)− F(t))

)

= (−1)n+1
∫ c

−∞

∫ u

−∞
wn(xn)

∫ xn

−∞
· · ·w1(x1)

×
∫ x1

−∞
w0(t) d(G(t)− F(t)) dx1 · · · dxn dρRf (u)

+
∫ ∞

c

∫ ∞

u

wn(xn)

∫ ∞

xn

· · ·w1(x1)

∫ ∞

x1

w0(t) d(G(t)− F(t)) dx1 · · · dxn dρRf (u)

+
n∑
i=0

ai

∫
uid(G− F)

= (−1)n+1
∫ c

−∞
(Gn(u)− Fn(u)) dρRf (u)+

∫ ∞

c

(Ḡn(u)− F̄n(u)) dρRf (u),

where the third equality follows from Fubini’s theorem and the last equality follows from
(3.1). Note that, from (3.2), Ḡn − F̄n ≥ 0 is equivalent to (−1)n+1(Gn − Fn) ≥ 0. Hence,∫
f d(G− F) ≥ 0.
Next assume that G >U F , and define a function ft as follows:

ft (x) =
⎧⎨
⎩
w0(x)

∫ x

t

w1(x1)

∫ xn

t

· · ·wn−1(xn−1)

∫ xn

t

wn(xn) dxn · · · dx1, x ≥ t,

0, x < t.

It is then easy to show that ρRft (x) equals 1 for x ≥ t and 0 for x < t . Hence, by Lemma 2.4, f
isU -convex. An application of Fubini’s theorem gives Ḡn(t) = ∫

ft dG and F̄n(t) = ∫
ft dF .

Thus,

Ḡn(t)− F̄n(t) =
∫
ft d(G− F) ≥ 0.

4. k-marts

In this section, k-mart structures are introduced and defined as follows.

Definition 4.1. Let U = {1, u1, . . . , un} be a C-system and, for k = �(n + 2)/2	 (where
�·	 denotes the integer part of its argument), let (X, Y ) ≡ (X1, . . . , Xk, Y ) be jointly dis-
tributed random variables with X1, . . . , Xk independent and identically distributed. We say
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that (X1, . . . , Xk, Y ) has a k-mart structure (or is a k-mart) if, for j = 1, . . . , n,

E(uj (Y ) | X1, . . . , Xk) = uj (X1)+ · · · + uj (Xk)

k
=: ūj (X) (4.1)

Remark 4.1. A 1-mart with respect to the C-system {1, x} is a one-step martingale.

Blackwell (1951) proved that a dilation is related to a one-step martingale (see also Strassen
(1965)). A similar result relating balayages and k-marts is presented in the next theorem.

Theorem 4.1. Let U = {1, u1, . . . , un} be a C-system of continuous functions on a finite
interval [a, b] and let F and G be two distributions under which E(uj ) < ∞. Then G >U F

if and only if there exists a k-mart structure (X1, . . . , Xk, Y ) with X1 ∼ F and Y ∼ G.

Theorem 4.1 is a direct consequence of the next two lemmas, where EX is a distribution
placing equal masses 1/k at Xi, i = 1, . . . , k, and (Y | X) is the conditional distribution of Y
given X.

Lemma 4.1. LetU = {1, u1, . . . , un} be a C-system of continuous functions on a finite interval
[a, b] and let F andG be two distributions under which E(uj ) < ∞. ThenG >U F if and only
if there exist jointly distributed random variables (X1, . . . , Xk, Y ) with X1 ∼ F and Y ∼ G

such that (Y | X1, . . . , Xk) >U EX.

Proof. See Lynch (1988, Theorem 4.1) for details.

Lemma 4.2. The collection of random variables (X1, . . . , Xk, Y ) is a k-mart if and only if
(Y | X1, . . . , Xk) >U EX.

Proof. If (Y | X1, . . . , Xk) >U EX then it is trivial to see that (4.1) holds since both ui and
−ui are U -convex for i = 0, . . . , n. To prove the converse, suppose that (4.1) holds. Then, by
Theorem 2.1 of Lynch (1988), E(c(Y ) | X1, . . . , Xk) ≥ E(c(Z)) for any U -convex function c,
where Z ∼ EX; thus, (Y | X1, . . . , Xk) >U EX.

