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Abstract

Endothelial dysfunction is a turning point in the initiation and development of atherosclerosis and its complications and is predictive of

future cardiovascular events. Ingestion of high-carbohydrate or high-fat meals often results in postprandial hyperglycaemia and/or hyper-

triacylglycerolaemia that may lead to a transient impairment in endothelial function. The present review will discuss human studies

evaluating the impact of high-carbohydrate and high-fat challenges on postprandial endothelial function as well as the potential role of

oxidative stress in such postprandial metabolic alterations. Moreover, the present review will differentiate the postprandial endothelial

and oxidative impact of meals rich in varying fatty acid types.
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The Westernisation of dietary patterns has led to the

consumption of more transformed food rich in processed

sugars, SFA and trans-fatty acids, a higher n-6:n-3 PUFA

ratio, as well as less fruit, vegetables, fish and grains. More-

over, portion sizes and meal frequencies have increased,

resulting in individuals spending considerably more time

in the postprandial state, identified as being a critical

period for atherosclerotic plaque formation(1). Such dietary

patterns and overnutrition are linked to obesity, dyslipidae-

mia and hyperglycaemia, all of which contribute to insulin

resistance, diabetes, atherosclerosis, hypertension and

CVD. Postprandial endothelial dysfunction represents the

common link between these events and could involve oxi-

dative stress(2). The objective of the present review is thus

to evaluate the role that oxidative stress plays in the post-

prandial endothelial events following acute hypergly-

caemia and hypertriacylglycerolaemia. To meet this

objective, we have considered studies evaluating the post-

prandial impact of oral carbohydrate or fatty acid chal-

lenges on in vivo oxidative stress and endothelial

function in human subjects. Studies evaluating endothelial

function by brachial ultrasonography or through markers

of endothelial integrity (i.e. adhesion molecules, selectins,

von Willebrand factor, endothelial microparticles, etc.)

were considered.

General background

Endothelial function

The endothelium lines the inner wall of blood vessels and

plays an important role in distributing nutrients and in reg-

ulating blood flow, coagulation, inflammation and smooth

muscle cell proliferation. It responds to both mechanical

stimuli and chemical stimuli that have either vasodilator

(i.e. NO, prostacyclins, etc.) or vasoconstrictor (i.e. angio-

tensin II, endothelin-1, etc.) effect(3,4). Endothelial function

is often evaluated by ultrasonography of the brachial artery

and is expressed as a percentage of endothelium-depen-

dent vasodilation in response to transient ischaemia

(flow-mediated dilatation)(5,6). This vasodilatation is princi-

pally mediated by NO released from endothelial cells.

Endothelial dysfunction is defined as a reduced response

to vasodilatory stimuli and occurs when the normal equili-

brium between vasoactive stimuli is disrupted. Endothelial

dysfunction also occurs in conjunction with impaired anti-

platelet, anti-proliferative and anti-thrombotic activity,

transforming the dysfunctional endothelium into a pro-

atherogenic environment(7–9). Endothelial dysfunction is

an early step in the setting of CVD (atherosclerosis, hyper-

tension, myocardial infarction and congestive heart failure)

and is linked to conditions predisposing to these diseases:
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smoking, a sedentary lifestyle, dyslipidaemia, obesity,

insulin resistance, type 2 diabetes mellitus (T2DM) and

chronic renal failure(3,4). Endothelial dysfunction is thus

predictive of future cardiovascular events in healthy sub-

jects(10–12) and patients with pre-existing CVD(4,9,13,14) and

has been identified as the ‘ultimate risk factor’ for CVD(15).

Pathophysiology of oxidative stress

In an aerobic state, biological systems utilise O2 for the

majority of processes (i.e. energy substrate oxidation), inevi-

tably resulting in the formation of reactive oxygen species

(ROS). Major cellular sources of ROS are the mitochondrial

electron transport chain, which specifically produces super-

oxide anions(16–18), and the enzyme NADPH oxidase (the

main ROS-producing enzyme in the vasculature)(19). In

addition to physiological processes, ROS can be increased

by lifestyle habits (i.e. smoking, sedentariness or physical

activity), diseases (i.e. diabetes and obesity) and nutritional

choices (i.e. high-energy, -glycaemic and/or -fat diets and

meals), the latter being the focus of the present

review(2,18). In fact, according to current literature, excessive

dietary intake of carbohydrates or fatty acids leads to

increased oxidative stress levels either directly, since meals

often include oxidised nutrients, or through activation of

mitochondrial metabolism(17,20). The latter process begins

with postprandial hyperglycaemia and hypertriacylglycero-

laemia, which overload the mitochondrial electron transport

chain resulting in increased production of ROS(17,20,21). Glu-

cose and some fatty acids (notably SFA) can also directly

activate the ROS-producing NADPH oxidase(22). When

produced in excess of antioxidant capacity, ROS lead to oxi-

dative stress(23), which has been defined as an ‘imbalance

between oxidants and antioxidants in favour of oxidants,

potentially leading to cellular and tissue damage’(17). Oxi-

dative stress is thought to be one of the underlying causes

of ageing(24) and many important conditions including Par-

kinson’s(25) and Alzheimer’s diseases(26), insulin resistance,

the metabolic syndrome, T2DM(2,21,27,28) and atherosclerosis

and its complications(2,21).

In endothelial cells, superoxide anions produced in

excess along with NO can rapidly react to form highly

unstable peroxynitrite(20,29–31) or inhibit endothelial and

inducible NO synthase resulting in decreased NO bioavail-

ability(32). Therefore, a NO paradox exists whereby the

actions of NO are mediated by its concentration and by the

redox state of the environment in which it is secreted(20,29).

Dysregulated oxidative stress is therefore believed to play

a major role in the development of endothelial dysfunc-

tion(7,17,33,34). Oxidative stress can also induce endothelial

activation, resulting in the release of intracellular adhesion

molecules (ICAM), vascular cell adhesion molecules

(VCAM), selectins and endothelial microparticles that are

cytotoxic to endothelial cells, impair NO production and

lead to further dysfunction(23,31,33). These events are also

involved in pro-inflammatory processes.

Postprandial endothelial function and oxidative stress:
overview of human studies

Hyperglycaemia-induced oxidative stress and endothelial
dysfunction

Diabetes, impaired glucose tolerance (IGT) and even

hyperglycaemia that is well below the diagnostic threshold

for diabetes are invariably associated with atherosclerosis

and poorer cardiovascular outcomes, suggesting an

impact of hyperglycaemia on endothelial function(35,36).

Moreover, postprandial hyperglycaemia was deemed an

important and independent risk factor for CVD in

T2DM(37) and healthy subjects(38). This, and the fact that

the diabetic population has increased oxidant and lowered

antioxidant levels(2,39), was the premise for the hypothesis

that oxidative stress links postprandial hyperglycaemia and

endothelial dysfunction.

Postprandial impact of oral carbohydrate challenges in

healthy subjects. The endothelial and oxidative impact

of oral carbohydrate challenges has been investigated by

several groups (detailed in Table 1). Oral carbohydrate chal-

lenges were defined as high-carbohydrate meals (. 65%

total meal energy from carbohydrates(40)) and oral glucose

tolerance tests (OGTT) although the latter do not represent

a physiological situation but rather a commonly used

method for the evaluation of glucose metabolism and insulin

resistance. Of these, Ceriello et al.(39) were among the first to

show decreased postprandial endogenous antioxidant

levels (sulfydryl groups, uric acid and vitamins C and E)

and plasma antioxidant capacity (i.e. plasma total antioxi-

dant content; total radical trapping antioxidant potential

(TRAP) method) following an OGTT and to observe

increased markers of endothelial damage (ICAM) in healthy

and T2DM individuals(41). Similar observations regarding

increased endothelial activation markers were also made fol-

lowing OGTT(42,43). Recently, Watanabe et al.(44) and many

others observed that an OGTT significantly decreased endo-

thelial function assessed by ultrasonography that was corre-

lated with postprandial hyperglycaemia (r 20·61; P,0·05)

and insulin release (r 20·55; P,0·05). Importantly, some

groups have observed no demonstrable increases in post-

prandial oxidative stress (malondialdehyde (MDA), nitrate/

nitrite and H2O2 levels) or decreases in plasma antioxidant

capacity (i.e. ferric-reducing capacity; ferric-reducing ability

of plasma (FRAP) method) or endothelial dysfunction in

healthy men following acute glucose or maltodextrin oral

loads(43,45–47).

Studies in which markers of oxidative stress and

endothelial function were not measured simultaneously

(Table 1) must be interpreted with caution, as they cannot

establish a link of causality between these two phenomena.

In contrast, studies listed in Table 2 did indeed evaluate both

phenomena together and are thus better suited to establish a

potential causal link between hyperglycaemia-induced

oxidative stress and postprandial endothelial impairment.

Ceriello et al.(33) observed increased oxidative product
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Table 1. Studies evaluating the impact of postprandial hyperglycaemia on markers of oxidative stress or endothelial function

Study Study population Intervention Postprandial oxidative stress
Postprandial
endothelial function Comments

Ceriello et al. (1998)(41) HS (n 7); T2DM (n 9) OGTT (75 g glucose) NA " ICAM More important for T2DM; prevented
by GSH administration

Yngen et al. (2001)(43) HS (n 11) OGTT (75 g glucose) NA ¼ P-selectin and vWF
Yngen et al. (2001)(43) T2DM (n 11) OGTT (75 g glucose) NA " P-selectin

¼ vWF
Nappo et al. (2002)(47) HS (n 20) High-CHO meal

(144 g CHO, 75% E)
NA ¼ ICAM, VCAM

Derosa et al. (2010)(42) HS (n 256); T2DM (n 274) OGTT (75 g glucose) NA " ICAM, VCAM and
e-selectin

More important for T2DM

Watanabe et al. (2011)(44) HS (n 25) OGTT (75 g glucose) NA # FMD
Lewandowski et al. (2011)(105) HS (n 32) OGTT (75 g glucose) NA # MMP-9

¼ MMP-2
Ceriello et al. (1998)(39) HS (n 10); T2DM (n 10) OGTT (75 g glucose) # Plasma antioxidants

and TRAP
NA More important for T2DM

Serin et al. (2007)(56) HS (n 35) OGTT (75 g glucose) ¼ TBARS NA
Serin et al. (2007)(56) IGT (n 25); T2DM (n 20) OGTT (75 g glucose) " TBARS and oxLDL NA