Theorem 4.1 can be generalized to C-systems of continuous functions on an infinite interval,
with some mild restrictions. For the C-system U = {1, u1, . . . , un}, suppose that there exists
a positive, continuous function w for which

lim|t |→∞
ui(t)

w(t)
= li

exists and is finite for i = 1, . . . , n. Let S be a strictly increasing function from [−∞,∞] onto
[0, 1], and define

vi(t) =

⎧⎪⎨
⎪⎩
ui(S

−1(t))

w(S−1(t))
, t ∈ (0, 1),

li , t = 0, 1,

for i = 1, . . . , n. The next few results characterize the collection V = {1, v1, . . . , vn} and its
relationship with U .

Proposition 4.1. IfU is a C-system of continuous functions on (−∞,∞), thenV is a C-system
of continuous functions on [0, 1].
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Proof. Note that, for 0 ≤ x0 < x1 < · · · < xn ≤ 1,

det[vi(xj ) : i = 0, . . . , n, j = 0, . . . , n]

= det[ui(S−1(xj )) : i = 0, . . . , n, j = 0, . . . , n]
w(x1) · · ·w(xn) .

The result follows from the facts that U is a C-system and S−1 is a strictly increasing function.

Proposition 4.2. If c(·) is V -convex then c(S(·)) is U -convex. Similarly, if c(·) is U -convex
then c(S−1(·)) is V -convex.

Proof. The proof is similar to that of Proposition 4.1, but uses the determinant displayed in
Definition 2.4 (with the function c replacing the function f ).

Lemma 4.3. Let F and G be distributions on [0, 1] with no mass at 0 or 1, and let µ(t) =
F(S−1(t)) and ν(t) = G(S−1(t)) be distributions on [−∞,∞]. Then G >U F if and only
if ν >V µ.

Proof. Let c(·) be V -convex. Then, by Proposition 4.2, c(S(·)) is U -convex. Therefore,

Eν(c(X)) = EG(c(S(X))) ≥ EF (c(S(X))) = Eµ(c(X)).

The proof of the converse result is analogous.

Theorem 4.2. Let F andG be two distributions on (−∞,∞) under which E(uj ) < ∞. Then
G >U F if and only if there exists a k-mart (X1, . . . , Xk, Y ) with X1 ∼ F and Y ∼ G.

Proof. Suppose that (X1, . . . , Xk, Y ) has a k-mart structure. Then, for a convex function c,

E(c(Y )) = E(E(c(Y ) | X1, . . . , Xk)) ≥ E

(
c(X1)+ · · · + c(Xk)

k

)
= E(c(X1)),

where the last equality follows from the fact thatX1, . . . , Xk are identically distributed. There-
fore, G >U F .

To prove the converse result, suppose that G >U F . Then ν >V µ, by Lemma 4.3. By
Lemma 4.1, there exists a random vector (W1, . . . ,Wk, Z) with a k-mart structure and with
W1 ∼ µ and Z ∼ ν. Define Xi = S−1(Wi) for i = 1, . . . , k and define Y = S−1(Z). Then,
for a U -convex function c,

E(c(Y ) | X1, . . . , Xk) = E(c(S−1(Z)) | W1, . . . ,Wk)

≥ c(S−1(W1))+ · · · + c(S−1(Wk))

k

= c(X1)+ · · · + c(Xk)

k

= c̄(X),

where the inequality follows from the fact that c(S−1(·)) is V -convex.

The previous developments can be used to build complex models similar to (1.3) from a
baseline distribution using the basic operations of mixtures and convolutions.
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Definition 4.1 suggests that a population Y , with distributionG, can be modeled in terms of
a k-fold convolution of a distribution F plus an error term, i.e.

Y = X1 + · · · +Xk

k
+ ε, (4.2)

where the error term, ε, must now have more structure than in (1.4); enough that (X1, . . . , Xk, Y )

is a k-mart with respect to the classical C-system U = {1, x, . . . , xn}. The next proposition
describes such a k-mart structure.

Proposition 4.3. Let Un be the classical C-system {1, x, . . . , xn}, and let X1, . . . , Xk be
independent and identically distributed with X1 ∼ F for some distribution F with respect
to which the expectations of the functions in Un are finite. For some random variable ε with
E(|ε|j ) < ∞, define Y as in (4.2). Then (X1, . . . , Xk, Y ) has a k-mart structure if and only if

E(εj | X1, . . . , Xk) = (X1 − X̄)j + · · · + (Xk − X̄)j

k
(4.3)

for j = 1, . . . , n, where X̄ = (X1 + · · · +Xk)/k.

Proof. Assume that (X1, . . . , Xk, Y ) has a k-mart structure. Then

E(εj | X1, . . . , Xk) = E((Y − X̄)j | X1, . . . , Xk)

= E

( j∑
l=0

(
j

l

)
(−X̄)j−lY l | X1, . . . , Xk

)

=
j∑
l=0

(
j

l

)
(−X̄)j−l E(Y l | X1, . . . , Xk)

=
j∑
l=0

(
j

l

)
(−X̄)j−l 1

k

k∑
i=1

Xli

= 1

k

k∑
i=1

j∑
l=0

(
j

l

)
(−X̄)j−lXli

= 1

k

k∑
i=1

(Xi − X̄)j ,

as required. Proving that (X1, . . . , Xk, Y ) has a k-mart structure given that (4.3) holds is similar.

The next few results give properties of k-marts and various useful relationships.

Proposition 4.4. The collection of random variables (X1, . . . , Xk, Y ) is a k-mart with respect
to the C-system {1, u1, . . . , un} if and only if (ūj (X), uj (Y )) is a one-step martingale for
j = 1, . . . , n.

Proof. The proof follows straightforwardly from Definition 4.1.

Proposition 4.5. Let U be the classical C-system {1, x, . . . , xn}. If (X1, . . . , Xk, Y ) is a
k-mart with respect to U , then (ZX1, . . . , ZXk, ZY ) and (Z + X1, . . . , Z + Xk,Z + Y ),
where Z is independent of Xi, i = 1, . . . , k, and Y , are also k-marts.
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Proof. The result is proved here for the multiplicative case. The proof for the additive case
is similar. By direct calculation,

E((ZY )j | ZX1, . . . , ZXk) = E(ZjY j | ZX1, . . . , ZXk)

= E(E(ZjY j | Z,X1, . . . , Xk) | ZX1, . . . , ZXk)

= E(Zj E(Y j | Z,X1, . . . , Xk) | ZX1, . . . , ZXk)

= E(Zj E(Y j | X1, . . . , Xk) | ZX1, . . . , ZXk)

= E

(
Zj
X
j
1 + · · · +X

j
k

k

∣∣∣∣ ZX1, . . . , ZXk

)

= E

(
(ZX1)

j + · · · + (ZXk)
j

k

∣∣∣∣ ZX1, . . . , ZXk

)

= (ZX1)
j + · · · + (ZXk)

j

k
,

as required.

Proposition 4.6. For the classical C-system U , if Y >U X and Z is independent of X and Y ,
then ZY >U ZX and Z + Y >U Z +X.

Proof. This result is a direct consequence of Lemma 4.1 and Proposition 4.5.

Proposition 4.6 can be used to study how, for scale and location families, balayage structures
for mixing distributions are transmitted to the mixed distribution. Let Fθ(x) = F(x/θ), where
F is a cumulative distribution function and θ ∈ � is a scale parameter, and let µ and ν be two
distributions on θ . Let X, Y , and Z be independent with X ∼ µ, Y ∼ ν, and Z ∼ F . Then
XZ and YZ are random variables with respective mixed distributions Fµ = ∫

Fθ dµ(θ) and
Fν = ∫

Fθ dν(θ).
More generally, a hierarchical balayage arises naturally when fitting more general mixtures

using the ‘method of moments’. To see this, for r = 1, 2, . . . let Wr denote the probability
distribution that places the masses wr1, . . . , wrr at the respective positions θr1, . . . , θrr ∈ �,
where this is done in such a way thatWr+1 >U2r−1 Wr . Then define rF as the distribution of a
mixture over the family Fθ , θ ∈ �, such that

rF =
∫
Fθ dWr(θ) =

r∑
i=1

wriFθri .

Assume that Fθ is a distribution with density fθ with respect to some measure λ, and that
fθ (x) is totally positive in θ and x (see Karlin (1968) for the definitions and its consequences).
Then, by the variation diminishing theorem (Karlin (1968)), k+rF − kF has at most 2k − 1
sign changes, since the difference

k+rf − kf =
∫
fθ (dWk+r (θ)− dWk(θ))

has at most 2k sign changes. Assume also that

Ũ2r−1 =
{
ũj : ũj (θ) =

∫
uj (x) dFθ(x), j = 0, . . . , 2r − 1

}
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is a C-system for r = 1, 2, . . . . Then, by Theorem 3.1 of Lynch (1988),

k+rF >U2r−1 kF .