# PON1
Fisher-Wellman

& Bloomer (2010)(46,71)
HS (n 10) 2·25 g glucose or

maltodextrin/kg body mass
¼ MDA, NOx, FRAP and H2O2 NA

Bloomer et al. (2010)(45) HS (n 9) OGTT (75 or 150 g) ¼ MDA and H2O2 NA
Gregersen et al. (2012)(72) HS (n 7); HS

with FHD (n 8)
High-CHO meal

(182·7 g CHO, 76% E)
# Plasma antioxidant

capacity, SOD
NA

HS, healthy subjects; T2DM, type 2 diabetes mellitus; OGTT, oral glucose tolerance test; NA, not available; " , increase; ICAM, intracellular adhesion molecule; GSH, glutathione; ¼ , unchanged; vWF, von Willebrand factor; CHO,
carbohydrates; E, energy; VCAM, vascular cell adhesion molecule; # , decrease; FMD, flow-mediated dilatation; MMP, matrix metalloproteinase; TRAP, total radical trapping antioxidant potential; IGT, impaired glucose tolerance;
TBARS, thiobarbituric acid-reactive substance; oxLDL, oxidised LDL; PON1, paraoxonase 1, MDA, malondialdehyde; NOx, nitrate/nitrite; FRAP, ferric-reducing ability of plasma; FHD, familial history of diabetes; SOD, superoxide
dismutase.

S.
Lacro

ix
et

a
l.

2
9
0

Nutrition Research Reviews

https://doi.org/10.1017/S0954422412000182 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0954422412000182


levels (nitrotyrosine) along with endothelial activation

(ICAM, VCAM and E-selectin) following an OGTT. An

OGTT was also associated with lowered postprandial

endothelial function and correlated (r 20·80; P,0·05)

with increased lipid peroxidation (MDA)(48). Acute hyper-

glycaemic load was also associated with lower total

plasma antioxidant capacity (FRAP method), vitamin C

and arginine (a precursor of NO) levels, consistent with

increased postprandial oxidative stress(48).

Other studies have evaluated the impact of the co-inges-

tion or infusion of antioxidants with high-carbohydrate

challenges. Ceriello et al. found that administration of glu-

tathione or pre-treatment with statins (having antioxidant

properties(49)) during an OGTT abolished its oxidative

stress-raising and endothelial-impairing properties in

healthy and T2DM individuals(41,50,51). Title et al.(52) also

observed that an OGTT led to attenuated postprandial

endothelial function, which was prevented by co-adminis-

tration of the antioxidant vitamins C and E. Xiang et al.(53)

demonstrated that infusion of a-lipoic acid with a standard

OGTT prevented lipid peroxidation (i.e. thiobarbituric

acid-reactive substances; TBARS) and the associated

decrease in flow-mediated dilatation otherwise observed

following the OGTT alone. It is noteworthy that the pre-

sence of antioxidants did not influence the extent of post-

prandial hyperglycaemia and supports the hypothesis that

oxidative stress links acute hyperglycaemia to impaired

postprandial endothelial function and integrity.

Similarly, the postprandial impact of high-carbohydrate

challenges was also investigated in individuals with

impaired glucose metabolism such as IGT or T2DM (results

shown in Tables 1 and 2). These studies uniformly demon-

strated in such populations that high-carbohydrate chal-

lenges elevate oxidative stress markers and impair

endothelial function to a more prolonged or important

extent(42,43,50,51,54–56). For instance, Kawano et al.(54)

observed significant postprandial elevations in TBARS

and attenuated flow-mediated dilatation of the brachial

artery following an OGTT in subjects with IGT and

T2DM while healthy controls were not significantly

affected by such challenge. Xiang et al.(53) observed similar

findings in subjects with IGT and, like Kawano et al.(54),

observed a positive correlation between postprandial oxi-

dative stress and endothelial dysfunction.

In summary, a strong causative link between acute

hyperglycaemia, postprandial oxidative stress and endo-

thelial function in healthy subjects cannot be established

due to the lack of studies evaluating these events concomi-

tantly. However, since antioxidant co-ingestion prevents

deleterious oxidative and endothelial events following an

oral glucose load, it is tempting to hypothesise that acute

hyperglycaemia induces the formation of oxidative species

impairing endothelial function. Establishing a causal

link could be facilitated in higher-risk individuals with

impaired glucose metabolism, in which elevated baseline

oxidative levels (or impaired antioxidant mechanisms)T
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could potentially accentuate postprandial insults, making

them more easily detectable(2).

Hypertriacylglycerolaemia-induced oxidative stress and
endothelial dysfunction

Postprandial but not fasting hypertriacylglycerolaemia is

associated with an increased risk of atherosclerosis and is

now considered an important risk factor for CVD(57,58).

Since dietary fatty acids are a good source of oxidised/oxi-

disable lipids and can lead to activation of mitochondrial

metabolism and to the formation of ROS, it has been pro-

posed that oxidative stress could link postprandial hyper-

triacylglycerolaemia to vascular damage(9,20). The second

part of the present review will discuss the postprandial

impact of acute ingestion of high quantities of different

types of fatty acids. High-fatty acid challenges were defined

as fatty acid loads or meals providing more than 45% of

total energy from fat, which has been recognised as the

minimal quantity leading to observable oxidative and

endothelial modifications(20).