Hence, by Lemma 4.1, there exist jointly distributed random variables with a k-mart structure
and marginal distributions kF and k+rF .

Vera and Lynch (2005a) used these ideas to fit a binomial mixture.

5. Synthetic data

The ideas presented in the previous sections can be applied to problems of statistical
disclosure control, which is defined as ‘the discipline concerned with the modification of
statistical data, containing individual information about entities…, in order to prevent third
parties working with these data to recognize individuals in the data’ (Willenborg and de Waal
(2001a)).

Statistics such as the mean and the variance are not enough for many statistical analyses, and
the original data may be required. Nevertheless, because of disclosure limitations, sometimes
it is not possible to release the original version of the data to the parties doing the statistical
analysis. It could be possible, however, to release a data set similar to the original one, keeping
some of its properties but concealing any sensitive information (see, e.g. Dalenius and Reiss
(2002)).

In this section, some techniques for data disclosure are presented which use the ideas
of balayages and k-marts. In particular, a modification of microaggregation resulting in a
balayage structure is proposed in Subsection 5.1, and the generation of synthetic data through
the generation of k-marts is discussed in Subsection 5.2.

5.1. Moment-preserving microaggregation

One technique of data disclosure is microaggregation, which consists in grouping the data
and replacing the values within each group by their mean (Defays and Anwar (1995)). If there
were only one group then all of the original data would be replaced by one value, the mean. If
each group were to contain one data point, then the disclosed data would be the original data.

Suppose that the original data are divided into groups of size n, let x1, . . . , xn denote the
original values in one of the groups, and let y1, . . . , yn denote the released values for this
group. Then, using microaggregation, yi = x̄, i = 1, . . . , n, i.e. the released version replaces
the empirical distribution within this group by a distribution that places mass 1 at z1 := x̄.
While this construction preserves the first moment of the group, it does not preserve higher-
order moments; in particular, the released values for the group will have the smallest second
moment among all those distributions having the same first moment. Moreover, the data in the
group is a balayage of the released data with respect to the C-system {1, x}.

An alternative way of releasing the data within a group is by considering a distribution that
matches the first 2k− 1 moments of the group. Here we consider the narrow representation of
those moments, which is a distribution with the specified 2k − 1 moments that minimizes the
2kth moment among all those distributions that match the first 2k − 1 moments (Denuit et al.
(2000)). A method of finding such a distribution, similar to that of Lindsay (1989, Theorem 2C),
is presented in the following results, restricted only to moments of the classical C-system.

In preparation for the next proposition, the polynomial Q is defined as

Q(z) := (z− z1) · · · (z− zk) =: zk + ak−1z
k−1 + · · · + a1z+ a0. (5.1)

Also, H denotes a distribution whose support, {z1, . . . , zk}, is such that z1 < · · · < zk .
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Proposition 5.1. Let Z ∼ H . Then

E(ZjQ(Z)) = 0 (5.2)

for j = 0, 1, . . . , 2k − 1, provided that the expectations exist.

Proof. The result follows from simply noting that Q is equal to 0 when evaluated at the
support points of H .

Proposition 5.1 can be used to find the support points, z1, . . . , zk , of any distribution H ,
given the first 2k − 1 moments of H , i.e.

µj :=
∫
zj dH(z), j = 0, 1, . . . , 2k − 1, (5.3)

by simply finding the roots of Q.
The next proposition tells us how to find the polynomialQ (see (5.1)) from the momentsµj .

Proposition 5.2. The coefficients of Q, namely a0, . . . , ak−1, are the solution to the system of
equations

µja0 + µj+1a1 + · · · + µj+k−1ak−1 = −µk+j , j = 0, . . . , k − 1.

Proof. The result is immediate from (5.2) and (5.3).

Remark 5.1. Note that the polynomial Q is similar to the polynomial defined in Denuit et
al. (2000, Equation 4.4). However, all the coefficients of Q can be found by solving one
system of equations, which is numerically more efficient than calculating a determinant for
each coefficient.

The next proposition shows how to determine the masses α1, . . . , αk corresponding to
z1, . . . , zk for the distribution H .

Proposition 5.3. Let Z ∼ H . Then

αi = E

(
(Z − z1) · · · (Z − zi−1)(Z − zi+1) · · · (Z − zk)

(zi − z1) · · · (zi − zi−1)(zi − zi+1) · · · (zi − zk)

)
.

Proof. The result follows from simply noting that the function inside the expectation is equal
to 0 at all points of support except zi , where it is equal to 1.

Note that the function inside the expectation can be evaluated quickly fromQ using synthetic
division.

Propositions 5.1, 5.2, and 5.3 yield an algorithm to find the principal representation (Karlin
and Studden (1966, Chapter II)) of a finite moment sequence in the case of the classical
C-system, when n is odd. This algorithm has been implemented by the authors, using the
computer language R. A description of this algorithm is as follows.

Algorithm 5.1.

• Input µ1, µ2, . . . , µ2k−1.

• Solve for a0, . . . , ak−1 using

µja0 + µj+1a1 + · · · + µj+k−1ak−1 = −µk+j , j = 0, . . . , k − 1.
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• Find the roots, z1, . . . , zk , of Q(z) = zk + ak−1z
k−1 + · · · + a1z+ a0 = 0.

• Perform synthetic division:

Q′
i (z) = Q(z)

z− zi
= zk−1 + bi,k−2z

k−2 + · · · + bi1z1 + bi0, i = 1, . . . , k.

• Let

αi = µk−1 + bi,k−2µk−2 + · · · + bi1µ1 + bi0

Q′
i (zi)

, i = 1, . . . , k.

• Output z1, . . . , zk, α1, . . . , αk .

5.2. Generating k-marts

One way to generate synthetic data is through the use of k-marts. Suppose that X1, . . . , Xk
is a sample from the original data. Let Y be a random variable that is jointly distributed with
the Xi in such a way that (X1, . . . , Xk, Y ) is a k-mart. Then in the released data we could
substitute the original values of this group with values generated from the distribution of Y
given X1, . . . , Xk .

We next present two ways of generating k-marts. The first is based on the construction
of a discrete distribution for Y given X1, . . . , Xk . In the second, the distribution of Y given
X1, . . . , Xk is constructed to be ‘most random’ in the sense of maximum entropy. These two
approaches are discussed in Sections 5.2.1 and 5.2.2, respectively.

Throughout this section, U = {1, u1, . . . , un} is assumed to be a C-system and, for k =
�n+ 2/2	, X1, . . . , Xk are assumed to be independent and identically distributed.

5.2.1. The discrete-distribution approach. Here we construct a k-mart (X = (X1, . . . , Xk), Y )

where Y | X1, . . . , Xk has a discrete distribution, say Gd. If Yd ∼ Gd (for some random
variable Yd), it is then necessary that

E(uj (Yd)) = ūj (X), j = 1, . . . , n. (5.4)

One option would be to set the support points for Yd, say y1, . . . , yk , to equal X1, . . . , Xk ,
and to set the probability masses all to equal 1/k. In such a case, it is trivial to prove that Y is
equal in distribution to X1 and that (X1, . . . , Xk, Y ) is a k-mart.

Another option is to add an extra support point for Yd, say yk+1, and to set the support points’
respective probability masses to equal p1, . . . , pk, pk+1. This distribution is chosen such that
(5.4) is satisfied, i.e. such that

p1uj (y1)+ · · · + pkuj (yk)+ pk+1uj (yk+1) = uj (X1)+ · · · + uj (Xk)

k
, j = 1, . . . , n.

The support of a distribution Gd, {y1, . . . , yk, yk+1}, satisfying

µj =
∫
yj dGd(y) = X

j
1 + · · · +X

j
k

k
, j = 1, . . . , 2k − 1,

can be found using Propositions 5.1 and 5.2. However, 2k + 1 moments are needed.
Let θj = ∫

y2k−1+j dGd(y), j = 1, 2, be parameters associated withGd. The space,�, of
possible values for the pair (θ1, θ2) was studied in detail for C-systems by Karlin and Studden
(1966, Chapter II, Section 7). Lindsay (1989, Theorem 2A) gave a simple solution for� in the
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case of classical C-systems. According to his result, θ2 can be any scalar but θ1 must satisfy
the determinant condition ∣∣∣∣∣∣∣∣∣

1 µ1 · · · µk−1 µk
µ1 µ2 · · · µk µk+1
...

...
. . .

...
...

µk µk+1 · · · µ2k−1 θ1

∣∣∣∣∣∣∣∣∣
> 0.

Note that the above condition determines a lower bound, L, for θ1. Karlin and Studden
(1966, Chapter II, Section 6) proved that L is the 2kth moment of the principal representation
of (1, µ1, . . . , µ2k−1). In this case, the principal representation of these moments is the
distribution putting equal masses 1/k at X1, . . . , Xk .