Postprandial impact of high-saturated fat meals. High-

saturated fat meals (HSFAM), defined as meals providing

more than 10% of total daily energy from SFA (i.e. $7 g

of SFA/meal, based on three meals and 8400 kJ

(2000 kcal)/d)(59), have often been investigated for their

hypertriacylglycerolaemic properties and their potential

postprandial oxidative and endothelial-impairing prop-

erties (Table 3). The majority of these experiments

highlighted a significant impairment of postprandial endo-

thelial function following a HSFAM(60–66). Notably, Vogel

et al.(65) and Plotnick et al.(66) in what are recognised

today as landmark studies, showed a correlation between

the magnitude of postprandial hypertriacylglycerolaemia

and the degree of endothelial function impairment. Some

also noted that a HSFAM led to increased endothelial

microparticle release or to increases in von Willebrand

factor and P-selectin(67–70). Others evaluated the impact

of HSFAM-induced hypertriacylglycerolaemia on markers

of oxidative stress. The majority of these investigations

observed increased postprandial oxidative stress or

impaired plasma antioxidant capacity through multiple

different markers(45,71–74). Postprandial hypertriacylglycer-

olaemia was found to correlate significantly with plasma

TBARS (r 0·336; P,0·05)(73). These data allow one to con-

clude that a HSFAM induces transient but significant hyper-

triacylglycerolaemia that impairs endothelial function and

increases oxidative stress and/or lowers antioxidant

defences(20). However, such studies do not allow the estab-

lishment of a firm causal link between postprandial

oxidative stress and endothelial dysfunction(20).

Table 4 details studies investigating the impact of a

HSFAM on endothelial function along with oxidative

stress markers. On top of confirming previous observations

in which endothelial function was impaired and oxidative

stress was increased following a HSFAM, the majority of

these studies correlated postprandial hypertriacylglycero-

laemia, oxidative stress and/or endothelial function. Of

these, Bae et al.(75) correlated (r 20·78; P,0·001) elevated

ROS production to endothelial impairments following a

HSFAM in healthy subjects. Tushuizen et al.(76) also

reported a borderline inverse correlation between post-

prandial MDA production and endothelial function

(r 20·52; P,0·059) in healthy subjects. Spallarossa

et al.(77) demonstrated that a HSFAM induced activation

of myeloperoxidase resulting in a significant elevation in

ROS levels, which correlated positively with advanced oxi-

dation protein products (r 0·75; P¼0·005) and a loss of

endothelial integrity (increased soluble form of CD146

(sCD146): r 0·49, P¼0·065; and matrix metalloproteinase-

9 (MMP-9): r 0·53, P,0·05).

Individuals with higher cardiovascular risk (i.e. IGT,

T2DM and subjects with familial history of T2DM) were

also included in some investigations that consistently

observed more important and prolonged postprandial

hypertriacylglycerolaemia, oxidative stress and/or endo-

thelial dysfunction following a HSFAM(47,50,51,61,72,73,78–83).

Anderson et al.(79) showed that postprandial TBARS were

correlated (r 0·72; P¼0·008) with decreased endothelial

function only in T2DM. Nappo et al.(47) showed that post-

prandial hyperglycaemia, hypertriacylglycerolaemia and

impaired endothelial injuries (increased ICAM and

VCAM) were greater in T2DM individuals, while Madec

et al.(84) correlated such events with increased oxidative

products (nitrotyrosine: r 0·54; P¼0·0015) in individuals

with familial history of T2DM.

Some investigators also added antioxidant vitamins or

compounds to HSFAM to study the oxidative stress-

induced postprandial endothelial impairment hypothesis

(Tables 3 and 4). Notably, it was demonstrated that

co-ingestion of antioxidant vitamins C and/or E or pre-

treatment with antioxidant compounds (for example, fruit

juices or angiotensin-converting enzyme inhibitors) with

a HSFAM prevented postprandial endothelial dysfunc-

tion(65,85,86). The co-ingestion of vitamins C and E with a

HSFAM also attenuated postprandial endothelial activation

evaluated by ICAM and VCAM(47). Ventura et al.(74) showed

that the addition of red wine to HSFAM reduces postpran-

dial oxidative stress and improves plasma antioxidant

potential, observations that were corroborated in a recent

review by Covas et al.(87). Burton-Freeman et al.(88)

observed that the addition of tomato extract to a HSFAM

prevented an increase in oxidised LDL and marginally ame-

liorated postprandial endothelial function in comparison

with a HSFAM alone. Finally, a 3 d vitamin C supplemen-

tation in individuals with T2DM attenuated postprandial

endothelial alterations and correlated (r 0·42; P¼0·04)

with lowered ROS production(78).

It is noteworthy that the addition of antioxidants in

the aforementioned studies did not influence the magni-

tude of postprandial TAG excursion. As such, their protec-

tive effects do not appear to be due to effects on TAG
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Table 3. Studies evaluating the impact of postprandial hypertriacylglycerolaemia (HTG) induced by oral high-saturated fat challenges on markers of oxidative stress or endothelial function

Study Population
Fat composition
and % E from fat

Absolute
postprandial
TAG variation
(mmol/l)

Postprandial
oxidative
stress

Postprandial
endothelial
function Comments

Vogel et al. (1997)(66) HS (n 10) 14 g SFA; 50% E 1·85* NA # FMD*
Plotnick et al. (1997)(65) HS (n 20) 14 g SFA; 50% E 0·6* NA # FMD* Prevented by co-ingestion of

vitamins C and E
Djousse et al. (1999)(107) HS (n 13) 0·5 g SFA/kg; 48% E 1·0 NA ¼ FMD Not affected by red wine
Fard et al. (2000)(61) T2DM (n 50) 52 g SFA; 75% E 3·38 NA # FMD* ADMA inhibits NO production

" ADMA*
Marchesi et al. (2000)(63) HS (n 10) 40 g SFA/m2; 84% E 0·72* NA # FMD*
Raitakari et al. (2000)(91) HS (n 12) 55 g SFA; 53% E 1·0 NA ¼ FMD Could be explained by increase

baseline artery diameter
Gokce et al. (2001)(62) HS (n 14) 27 g SFA; 47% E 0·78* NA # FMD*
Nappo et al. (2002)(47) HS (n 20); T2DM (n 20) 20 g SFA; 60% E 0·4 (HS)*

1·5 (T2DM)*
NA " ICAM and VCAM

(both groups)*
Vitamin C and E co-ingestion

attenuated endothelial injuries
Ling et al. (2002)(85) HS (n 50); CHD (n 74) 5 g SFA; 56% E 1·0 (HS)*

1·4 (CHD)*
NA # FMD* More important for CHD,

prevented by vitamin C
co-ingestion

Ferreira et al. (2004)(67) HS (n 18) 14 g SFA; 50% E 0·58* NA " EMP*
Giannattasio et al. (2005)(108) HS (n 7); HTG (n 16) 83% E 0·30 (HS) NA ¼ FBF and FMD (HS)

2·47 (HTG)* # FMD (HTG)*
Padilla et al. (2006)(64) HS (n 8) 16·5 g SFA; 46% E NA NA ¼ FMD Increased baseline artery

diameter
Nicholls et al. (2006)(98) HS (n 14) 1 g/kg coco oil (89·6% SFA) 0·31 NA # FMD

" ICAM and VCAM
Rueda-Clausen et al. (2007)(99) HS (n 10) 26 g SFA; 91% E 0·12 NA # FMD
Harrison et al. (2009)(68) HS (n 8) About 60 g SFA; 60% E 1·45 NA " EMP
MacEneaney et al. (2009)(109) HS (n 10); obese (n 8) About 60 g SFA; 60% E 0·95 (HS) NA ¼ ICAM and VCAM

1·25 (obese)
Ayer et al. (2010)(80) HS (n 11); obese (n 11) 25 g SFA; 54% E 1·1 (HS) NA ¼ FMD (both groups)

1·0 (obese)
Fahs et al. (2010)(60) HS (n 20) 13·5 g SFA; 47% E NA NA # Normalised FMD Prevented by addition of

540 mg EPA and 360 mg DHA
Strohacker et al. (2012)(70) HS (n 8) 18·5 g SFA; 59% E 0·90 NA " EMP
Ventura et al. (2004)(74) HS (n 15) 14 g SFA; 50% E 0·96 " MDA, uric acid NA Red wine ameliorated

oxidative profile# Plasma antioxidant
Saxena et al. (2005)(73) HS (n 13); T2DM (n 13) 61 g SFA/m2; 81% E 0·29 (HS)* " TBARS*, SOD, GSH NA More important for T2DM

1·24 (T2DM)*
Devaraj et al. (2008)(110) MetS (n 11) 15·5 g SFA; 50% E 1·02 " TBARS, MDA,

HNE, peroxide
NA

Fisher-Wellman &
Bloomer (2010)(71)

HS (n 10) 0·6 g SFA/kg; 1 g fat/kg 0·40* " MDA*, H2O2*, NOx* NA
¼ Plasma antioxidant

capacity
Bloomer et al. (2010)(45) HS (n 9) 20 or 40 g SFA; 100% E 0·28 (33 g SFA)

0·85 (40 g SFA)*
" MDA and H2O2

(for 40 g SFA only)*
NA

Gregersen et al. (2012)(72) HS (n 7);
HS with FHD (n 8)

27 g SFA; 76% E 1·1 ¼ Plasma antioxidant
capacity, SOD

NA

E, energy; HS, healthy subjects; NA, not available; # , decrease; FMD, flow-mediated dilatation; ¼ , unchanged; T2DM, type 2 diabetes mellitus; " , increase; ADMA, asymmetric dimethylarginine; ICAM, inter-cellular adhesion mol-
ecule; VCAM, vascular cell adhesion molecule; CHD, chronic heart disease; EMP, endothelial microparticles; FBF, forearm blood flow; MDA, malondialdehyde; TBARS, thiobarbituric acid-reactive substance; SOD, superoxide dis-
mutase, GSH, glutathione; MetS, metabolic syndrome; HNE, hydoxynonenal; NOx, nitrate/nitrite; FHD, familial history of type 2 diabetes mellitus.