The above discussion gives the following result.

Lemma 5.1. For the moment sequence (1, µ1, . . . , µ2k−1), the space,�, of possible values of
µ2k and µ2k+1 is

� = {(θ1, θ2) : θ1 > L, θ2 ∈ R}
with

L = X2k
1 + · · · +X2k

k

k
,

where X1, . . . , Xk is the principal representation of (1, µ1, . . . , µ2k−1).

The procedure presented above can be used to model a population that is a balayage of a
baseline model, by adding one or two parameters for the 2kth and (2k + 1)th moments of the
distribution of Y | X1, . . . , Xk . This model may be closer to the real population, while still
keeping the salient features of the population in terms of the baseline model.

5.2.2. A maximum-entropy approach. A distribution for Y | X1, . . . , Xk , say Ge, can be con-
structed in such a way that (X1, . . . , Xk, Y ) is a k-mart andGe is most random or most uncertain
in the sense of information entropy. We focus on C-systems with u0 ≡ 1. For a distribution µ
with density fµ with respect to some measure ν, the entropy of µ is defined as

ent(µ) = −
∫

log(fµ) dµ.

It is well known (see Jaynes (1957a), (1957b)) that if, for some given moment sequence
η1, . . . , ηn, the entropy is maximized over all distributions µ satisfying∫

uj (y) dµ(y) = ηj , j = 1, . . . , n,

then the maximum is attained at µ∗, where

dµ∗(y) = exp

{
−

n∑
j=1

λjuj (y)+ ψ(λ1, . . . , λn)

}
dν(y).

Here ψ(λ1, . . . , λn) is a normalizing constant (such that the density integrates to 1) and
λ1, . . . , λn are the solutions to the system of equations

∂ψ(λ1, . . . , λn)

∂λj
= ηj , j = 1, . . . , n.
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For x = (x1, . . . , xk), define λ(x) to be the solution to the normal equations

∂ψ(λ1, . . . , λn)

∂λj
= ūj (x), j = 1, . . . , n. (5.5)

Suppose now that (X1, . . . , Xk) has a distribution F with support S, and that (5.5) has a
solution for every x ∈ T ⊂ S. Define Ge, the distribution of Y | X1, . . . , Xk , by

dGe(y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp

{
−

n∑
j=1

λj (X)uj (y)+ ψ(λ(X))

}
dν(y), X ∈ T ,

1

k
IX1 + · · · + 1

k
IXk , X ∈ T c,

where IX denotes the density (with respect to ν) of a distribution that places mass 1 at the
point X. For X ∈ T , Ge is the most random or most uncertain distribution among all those
distributions G satisfying

∫
uj (y) dG(y) = ūj (X), j = 1, . . . , n.

Also, the marginal distribution of Y is a balayage of the marginal distribution of X1.
When fitting a model to a population, this approach allows us to improve the fit without

adding any extra parameters. Moreover, if (5.5) has a solution for every x ∈ S, then a model
fitted in this way maximizes the entropy of the conditional distribution ofY | X, thus accounting
for a ‘worst-case scenario’, while matching several moments of the target population.

6. Construction of a 1-mart with ‘most nearly identical’ elements

Theorems 4.1 and 4.2 imply the existence of a transition kernel from (X1, . . . , Xk) to Y ,
given the marginal distributions F and G. Blackwell (1951) gave a construction of such a
transition kernel for the C-system {1, x} where the desired kernel is obtained as an iterative
procedure each iteration of which is a dilation and which converges to the required transition
kernel after an infinite number of steps. In this section, we construct such a transition kernel
for the C-system {1, u(x)} which is not iterative, but is direct, with the added benefit that the
joint distribution is that which makesX ‘most nearly identical’ to Y , i.e. maximizes P(X = Y ).

The ideas in this section can be used to fit stochastic models in which the observed variable
is a dilation of a latent variable that is of interest to the researcher, yet the probability that the
two variables are equal is maximized. We require the following definition.

Definition 6.1. The jointly distributed random variables (X, Y ) are said to be a 1-mart structure
if E(u(Y ) | X) = u(X).

Let F and G be absolutely continuous with respect to the Lebesgue measure, σ , and let f
and g be their respective densities. Assume that g− f has a finite number of sign changes and
that these sign changes occur at ζ1, . . . , ζ2m for some m ∈ {1, 2, . . . } (according to Vera and
Lynch (2005b, Corollary 3.1), the number of sign changes is even).