* Significant correlation (P,0·05).
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Table 4. Studies evaluating the link between oxidative stress and endothelial function induced by oral high-saturated fat challenges

Study Population
Fat composition
and % E from fat

Absolute
postprandial
TAG variation
(mmol/l)

Postprandial
oxidative
stress

Postprandial
endothelial
function Comments

Williams et al. (1999)(111) HS (n 10) 30 g SFA; 65% E
(used or unused oil)

1·29 (unused)
0·82 (used)

¼ TBARS, lipid peroxidation ¼ FMD (unused)
# FMD (used)

Oil used for deep-frying
contained peroxides,
no correlation found

Bae et al. (2001)(75) HS (n 11) 53·4 g SFA; 60% E 0·59** " ROS production*,** # FMD*,**
Anderson et al. (2001)(79) HS (n 12); T2DM (n 12) 80 g SFA 0·87 (HS) " TBARS* and

ROS production
# FMD* Significant correlation

only in T2DM5·6 (T2DM)*
Ceriello et al. (2002)(51) HS (n 20); T2DM (n 30) 47 g SFA; 96% E NA ¼ NT (HS)

" NT (T2DM)
# FMD Prolonged for T2DM,

no correlation calculated
Bae et al. (2003)(112) HS (n 10) 60% E 0·68* ¼ MDA and vitamin E # FMD* Unknown SFA quantity
Ceriello et al. (2005)(50) T2DM (n 20) 47 g SFA; 96% E 2·0 " NT and ICAM # FMD No correlations calculated
Anderson et al. (2006)(78) T2DM (n 20) 80 g SFA; 80% E 0·9*,** " ROS production**

and TBARS
# FMD* Vitamin C supplementation

prevented increased
ROS and decreased
FMD (correlated)

Tushuizen et al. (2006)(76) HS (n 17) 30 g SFA; 52% E 0·9** " oxLDL/LDL** and MDA* # FMD*
" EMP

Cortés et al. (2006)(113) HS (n 12); HC (n 12) 47 g SFA þ OO or walnut 0·93 (HS) # oxLDL (both meals) # FMD (OO) No correlations found
(ALA and arginine); 63% E 1·37 (HC) ¼ FMD (walnut)

Similar for
both meals

# ICAM and VCAM
(both meals)

# e-selectin (walnut)
Rudolph et al. (2007)(114) HS (n 24) 13·1 g SFA; 37% E 0·47 " 8-isoPGF # FMD No significant

correlation found
Spallarasso et al. (2008)(77) HS (n 15) 30 g SFA; 78% E 0·33* " MPO, ROS* and AOPP*,** " sCD146 and MMP-9**
Armah et al. (2008)(89) HS (n 25) 33 g SFA; 48% E 1·04 # Nitrite

¼ eNOS and Nox-4
gene expression

¼ Endothelial
vasodilatation to
Ach and SNP

Improved by addition
of 2·2 g EPA
and 3·2 g DHA

Berry et al. (2008)(115) HS (n 17) 26·7 g SFA; 53% E 0·40 # Isoprostane # FMD No correlations found
Lin et al. (2008)(69) HS (n 20) 14 g SFA; 50% E 0·50* ¼ GSHPx # FMD*

" P-selectin and vWF
Prevented by L-Arg

co-ingestion
Tsai et al. (2009)(116) HS (n 16) 14 g SFA; 51% E 1·41 # GSHPx

" PGF2
# FMD
¼ ICAM, VCAM

Oxidation and FMD are
associated but
no correlation calculated

Neri et al. (2005)(86)

and 2010)(82)
HS (n 40), IGT (n 40);

T2DM (n 40)
80 g SFA; 49% E 0·68 (HS)

2·9 (IGT)
4·8 (T2DM)*

" MDA, HNE,
oxLDL, GSHPx

# FMD*
" ET-1, vWF, VCAM
# NO

More important for
IGT and T2DM and
prevented by antioxidants

Madec et al. (2011)(84) HS (n 16); HS
with FHD (n 16)

14·25 g SFA; 52% E 0·16 (HS)
0·26 (FHD)**

" NT* " ICAM*, VCAM** In FHD only

Newens et al. (2011)(90) HS (n 59) 0·52 g fat/kg; 64% SFA No significant
increase

# NOx # FMD 3·8 g DHA and 0·4 g EPA
improved FMD but not NOx¼ ICAM and ET-1

Jenkins et al. (2011)(117) HS (n 10) 30 g SFA; 84% E 0·68 " ROS, oxLDL and SOD ¼ EMP No significant
correlation found
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metabolism. Rather, they appear to attenuate postprandial

hypertriacylglycerolaemia-induced oxidative stress in

response to a HSFAM, resulting in lesser endothelial

damage. The addition of n-3 PUFA to a HSFAM also

appears to prevent postprandial endothelial dysfunction

independently of the magnitude of hypertriacylglycerolae-

mia(60,89,90). Although such investigations are sparse, the

effect of co-ingestion of n-3 PUFA could be related to

improved postprandial NO bioavailability through acti-

vation of endothelial NO synthase(60,89,90).

Postprandial impact of high-monounsaturated or -poly-

unsaturated fat meals and challenges. Fatty acid types

other than SFA may differentially influence postprandial

endothelial and oxidative processes. Table 5 lists studies

performed with meals rich in MUFA and PUFA. High-

monounsaturated fat meals (HMUFAM) are defined as

meals providing . 20% of energy from MUFA ($15 g of

MUFA and , 5 g SFA based on three meals and 8400 kJ

(2000 kcal)/d)(59). For example, Vogel et al. found that

50 g of olive oil on bread impaired postprandial endothelial

function while others observed that meals rich in MUFA

had neutral effects on endothelial function(91–94). Although

oxidative stress markers were not measured, Vogel et al.(93)

found that co-ingestion of vitamins C and E or balsamic

vinegar (antioxidant) prevented postprandial endothelial

injury, which again suggests a role for oxidative stress. In

contrast, meals with significant amounts of high-oleic saf-

flower-seed oil improved endothelial function in T2DM

individuals(95). These data suggest that HMUFAM may

have neutral to beneficial postprandial properties in

T2DM while having neutral to detrimental properties in

healthy subjects. Alternatively, the observed differences

may reflect differing quantities and sources of MUFA used.

The acute impact of meals containing n-3 PUFA or large

amounts of n-6 PUFA, defined as meals providing . 9% of

energy from n-6 PUFA ($7 g of n-6 PUFA based on three

meal and 8400 kJ (2000 kcal)/d), has also been investigated

and yields conflicting results(59). The ingestion of a meal

consisting of canned salmon (6 g n-3 PUFA) or the addition

of either marine or vegetable sources of n-3 PUFA to a

HMUFAM had no significant impact on postprandial endo-

thelial function(83,93,95,96). In contrast, the addition of a

large quantity of EPA (8·3 g) to a high-fat meal lowered

postprandial oxidative stress (improved NO bioavailability)

and decreased arterial stiffness(97). Meals containing high

amounts of n-6 PUFA from safflower-seed(94,98), soya-

bean(96,99) or maize(96) oils have also been evaluated. Saf-

flower-seed oil had a neutral effect on postprandial

endothelial function and was associated with decreased

markers of endothelial activation(94,98). Meals rich in soya-

bean oil impaired postprandial endothelial-dependent

vasodilatation in one instance(99) and improved hyperae-

mic forearm blood flow (a marker of endothelial-depen-

dent function) in another(96). On the contrary, maize oil

was shown to impair forearm blood flow(96).T
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Table 5. Studies evaluating the link between oxidative stress and endothelial function induced by oral high-monounsaturated or -polyunsaturated fat challenges

Study Population
Fat composition
and % E from fat

Absolute
postprandial
TAG variation
(mmol/l)

Postprandial
oxidative
stress

Postprandial
endothelial
function Comments

Ong et al. (1999)(118) HS (n 16) 38 g MUFA; 59% E 2·4 NA # FMD
Vogel et al. (2000)(93) HS (n 10) 50 g FA from OO, MO,

salmon, OO þ vitamins E
and C, and OO þ vinegar; 50% E

Similar for five meals
(from 0·2 to 42 mg)*

NA # FMD (OO)*
¼ FMD (four other meals)

Rueda-Clausen
et al. (2007)(99)

HS (n 10) 46·2 g MUFA (OO);
31·7 g PUFA (soya); 91% E

0·28 (OO)
0·15 (soya)

NA # FMD (both meals) No significant correlation found

Raitakari et al. (2000)(91) HS (n 12) 97 g MUFA; 53% E 1·2 NA ¼ FMD Could be explained by
increase baseline artery
diameter

Nicholls et al. (2006)(98) HS (n 14) 0·75 g n-6 PUFA/kg 0·52 NA ¼ FMD No correlation calculated
# ICAM and VCAM

Williams et al. (2001)(94) HS (n 14) 40 g MUFA (OO); 44 g
n-6 PUFA (SO); 69% E

0·80 OO
0·55 SO

NA ¼ FMD for both meals No correlation calculated

West et al. (2005)(95) T2DM (n 18) 32 g MUFA ^ ALA or
EPA/DHA; 72% E

1·06 (MUFA)*
0·81 (ALA)*

NA " FMD for three meals*

0·81 (EPA/DHA)*
Tentolouris et al. (2008)(92) T2DM (n 33) 48 g MUFA; 58% E NA NA ¼ FMD
Berry et al. (2008)(115) HS (n 17) 42·5 g MUFA; 53% E 0·45 " Isoprostane # FMD No significant correlation found
Hall et al. (2008)(97) HS (n 17) 43·6 MUFA ^8·3 g EPA 1·29 for both meals No change for MUFA ¼ Arterial stiffness

index (MUFA)
No significant correlation found

# NOx (EPA)
" Isoprostane (EPA) # Arterial stiffness

index (EPA)
Tousoulis et al. (2010)(96) HS (n 37) 70 g MUFA (OO); 55 g n-6 (maize);

1·6 g n-3 (cod); 55 g n-6 (soya)
NA ¼ Lipid peroxidation ¼ RH (OO)

# RH (maize)
" RH (cod and soya)

No significant correlation found

Peairs et al. (2011)(83) Obese (n 11) OO ^2·4 g EPA and
1·6 g DHA; 59% E

0·97 (OO)
0·79 (OO þ n-3)

" NF-kB (n-3)
# PGF2 (two meals)

¼ ICAM and
VCAM (both meals)

Unknown MUFA quantity,
no significant correlation
found

E, energy; HS, healthy subjects; NA, not available; # , decrease; FMD, flow-mediated dilatation; FA, fatty acids; OO, olive oil; MO, maize oil; ¼ , unchanged; ICAM, inter-cellular adhesion molecule; VCAM, vascular cell adhesion
molecule; SO, safflower-seed oil; T2DM, type 2 diabetes mellitus; ALA, a-linolenic acid; " , increase; NOx, nitrate/nitrite; RH, reactive hyperaemic forearm blood flow; NF-kB, redox-sensitive nuclear transcription factor kB.