Define p by

p = 1

2

∫
|f − g| dσ =

∫
(f − g)+ dσ,
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and let p̄ = 1 − p; thus defined, p is just the Scheffé distance between F and G. Also, let

h0 = f ∧ g
p̄

, h1 = (f − g)+

p
, h2 = (g − f )+

p
,

where the binary operator ‘∧’ denotes the minimum of its arguments and (·)+ returns its
argument when it is positive and 0 when its argument is negative.

The next proposition gives a mixture representation for f and g in terms of hi, i = 0, 1, 2.

Proposition 6.1. The densities f and g can be represented as mixtures of h0, h1, and h2 as
follows:

f = p̄h0 + ph1, g = p̄h0 + ph2.

Proof. To prove the result for f , simply note that ph1 = (f − g)+ and p̄h0 = f ∧ g.
Therefore,

p̄h0 + ph1 = f ∧ g + (f − g)+ = f.

The proof for g is similar.

The following proposition gives a necessary and sufficient condition in terms of hi, i = 1, 2,
for g to be a balayage of f (with respect to U = {1, u(x)}).
Proposition 6.2. For the densities f and g and their mixture representation in terms of h0, h1,
and h2, we have g >U f if and only if h2 >U h1.

Proof. For any function c,
∫
c(g − f ) dσ = p

∫
c(h2 − h1) dσ.

Therefore,
∫
cg dσ −

∫
cf dσ ≥ 0 ⇐⇒

∫
ch2 dσ −

∫
ch1 dσ ≥ 0.

Thus, if c is U -convex then
∫
cg dσ ≥

∫
cf dσ ⇐⇒

∫
ch2 dσ ≥

∫
ch1 dσ,

which completes the proof.

Propositions 6.1 and 6.2 suggest a method to construct jointly distributed random variables
X and Y with respective marginals F andG. In the case in which g− f has a finite number of
sign changes, say 2m, this method is as follows.

Define ζ0 = −∞ and ζ2m+1 = ∞, let Aj = (ζ2j , ζ2j+1), j = 0, . . . , m, and let Bj =
[ζ2j−1, ζ2j ], j = 1, . . . , m. Notice that, by Vera and Lynch (2005b, Corollary 3.1), g − f is
positive on Aj , j = 0, . . . , m, and is negative on Bj , j = 1, . . . , m. Therefore, the supports
of h1 and h2 are B1 ∪ · · · ∪ Bm and A0 ∪ · · · ∪ Am, respectively.

Let

βj =
∫
Bj

h1 dσ and h1j (x) = h1(x)

βj
1{x∈Bj }, (6.1)

https://doi.org/10.1239/aap/1175266471 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1175266471


124 F. VERA AND J. LYNCH

for j = 1, . . . , m, and note that β1 + · · · + βm = 1 and

h1 = β1h11 + · · · + βmh1m. (6.2)

Also, let

αjL =
∫
A0∪···∪Aj−1

h2 dσ, αjR =
∫
Aj∪···∪Am

h2 dσ,

h2jL(x) = h2(x)

αjL
1{x∈A0∪···∪Aj−1}, h2jR(x) = h2(x)

αjR
1{x∈Aj∪···∪Am}.

(6.3)

Note that αjL + αjR = 1 and that

h2 = αjLh2jL + αjRh2jR (6.4)

for j = 1, . . . , m. Finally, letµ1j ,µ2jL, andµ2jR be the respective expectations of u(Z)when
Z is distributed according to h1j , h2jL and h2jR, for j = 1, . . . , m, and let

h2j = µ2jR − µ1j

µ2jR − µ2jL
h2jL + µ1j − µ2jL

µ2jR − µ2jL
h2jR. (6.5)

We now generate (X, Y ) jointly according to the following construction.

Construction 6.1. (Joint distribution for (X, Y ).)

1. Generate U from a uniform random variable in the interval (0, 1).

2. If U > p (i.e. with probability p̄),

• generate X from h0 and

• set Y = X.

3. If U ≤ p (i.e. with probability p),

• generate X from h1 and,

• for X ∈ Bj , generate Y from the mixture

µ2jR − u(X)

µ2jR − µ2jL
h2jL + u(X)− µ2jL

µ2jR − µ2jL
h2jR.