* Significant correlation (P,0·05).
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Summary. In summary, a single HSFAM is associated

with a concomitant increase in postprandial oxidative

stress (or decrease in antioxidant protection) and a

decrease in endothelial function (or triggered endothelial

activation). The causal relationship between these

phenomena appears tenuous based upon data in healthy

individuals but data from studies in higher-risk individuals

are stronger. This could represent the compounding effect

of multiple fasting metabolic dysregulations (for example,

hyperglycaemia, dyslipidaemia and insulin resistance)

and lower antioxidant mechanisms resulting in prolonged

hypertriacylglycerolaemia, elevated postprandial oxidative

burden and greater endothelial derangements(39,79,82,100).

Some high-risk individuals, being insulin resistant, might

also be resistant to the insulin-mediated vasodilatation

exacerbating their postprandial endothelial dysfunc-

tion(101). Studies combining meals rich in carbohydrate

and SFA also suggest that hyperglycaemia and hypertriacyl-

glycerolaemia have additive effects on endothelial and oxi-

dative processes(50,51). Similar postprandial events could be

present in healthy subjects but with lesser magnitude and

duration owing to more effective metabolic and antioxi-

dant mechanisms making such events harder to observe

and thus correlate(79). Previously described investigations

carried out with antioxidant compounds give us insight

and add weight to support a role for oxidative stress in

postprandial endothelial dysfunction.

In addition to inter-individual differences in oxidative

and endothelial systems, differences in fatty acid absorp-

tion and clearance could also contribute to making post-

prandial responses heterogeneous, thereby weakening

correlations. Different components of test meals such as

protein, fibre or antioxidants (i.e. polyphenol contents of

olive oils) and different sources and thus types of fatty

acids (i.e. animal v. vegetable sources of SFA) could also

explain discrepancies between studies(102). The postpran-

dial impact of meals rich in MUFA and/or PUFA is less

clear and reflects that the SFA:MUFA:PUFA ratio is import-

ant in determining postprandial oxidative and endothelial

properties of test meals.

Concluding remarks

Postprandial hyperglycaemia and hypertriacylglycerolae-

mia induced by a high carbohydrate or high SFA intake

lead to increased postprandial oxidative stress and impaired

endothelial function in the majority of cases (for schematic

representation, see Fig. 1), while high MUFA or PUFA

intakes have more controversial effects. We believe that oxi-

dative stress has a role to play in postprandial endothelial

Oral carbohydrate
challenge

Vascular
lumen

Hyperglycaemia

41, 42,
43, 104

ICAM, VCAM, selectins,
vWF and endothelial

microparticles

47, 67,
68, 70,

98
HSFAM

Hypertriacylglycerolaemia

45, 71, 73,
74, 110

39, 56, 72

44

Endothelial 
cells Mitochondrial

dysfunction
Mitochondrial
dysfunction

33, 48*, 50, 51,
53*, 54*, 106

ROS

eNOS

Normal
endothelial function

†
† † †

NO

50, 51, 75*,
76*, 77*, 78,
79*, 82, 84*,
86, 114, 116

60–63,
65, 66, 85, 98,

99, 108

Fig. 1. Schematic representation of oxidative and endothelial postprandial events induced by acute hyperglycaemia or hypertriacylglycerolaemia and reference

numbers of studies reporting such events. ICAM, intracellular adhesion molecule; VCAM, vascular cell adhesion molecule; vWF, von Willebrand factor; HSFAM,

high-saturated fat meal; ROS, reactive oxygen species; eNOS, endothelial NO synthase; VSMC, vascular smooth muscle cell. * Studies reporting significant corre-

lation (P,0·05) between oxidative and endothelial parameters. † Red arrows (grey in print) represent negative effects or impairments. (A colour version can be

found online at http://dx.doi.org/10.1017/ S095,44 224,12000182).
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dysfunction but that inter-individual differences contributed

to the attenuation of statistical correlation between

parameters, particularly in healthy subjects.

One limitation common to most studies is the use of

biomarkers assessing different mechanisms taking place

in different cellular or biological compartments that might

not be relevant to postprandial processes. Wallace

et al.(20) covered this topic in a previous publication and

concluded that MDA, oxidised LDL and TBARS are prob-

ably unsuitable biomarkers for postprandial studies. In

our opinion, markers specifically reflecting the impact of

oxidative stress on endothelial processes (myeloperoxi-

dase, NADPH oxidase, nitrotyrosine(103), nitrate/nitrite,

asymmetric dimethylarginine(104)) will need to be priori-

tised in future studies. Different fatty acid types might not

affect the endothelium by the same mechanisms and

could require different biomarkers to be evaluated

properly(101). One way to control for inter-individual differ-

ences in fatty acid absorption and metabolism would be to

characterise postprandial plasma fatty acids (and antioxi-

dants when co-administered) and perform analysis con-

trolled for plasma fatty acid profiles. It is also possible

that low-CVD risk populations could not be the most

suitable cohorts for mechanistic studies because of their

low baseline oxidative stress levels, effective antioxidant

and metabolic processes and normal endothelial function

compared with higher-risk individuals. Standardisation of

oral fat challenges (i.e. standardised homogeneous oral

fat load) as was done with OGTT might also need to be

implemented to facilitate the understanding of postpran-

dial mechanisms linked to certain fatty acid families.

However, complete meals reflecting real-life situations

must also be investigated and would provide insight into

the cardioprotective mechanism of certain dietary patterns.
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