This construction produces a 1-mart (X, Y ) where X and Y are most nearly identical and
have respective marginals F and G. This is stated formally in the next theorem. For its proof,
the following result (see Lemma 2.1 and Equation (2.5) of Sethuraman (2002)) is needed.

Lemma 6.1. Let F and G be two distribution functions and let p be the Scheffé distance
between F and G. Then

inf P(X �= Y ) = p,

where the infimum is over all jointly distributed random variables X and Y with respective
marginals F and G.

Theorem 6.1. If X and Y are generated using Construction 6.1, then E(u(Y ) | X) = u(X)

and P(X = Y ) is maximized among all jointly distributed random variables X and Y with
respective marginals F and G.
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The above theorem is a consequence of the following propositions. By q we denote the
density of the conditional distribution ofY givenX, given by the second step of Construction 6.1.

Proposition 6.3. If (X, Y ) is generated from Construction 6.1, then

E(u(Y ) | X) = u(X).

Proof. By direct calculation,

E(u(Y ) | X) = E(E(u(Y ) | X,U))
= E(E(u(Y )(1{U>p} + 1{U≤p}) | X,U) | X)
= E(E(u(X)1{U>p} | X,U) | X)+ E(E(u(Y )1{U≤p} | X,U) | X)

= E(u(X)1{U>p} | X)+ E

(
E

(
u(Y )1{U≤p}

m∑
j=1

1{X∈Bj }
∣∣∣∣ X,U

) ∣∣∣∣ X
)

= E(1{U>p})E(u(X) | X)+ E

( m∑
j=1

E(u(Y )1{U≤p}1{X∈Bj } | X,U)
∣∣∣∣ X

)

= p̄u(X)

+ E

(
1{U≤p}

m∑
j=1

(
µ2jR − u(X)

µ2jR − µ2jL
µ2jL + u(X)− µ2jL

µ2jR − µ2jL
µ2jR

)
1{X∈Bj }

∣∣∣∣ X
)

= p̄u(X)+ E(1{U≤p})E

( m∑
j=1

u(X)1{X∈Bj }
∣∣∣∣ X

)

= p̄u(X)+ p E(u(X) | X)
= p̄u(X)+ pu(X)

= u(X),

as required.

Proposition 6.4. The density h2 can be represented as a mixture of the densities h2j , j =
1, . . . , m, as follows, where βj is as defined in (6.1) and h2j is as defined in (6.3):

h2 =
m∑
j=1

βjh2j .

Proof. Let us try to represent h2 as a mixture of h21L, h21R, . . . , h2mL, h2mR . By (6.4),
there are an infinite number of ways to do this, since this mixture is not identifiable. Let us
suppose that

h2 =
m∑
j=1

βj (γjLh2jL + γjRh2jR), (6.6)

where γjL + γjR = 1, j = 1, . . . , m. Note that if (6.6) holds then

µ2 =
m∑
j=1

βj (γjLµ2jL + γjRµ2jR).
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Recall that µ2 = µ1 since h2 >U h1. Also, from (6.2) it follows that

µ2 = µ1 =
m∑
j=1

βjµ1j .

Therefore,
m∑
j=1

βjµ1j =
m∑
j=1

βj (γjLµ2jL + γjRµ2jR).

One way for this equality to hold is for µ1j = γjLµ2jL + γjRµ2jR to hold. This gives

γjL = µ2jR − µ1j

µ2jR − µ2jL
and γjR = µ1j − µ2jL

µ2jR − µ2jL
,

for j = 1, . . . , m. This, together with (6.5), completes the proof.

Proposition 6.5. The variable Y generated using Construction 6.1 has the required marginal
distribution, i.e. Y ∼ G.

Proof. By Proposition 6.1, all we need to prove is that Y ∼ h2 if X ∼ h1. To do so, note
that
∫
q(y|x)h1(x) dx =

m∑
j=1

βj

∫
Bj

(
µ2jR − u(x)

µ2jR − µ2jL
h2jL(y)+ u(x)− µ2jL

µ2jR − µ2jL
h2jR(y)

)
h1j (x) dx

=
m∑
j=1

βj

(
µ2jR − µ1j

µ2jR − µ2jL
h2jL(y)+ µ1j − µ2jL

µ2jR − µ2jL
h2jR(y)

)

=
m∑
j=1

βjh2j (y)

= h2(y).

The results presented above can be generalized to the case in which the number of sign
changes is countable.
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